4. A metil-acetát lúgos hidrolízise. Előkészítő előadás
|
|
- Lajos Csonka
- 8 évvel ezelőtt
- Látták:
Átírás
1 4. A metil-acetát lúgos hidrolízise Előkészítő előadás
2 A metil-acetát hidrolízise Metil-acetát: ecetsav metil észtere, CH 3 COOCH 3 Hidrolízis: reakció a vízzel, mint oldószerrel. CH 3 COOCH 3 + H 2 O CH 3 COOH + CH 3 OH egyensúlyi reakció -> az észter ebben a reakcióban nem hidrolizálható teljes mértékben!
3 A metil-acetát lúgos hidrolízise Lúgos hidrolízis: hidrolízis lúgos oldatban A fenti reakció erős bázis oldatában (pl. NaOH-oldat) teljes mértékben a termékképződés felé tolódik el, mert a keletkezett ecetsav a lúggal reakcióba lép: CH 3 COOH + NaOH CH 3 COONa + H 2 O A két reakcióegyenletet összevonva: CH 3 COOCH 3 + NaOH CH 3 COONa + CH 3 OH
4 A mérési feladat A metil-acetát lúgos hidrolízis reakciójának sebességi együtthatójának meghatározása elektromos vezetés méréssel különböző hőmérsékleteken. A folyamat aktiválási energiájának kiszámolása az Arrhenius-egyenlet alkalmazásával.
5 Reakciókinetikai alapok Átalakulási sebesség (termelődési vagy fogyási sebesség): n / t Függ a kiválasztott anyagfajtától! A + 2B ½C n A / t n B / t n C / t Reakciósebességet ezért nem az anyagmennyiséggel, hanem a reakciókoordinátával érdemes felírni: ξ v, ahol ξ n i, azaz t ν i v n ν t i i
6 Reakciókinetikai alapok A pillanatnyi sebességet véges differenciákról deriválásra áttérve kapjuk meg: v dξ dt dξ dn i ν i v ν i dn dt i
7 Reakciókinetikai alapok A A + 2B ½C reakcióra felírt reakciósebességek: t n t n d d d d v A A A t n t n d d 2 d d 2 v B B B t n t n d d 2 d d 2 v C C C C B A v v v
8 Reakciókinetikai alapok Ha a reakció során a térfogat nem változik, akkor az anyagmennyiségekről át lehet térni az anyagmennyiség koncentrációra: n i d v dc v V i V ν i dt ν dt i Ez a reakciósebesség a térfogattal osztott reakciósebesség.
9 Reakciókinetikai alapok A reakciósebesség általában függ a kiindulási anyagok koncentrációjától. Sok esetben ez a függés a tömeghatás kinetikát követi. Elemi reakcióknál minden esetben, összetett reakcióknál gyakran érvényes az úgynevezett sebességi egyenlet. [ A] d v d t k r [ ] A r A [ B] B ahol k a sebességi együttható, r A az A anyag, r B a B anyag részrendje. A részrendek összege a reakció bruttó rendje.
10 Az elsőrendű reakció sebességi egyenlete Differenciális alak: [ A] d dt k [ A] Integrális alak: kt [ A] [ A] 0e
11 Másodrendű reakció sebességi egyenlete Differenciális alak: [ A] d dt k [ A][ B] Integrális alak: kt [ A] [ B] 0 0 ln [ A][ B] 0 [ A] [ B] 0 Elég bonyolult egyenlet!
12 Másodrendű reakció sebességi egyenlete egyszerűsített változat Ha [A] 0 [B] 0 az egyenletek sokkal egyszerűbbek! Differenciális alak: [ A] d dt k [ A] 2 Integrális alak: kt A A [ ] [ ] 0 A feltétel a reakcióelegy megfelelő összeállításával egyszerűen biztosítható!
13 A reakció követése Bármilyen módszer jó, ha koncentrációt vagy koncentrációváltozást lehet mérni vele. CH 3 COOCH 3 + Na + + OH CH 3 COO + Na + + CH 3 OH Ebben az esetben a reakció során a reakcióelegy elektromos vezetése jelentős mértékben változik, így alkalmas a reakció előrehaladásának követésére.
14 Néhány elektromosságtani fogalom ismétlése Az elektromos vezetés (G) az elektromos ellenállás (R) reciproka: G R SI mértékegysége: Ω - S(siemens) Homogén, tömör vezető esetén a vezető ellenállása egyenesen arányos a hosszával és fordítottan a keresztmetszetével. l R ρ A Az arányossági tényező a fajlagos ellenállás (ρ).
15 Néhány elektromosságtani fogalom ismétlése A fajlagos vezetés (κ) a fajlagos ellenállás reciproka: κ ρ SI mértékegysége: S/m Az oldat vezetését tehát a fajlagos vezetése határozza meg: G R ρ A l κ A l
16 Néhány elektromosságtani fogalom ismétlése Az oldat fajlagos vezetése az egyes ionok fajlagos vezetéseinek összege: Egy ion fajlagos vezetése a moláris fajlagos vezetésének (λ i ) és az anyagmennyiség koncentrációjának a szorzata: κ κ i κ i λ c i i Egy ion moláris fajlagos vezetése pedig az elektromos mozgékonyságától (u i ) függ: λ i u zf i
17 Az elektromos vezetés változásának oka CH 3 COOCH 3 + Na + + OH CH 3 COO + Na + + CH 3 OH u (OH ) >> u (CH 3 COO )
18 A sebességi együttható meghatározása CH 3 COOCH 3 + OH CH 3 COO + CH 3 OH d [ ] [ ] CH [ ][ ] 3COOCH 3 d OH k CH COOCH OH dt dt 3 3 A kinetikai egyenlet egyszerűsítése céljából a két reaktáns koncentrációját azonos értékre állítjuk be. Ezért ezek koncentrációja a reakció során végig meg fog egyezni. Jelöljük a továbbiakban ezt [A]-val! [CH 3 COOCH 3 ] [OH ] [A] kt A A [ ] [ ] 0
19 A sebességi együttható meghatározása a vezetés méréséből CH 3 COOCH 3 + Na + + OH CH 3 COO + Na + + CH 3 OH G A κ l A l i A κ i λi c l i i A metil-acetát és metanol nem ionok, ezért a vezetésben nem vesznek részt. A nátrium-ion koncentrációja nem változik a reakció során. κ λ [ ] [ ] [ ] OH λ Ac λ Na OH Ac Na
20 A sebességi együttható meghatározása a vezetés méréséből [CH 3 COOCH 3 ] [OH ] [A] Írjuk fel a reaktánsok koncentrációja segítségével az acetát-ionok pillanatnyi koncentrációját: [Ac ] [A] 0 [A]
21 A sebességi együttható meghatározása a vezetés méréséből Visszahelyettesítve: κ λ [ A] λ [ A] [ A] ( ) [ ] λ Na OH Ac 0 Na A reakció kezdetén [A] [A] 0 : κ 0 λ + λ [ ] [ ] + A + Na OH A reakció teljes lejátszódása után [A] 0: κ Ezekkel az egyenletekkel a kinetikai egyenlet átírható fajlagos vezetésekre! 0 Na [ ] [ ] + A λ Ac λ Na Na
22 A sebességi együttható meghatározása a vezetés méréséből kt [ A] [ A] [ A] [ ] 0 A [ A][ A] [ A] [ A] [ A] [ A] κ κ κ Képezzük az alábbi különbségeket: λ κ λ [ ] [ ] + A + λ + Na λ [ A] λ [ A] [ A] ( ) [ + λ Na ] + Ac [ A] + λ [ A] 0 [ A] + Ac [ A] [ A] 0 Na ( ) [ ] [ ] [ + + λ + Na λ A + Na ] 0 λ OH OH Na ( )( λ ) 0 λ Ac OH Ac [ A]( ) λ Ac λ OH OH 0 0 Na Na
23 A sebességi együttható meghatározása a vezetés méréséből Behelyettesítve: kt [ A] [ A] [ ] 0 A κ κ0 [ A] [ ] κ κ 0 A 0 l Tudjuk, hogy κ G, így az egyenlet a mérhető A vezetésekre átírható (az arányossági tényező a számlálóban és a nevezőben ugyanaz, így egyszerűsíthetünk vele): kt G G [ ] G G A 0 0
24 A sebességi együttható meghatározása a vezetés méréséből kt G G [ ] G G A 0 0 Meghatározandó mennyiségek: A kezdeti vezetés, G 0 Pillanatnyi vezetés értékek, G A reakció lejátszódása után mérhető vezetés, G A reaktánsok kezdeti koncentrációja, [A] 0
25 A sebességi együttható meghatározása a vezetés méréséből Nevezzük a vezetések így számolt hányadosát ezentúl Z-nek: Z Ha a Z mennyiséget az idő függvényében ábrázoljuk, akkor az alábbi egyenlet szerint egyenest kell kapnunk: G G G G G G G0 G k[ ] t 0 Z A 0 Az egyenes meredekségéből (m) a sebességi együttható kiszámolható: k m [ A] 0
26 A kísérleti berendezés vázlata konduktométer számítógépes adatgyűjtő rendszer hőmérő keverő Vezetési cella termosztát termosztálófolyadék hűtőfolyadék
27 A konduktométer A folyadékok vezetését leggyakrabban váltóáramú konduktométerrel mérik.
28 A konduktométer működési elve nagyfrekvenciájú váltóáramot használunk, mert így elkerülhető az elektrolízis a vezetési cellában az átfolyó áram kicsi ( A), hogy a hőhatása elhanyagolható legyen váltóáramú ellenállást (impedanciát) mérünk, mivel az áramköri elemek, főleg a cella tartalmaz kapacitív komponenst A konduktométer helyettesítő kapcsolása: vezetési cella feszültségforrás a mérőellenálláson eső feszültség mérőellenállás
29 A konduktométer működési elve Az Ohm-törvény alapján írjuk fel az áramerősségeket! A vezetési cellán átfolyó áram: I U R c + R m A mérőellenálláson átfolyó áram: I U R m m Mivel az áram mindkét ellenálláson átfolyik a fenti értékeknek egyenlőknek kell lenniük: G R c R c U + R m U m U R m U R Az mérőellenállás értékét úgy választjuk meg, hogy sokkal kisebb legyen a vezetési cella ellenállásánál (R c >> R m ). Ezt alkalmazva és az egyenletet átrendezve az oldat vezetését kapjuk: m m konstans U m
30 A vezetési cella Legegyszerűbb elrendezés: két nagy felületű platina lemez egy üvegharangban Előnyös, ha a lemezek fizikai felülete nagy, ezért gyakran platinázott platina lemezeket használnak. Így a valódi felület a geometria felület száz- vagy ezerszerese is lehet. Elterjedt még a gyűrűs vezetési cella, amelyben három platinagyűrű található (a két szélsőt összekötik). Alakja után gyakran harangelektródnak is nevezik a vezetési cellát. A harang tetején lévő nyílás fontos a folyadék áramlása miatt reakciókinetikai mérések vagy titrálások esetén. platina lemezek
31 A termosztát A termosztát a hőmérséklet állandó értéken tartására szolgáló eszköz. Egy folyadéktermosztát fő részei: hőmérséklet érzékelő vezérlő/szabályozó egység fűtés hűtés folyadéktartály
32 A termosztát működése ez a termosztát járása hűtés fűtés idő
33 A mérés kivitelezése Adatgyűjtő rendszer elindítása. hálózati elosztó 2. számítógép 3. Metex multiméter Adatgyűjtő program indítása a metacgy ikonnal A kívánt hőmérsékletet beállítása a termosztáton a 20 C és 40 C hőmérséklettartományban A konduktométer méréshatárának beállítása típustól függően (azért, hogy a reagensek betöltése során a konduktométer ne vezérlődjön túl) Desztillált víz és nátrium-hiroxid-oldat betöltése (ebben a sorrendben). Keverés! A konduktométer vezetéssel arányos kimenő egyenfeszültség jelének beállítása, majd a méréshatár rögzítése az R-H (range hold) gomb egyszeri megnyomásával (csak az első mérésnél). cm 3 metil-acetát felszívása (buborékmentesítés).
34 A mérés kivitelezése Hőmérséklet leolvasás percenként. Ha a hőmérséklet állandó: az adatgyűjtés elindításkor meg kell adni a mért értéket (ettől függ az adatgyűjtési idő!) 2 s után a metil-acetátot a keverőlapátra fecskendezzük Addig várunk, amíg az adatgyűjtés magától be nem fejeződik. A termosztát hőmérsékletét átállítjuk. A reakcióteret kitakarítjuk. A mérést az új hőmérsékleten megismételjük.
35 Az aktiválási energia meghatározása A sebességi együttható egy szűk hőmérséklettartományban az Arrhenius-egyenlet szerint függ a hőmérséklettől: k A e r E R T Ennek linearizált alakja: ln k ln A E R T ln A r E R r T Az aktiválási energia az ún. Arrhenius-ábrázolásból határozható meg. Ábrázoljuk a sebességi együttható természetes alapú logaritmusát a termodinamikai hőmérséklet reciprokának függvényében (lnk vs.t ábra). Az ábrázolt pontokra egyenest illesztve annak meredekségéből (m) az aktiválási energia kiszámítható: R m A jegyzetben tízes alapú logaritmus használatával is meg vannak adva a képletek. NE KEVERJÉK a kétféle logaritmust! r E
36 Az aktiválási energia meghatározása ln(k / dm 3 mol - s - ) Y A + B * X Parameter Value sd A 7,544 0,4537 B , R 0,99822 SD 0, E a 46,9 kj/mol T - / K -
37 Beadandó eredmények Az egy mérőhelyen dolgozó hallgatók neve A saját mérési adatfájlok neve A technikustól kapott adattáblázat és mintagrafikon. Arrhenius ábrázolás az aktiválási energia meghatározásához. Az ábrázolásához felhasznált függvény kiszámításához használt táblázat. Az ábrázolt függvény meredeksége alapján számolt aktiválási energia kj/mol egységben 3 értékes jegyre.
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
RészletesebbenReakció kinetika és katalízis
Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2
RészletesebbenReakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
RészletesebbenKinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
RészletesebbenSók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel
Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású
RészletesebbenELEKTROKÉMIA. Alapmennyiségek. I: áramersség, mértékegysége (SI alapegység): A:
ELEKTOKÉMIA Alapmennyiségek I: áramersség, mértékegysége (SI alapegység): A: A az áram erssége, ha 2 végtelen hosszú, elhanyagolható átmérj vezetben áramló konstans áram hatására a két vezet között 2 0-7
RészletesebbenFizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a
Részletesebben5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
RészletesebbenKörnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése
örnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése I. A számolási feladatok megoldása során az oldatok koncentrációjának számításához alapvetıen a következı ismeretekre van szükség:
RészletesebbenKémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
RészletesebbenReakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
Részletesebben5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
RészletesebbenTermoelektromos hűtőelemek vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja
RészletesebbenElektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai
RészletesebbenJegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna
Jegyzőkönyv CS_DU_e 2014.11.27. Konduktometria Ungvárainé Dr. Nagy Zsuzsanna Margócsy Ádám Mihálka Éva Zsuzsanna Róth Csaba Varga Bence I. A mérés elve A konduktometria az oldatok elektromos vezetésének
RészletesebbenÁltalános Kémia GY 3.tantermi gyakorlat
Általános Kémia GY 3.tantermi gyakorlat ph számítás: Erős savak, erős bázisok Gyenge savak, gyenge bázisok Pufferek, pufferkapacitás Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm
RészletesebbenAz egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:
RészletesebbenElektro-analitikai számítási feladatok 1. Potenciometria
Elektro-analitikai számítási feladatok 1. Potenciometria 1. Vas-só részlegesen oxidált oldatába Pt elektródot merítettünk. Ennek az elektródnak a potenciálját egy telített kalomel elektródhoz képest mérjük
Részletesebben5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás
5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2019.02.04. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő oldáshő hidratációs
RészletesebbenKiegészítő tudnivalók a fizikai mérésekhez
Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók
RészletesebbenAz Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.
Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és
RészletesebbenÁltalános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
RészletesebbenSók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel
Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Előadó: Zsély István Gyula Készült Sziráki Laura, Szalma József 2012 előadása alapján Laborelőkészítő előadás,
RészletesebbenReakciókinetika. Fizikai kémia előadások biológusoknak 8. Turányi Tamás ELTE Kémiai Intézet. A reakciókinetika tárgya
Reakciókinetika Fizikai kémia előadások biológusoknak 8. Turányi Tamás ELTE Kémiai Intézet A reakciókinetika tárgya Hogyan változnak a koncentrációk egy reaktív elegyben és miért? Milyen részlépésekből
RészletesebbenMolekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
Részletesebbenph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion
RészletesebbenElektromos ellenállás, az áram hatásai, teljesítmény
Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak
Részletesebbenph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra :
ph-számítás A víz gyenge elektrolit. Kismértékben disszociál hidrogénionokra (helyesebben hidroxónium-ionokra) és hidroxid-ionokra : H 2 O H + + OH -, (2 H 2 O H 3 O + + 2 OH - ). Semleges oldatban a hidrogén-ion
RészletesebbenA kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
RészletesebbenSav bázis egyensúlyok vizes oldatban
Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid
Részletesebben5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL
5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,
RészletesebbenElektromos áram, egyenáram
Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,
Részletesebben6. Oldatok felületi feszültségének meghatározása. Előkészítő előadás
6. Oldatok felületi feszültségének meghatározása Előkészítő előadás 2017.02.13. Elméleti áttekintés Felületi feszültség: a szabadentalpia függvény felület szerinti parciális deriváltja. Ez termodinamikai
RészletesebbenOhm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.
A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység
Részletesebben(Kémiai alapok) és
01/013 tavaszi félév 6. óra ph-számítás (I) Vízionszorzat, Erős savak és bázisok ph-ja Erős savak és bázisok nagyon híg oldatának ph-ja (pl. 10 7 M HCl) Gyenge savak és bázisok ph-ja (töményebb, illetve
Részletesebben3. A kémiai reakciók sebessége
Kinetika 3. kémiai reakciók sebessége kémiai reakció vagy kémiai változás kinetikája a fizikai kémiai egy fontos fejezete. folyamatok megvalósításakor, főleg ha termelésről van szó, az időbeli változás
RészletesebbenA 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
RészletesebbenÁltalános kémia vizsgakérdések
Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.
RészletesebbenA kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
RészletesebbenVEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Vegyész ismeretek emelt szint 1721 ÉRETTSÉGI VIZSGA 2018. május 16. VEGYÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
RészletesebbenJavítókulcs (Kémia emelt szintű feladatsor)
Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. A katalizátorok a kémiai reakciót gyorsítják azáltal, hogy az aktiválási energiát csökkentik, a reakció végén változatlanul megmaradnak. 2. Biológiai
RészletesebbenElektromos áram, áramkör
Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek
Részletesebben1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
Részletesebben25. Folyadék gőznyomásának meghatározása a hőmérséklet függvényében. Előkészítő előadás
25. Folyadék gőznyomásának meghatározása a hőmérséklet függvényében Előkészítő előadás 2018.02.12. Elméleti áttekintés Gőznyomás: adott hőmérsékleten egy anyag folyadékfázisával egyensúlyt tartó gőzének
RészletesebbenKémiai alapismeretek 6. hét
Kémiai alapismeretek 6. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék biner 2013. október 7-11. 1/15 2013/2014 I. félév, Horváth Attila c Egyensúly:
RészletesebbenKémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
RészletesebbenOrvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet
Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető
RészletesebbenLaboratóriumi technikus laboratóriumi technikus Drog és toxikológiai
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
RészletesebbenElektromos áramerősség
Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.
RészletesebbenAz egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27
Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:
RészletesebbenMinta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Részletesebben1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
RészletesebbenFIZIKAI KÉMIA II. házi dolgozat. Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat)
FIZIKAI KÉMIA II. házi dolgozat Reakciókinetikai adatsor kiértékelése (numerikus mechanizmusvizsgálat) Készítette: () Kémia BSc 2008 évf. 2010 1 A numerikus mechanizmusvizsgálat feladatának megfogalmazása
RészletesebbenXXIII. SZERVES KÉMIA (Középszint)
XXIII. SZERVES KÉMIA (Középszint) XXIII. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 E D D A A D B D B 1 D D D C C D C D A D 2 C B D B D D B D C A A XXIII.. TÁBLÁZATKIEGÉSZÍTÉS Az etanol és az
RészletesebbenTranszportfolyamatok
Transzportfolyamatok Boda Dezső 2009. május 21. 1. Diffúzió elektromos tér hiányában Fizikai kémiából tanultuk, hogy valamely anyagban az i komponens áramsűrűségére fluxus) egy dimenzióban a következő
RészletesebbenReakciókinetika (Zrínyi Miklós jegyzete alapján)
Reakciókinetika (Zrínyi Miklós jegyzete alapján) A kémiai reakciók olyan térben és időben lejátszódó folyamatok, amelyek során egyes kémiai komponensek más kémiai komponensekké alakulnak át. A reakció
RészletesebbenOktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.
Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.
RészletesebbenAnyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások
RészletesebbenTöbbértékű savak és bázisok Többértékű savnak/lúgnak azokat az oldatokat nevezzük, amelyek több protont képesek leadni/felvenni.
ELEKTROLIT EGYENSÚLYOK : ph SZÁMITÁS Általános ismeretek A savak vizes oldatban protont adnak át a vízmolekuláknak és így megnövelik az oldat H + (pontosabban oxónium - H 3 O + ) ion koncentrációját. Erős
Részletesebben1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont
1. feladat Összesen: 18 pont Különböző anyagok vízzel való kölcsönhatását vizsgáljuk. Töltse ki a táblázatot! második oszlopba írja, hogy oldódik-e vagy nem oldódik vízben az anyag, illetve ha reagál,
RészletesebbenElektromos töltés, áram, áramkör
Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban
RészletesebbenKémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
RészletesebbenÖsszesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)
I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy
Részletesebben3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve
RészletesebbenZaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
RészletesebbenElektromos áram, áramkör, kapcsolások
Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az
Részletesebben100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 40%.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenBUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék HALLGATÓI SEGÉDLET Keverő ellenállás tényezőjének meghatározása Készítette: Hégely László, átdolgozta
RészletesebbenEllenállásmérés Ohm törvénye alapján
Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos
RészletesebbenElektrolitok nem elektrolitok, vezetőképesség mérése
Elektrolitok nem elektrolitok, vezetőképesség mérése Név: Neptun-kód: mérőhely: Labor előzetes feladatok A vezetőképesség változása kémiai reakció közben 10,00 cm 3 ismeretlen koncentrációjú sósav oldatához
RészletesebbenReakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
RészletesebbenNi 2+ Reakciósebesség mol. A mérés sorszáma
1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol
RészletesebbenJavítókulcs (Kémia emelt szintű feladatsor)
Javítókulcs (Kémia emelt szintű feladatsor) I. feladat 1. C 2. B. fenolos hidroxilcsoport, éter, tercier amin db. ; 2 db. 4. észter 5. E 6. A tercier amino-nitrogén. 7. Pl. a trimetil-amin reakciója HCl-dal.
RészletesebbenÁltalános Kémia GY, 2. tantermi gyakorlat
Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu
Részletesebbenc A Kiindulási anyag koncentrációja c A0 idő t 1/2 A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
c A Kiindulási anyag koncentrációja c A0 c A0 2 t 1/2 idő A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakciókinetika tárgya A reakciókinetika a fizikai kémia egyik részterülete.
RészletesebbenFizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
RészletesebbenA munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
RészletesebbenKémia fogorvostan hallgatóknak Munkafüzet 11. hét
Kémia fogorvostan hallgatóknak Munkafüzet 11. hét Kinetikai kísérletek (120-124. oldal) Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus Péter, Lóránd Tamás, Nagy Veronika, Radó-Turcsi Erika,
RészletesebbenOldódás, mint egyensúly
Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott =
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
RészletesebbenEcetsav koncentrációjának meghatározása titrálással
Ecetsav koncentrációjának meghatározása titrálással A titrálás lényege, hogy a meghatározandó komponenst tartalmazó oldathoz olyan ismert koncentrációjú oldatot adagolunk, amely a reakcióegyenlet szerint
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Kémia emelt szint 0513 ÉRETTSÉGI VIZSGA 2005. május 18. KÉMIA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 240 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Az írásbeli feladatok
Részletesebben1. feladat Összesen: 10 pont. 2. feladat Összesen: 6 pont. 3. feladat Összesen: 18 pont
1. feladat Összesen: 10 pont Etil-acetátot állítunk elő 1 mol ecetsav és 1 mol etil-alkohol felhasználásával. Az egyensúlyi helyzet beálltakor a reakciót leállítjuk, és az elegyet 1 dm 3 -re töltjük fel.
RészletesebbenTermokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.
RészletesebbenEnergia. Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia
Kémiai változások Energia Energia: munkavégző, vagy hőközlő képesség. Kinetikus energia: a mozgási energia Potenciális (helyzeti) energia: a részecskék kölcsönhatásából származó energia. Energiamegmaradás
RészletesebbenSzámítások ph-val kombinálva
Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos
RészletesebbenModern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
RészletesebbenA REAKCIÓKINETIKA ALAPJAI
A REAKCIÓKINETIKA ALAPJAI Egy kémiai reakció sztöchiometriai egyenletének általános alakja a következő formában adható meg k i=1 ν i A i = 0, (1) ahol A i a reakcióban résztvevő i-edik részecske, ν i pedig
Részletesebben9.3 Szakaszos adiabatikus reaktor vizsgálata
9.3 Szakaszos adiabatikus reaktor vizsgálata A reaktortechnikai alapfogalmak részletes ismertetése a Vegyipari Félüzemi Praktikum Keverős tartályreaktor és csőreaktor vizsgálata c. mérés 9.1 fejezetében
RészletesebbenOrvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken
RészletesebbenKémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye
Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k
RészletesebbenOrvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?
Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.
RészletesebbenSzámítástudományi Tanszék Eszterházy Károly Főiskola.
Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés
RészletesebbenZener dióda karakterisztikáinak hőmérsékletfüggése
A mérés célja 18. mérés Zener dióda karakterisztikáinak hőmérsékletfüggése A Zener dióda nyitóirányú és záróirányú karakterisztikájának, a karakterisztika hőmérsékletfüggésének vizsgálata, a Zener dióda
RészletesebbenKÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ
1 oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ I A VÍZ - A víz molekulája V-alakú, kötésszöge 109,5 fok, poláris kovalens kötések; - a jég molekularácsos, tetraéderes elrendeződés,
Részletesebben23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan
23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.
RészletesebbenGázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
RészletesebbenBiológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb
Részletesebben2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető
. Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék
RészletesebbenHőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
Részletesebben