Kolloidkémia. 2. előadás. Szőri Milán: Kolloid Kémia
|
|
- Erzsébet Juhászné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Kolloidkémia 2. előadás Szőri Milán: Kolloid Kémia 1
2 A kolloidika tárgya Azok diszperz rendszerek, amelyekben a méret legalább egy térdimenzióban kb. 1nm és 500 nm között van. Azok a rendszerek, amelyekben a felület meghatározó szerepet játszik Szőri Milán: Kolloid Kémia 2
3 Homogén, heterogén? homogén, minden sajátság minden pontban azonos: izotróp.(pl. 5% oldat) heterogén, Gibbs-féle fázistörvény pv nrt F+SZ=K+2 Szőri Milán: Kolloid Kémia 3
4 Homogén,heterogén? U = TS pv + n i μ i + γa + uq Szőri Milán: Kolloid Kémia 4
5 Diszperziók típusai Egymással nem elegyedő két fázis, melyek közül az egyik kolloid méretű részecskék formájában szét van oszlatva a másikban Diszpergált fázis Diszperziós közeg Név Példák folyadék gáz folyadék aeroszol köd, spray szilárd gáz szilárd aeroszol füst gáz folyadék hab szappanhab, tűzoltó hab folyadék folyadék emulzió tej, majonéz, tortakrém szilárd folyadék szuszpenzió, szol fogpaszta gáz szilárd szilárd hab polisztirol hab, poliuretán hab folyadék szilárd szilárd emulzió opál szilárd szilárd szilárd szuszpenzió pigmentált polimerek Szőri Milán: Kolloid Kémia 5
6 Szubmikroszkópos diszkontinuitás Az aprítási folyamat elvileg bármilyen anyagi minőségű rendszerrel elvégezhető (kivéve a gázt gázban), vagyis bármilyen kondenzált anyagi rendszer diszperz (vagy kolloid) állapotba hozható Szőri Milán: Kolloid Kémia 6
7 Kolloid rendszerek (szerkezet alapján) Szőri Milán: Kolloid Kémia 7
8 Koherens és inkoherens rendszerek Koherens (összefüggő) rendszerek szilárd jellegűek a kohéziós erők erősebbek mint a kinetikus Térhálós szerkezet (az anizotrópia kedvező) Inkoherens rendszerek Folyékony jellegűek A részecskék kevéssé korreláltan mozognak (a kohéziós energia sokkal gyengébb mint a hőmozgás energiája) Átmeneti (semisolids) Gyenge erőhatásnál alakállandó, nagyobbnál nem krémek, paszták, gélek (tixotrópia) Szőri Milán: Kolloid Kémia 8
9 Kolloid rendszerek (szerkezet alapján) Szőri Milán: Kolloid Kémia 9
10 Diszperziós kolloidok vagy szolok Halmazállapot szerint Szőri Milán: Kolloid Kémia 10
11 Kolloid rendszerek (szerkezet alapján) Szőri Milán: Kolloid Kémia 11
12 Makromolekulás oldatok Valószínű alak és méret A kolloid részecskék sokkal nagyobbak mint a kis molekulák, pl. oldószer molekulái. Sajátságaik függnek az alakjuktól Szőri Milán: és méretüktől Kolloid Kémia 12
13 Kolloid rendszerek (szerkezet alapján) Szőri Milán: Kolloid Kémia 13
14 Asszociációs kolloidok Amfifilek (szappan, mosószerek) Lánc görbülete Szőri Milán: Kolloid Kémia 14
15 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat <G(kiindulási) Makromolekulás oldatok, asszociációs kolloidok nem stabilisak (diszperz rendszerek) Liofób kolloidok G sol >G(kiindulási) Szolok Instabilak/metastabilak temodinamikai értelemben (nagy γa miatt) Kinetikailag lehetnek stabilak: a vizsgált időtartamon belül nem változtak nem stabilak: Szőri Milán: Kolloid Kémia 15
16 Kolloidok stabilitása Diszperz rendszerek állapotjellemzői: Klasszikus állapotjelzők: Összetétel (x i, w% i, c i, c T,i stb) P T V U H S További állapotjellemzők (Buzágh): Részecskemorfológia Eloszlásmódja Diszperzitásfoka Fajlagos felület Nehezen szeparálhatóak egymástól Kolloidstabilitás (kinetikai, adott időn belüli stabilitás) Szőri Milán: Kolloid Kémia 16
17 Részecskemorfológia Szintetizálható kolloid részecskék osztályozása Szőri Milán: Kolloid Kémia 17 Molecular Physics, 2011, 109,
18 Diszperz rendszerek térbeli eloszlása (eloszlásmód) Térben tökéletesen homogén diszperz rendszer Térben diffúz eloszlás Térben heterogén eloszlású diszperz rendszer A részecskék Brown-mozgása tartja fent Pl. külső erőtér tartja fent Szőri Milán: Kolloid Kémia 18
19 Részecskékre ható tényezők U = TS pv + n i μ i + γa + uq Külső erőtér: Hőmozgás (k B T): Brown-mozgás: hőmérsékletből származó kinetikus energia nem orientál, statisztikus értelemben homogén eloszlást eredményez Rotációs hőmozgás (izotrópikus/izometrikus esetben nem orientál) Gravitációs erőtér (g) Centrifugális erőtér (ω) Elektromos erőtér (u) Részecske-közeg kölcsönhatás pl. szolvatáció DLVO elmélet Részecskék közötti kölcsönhatás pl.: elektrosztatika Nem orientál! Orientál! Szőri Milán: Kolloid Kémia 19
20 Diszperzitásfok jellemzése Anizometrikus sokaság (sok paraméter kellene jellemzésükhöz) Részecskeméret-eloszlás (szemcseanalízis) Helyettesítés ekvivalens sugárral: (fiktív) gömb alakú részecskék, amelyek a részecskeméret meghatározására alkalmazott módszer szempontjából ugyanúgy viselkednek mint a vizsgált rendszer részecskéi (Legegyszerűbb részecskemorfológia ) Részecskesugár reciprokával arányos a diszperziófok Eloszlás szerinti osztályzás: Monodiszperz (homodiszperz) Polidiszperz (heterodiszperz Szőri Milán: Kolloid Kémia 20
21 Elnevezés Képlet Magyarázat Alkalmazása számátlag súlyozatlan átlag kolligatív sajátságok (pl. fagyáspontcsökkenés, ozmózis...) tömegátlag tömeg szerint súlyozott átlag fényszóródás Z-átlag ultracentrifuga viszkozitásátlag viszkozitásmérés i i i i i i i m M n M n m m M M 2 Részecskeméret átlagok: A részecskeméretet az átlagos mérettel illetve a méreteloszlással jellemezhetjük, használatuk a vizsgált jelenség jellegétől függ. Egyenetlenségi tényező: az <M> m /<M> n hányados a minta polidiszperzitás fokának mértéke (minél nagyobb, polidiszperzebb) 2 3 i i i i Z M n M n M 1/ 1 i i i i M n M n M Polidiszperzitás, átlagok, méreteloszlások i i i n n M n M Szőri Milán: Kolloid Kémia 21
22 Számhányad meghatározása Mikroszkópos: durva szemcseméret (0,2 mm) Ultramikroszkópos: kolloidok (0,005 mm) Elektronmikroszkópos: kolloidok (0,01 mm) Coulter-számláló: A vér alakoselemkoncentrációjának meghatározására szolgáló elektronikus számlálási eljárás Jól vezető folyadék vs. alakoselem ellenállásként funkcionál Szőri Milán: Kolloid Kémia 22
23 Gyakoriság Részecskeméret-eloszlás A részecskék méretének teljes leírását a méreteloszlás adja differenciális részecskeméret-eloszlás, f(r), empirikus sűrűségfüggvény: minden r sugárhoz megadja az r és r+dr közötti sugarú részecskék arányát a mintában df f ( r) dr Hisztogram integrális részecskeméret-eloszlás, F(r): minden r sugárhoz megadja az r-nél kisebb sugarú részecskék arányát a mintában r F( r) 0 f ( R) dr f(r) : akármilyen alakú függvény lehet, integrálja 1 r(nm) F(r) : monoton növekvő függvény, F(0) = 0, F() = 1 Szőri Milán: Kolloid Kémia 23
24 Gyakoriság Gyakoriság Részecskeméret-eloszlás Monodiszperz Polidiszperz differenciális integrális integrális differenciális r(nm) Granulometriai görbe: - Ülepedéses módszernél használják - az integrális részecskeméret-eloszlás tükörképe (nagyobb tömegű előbb ülepszik) r(nm) Szőri Milán: Kolloid Kémia 24
25 Tömegeloszlás meghatározása I. Szitálás (gravitációs erőtér domináns): durvább szemcsés rendszereket száraz vagy nedves szitálás Részecskeméret-tartomány megadása Mesh Méret TYLER (µm) (mesh) ASTM-E11 (no.) Szőri Milán: Kolloid Kémia 25 BS-410 (mesh) DIN-4188 (mm)
26 Tömegeloszlás meghatározása II. Szedimentációs módszerek: Ülepítéses (gravitációs erőtér domináns, a Brown-mozgás elhanyagolható): Alkalmas: kis koncentráció (0,5-1%) lamináris áramlás (Re < 0,25) a részecskék süllyedési sebességét ne befolyásolja a Brown-féle mozgás (1-2 μm). Nem alkalmas: a szemcsék lemez vagy pálcika alakúak porkeverékek folyadékban nem diszpergálható porok Ülepítő mérleggel: a szuszpenzióból kiülepedett tömeg időbeli változásának mérése Pipettás módszerrel (pl. Andreasen-módszer): különböző idők után adott folyadékmagasságban lebegő részecskék relatív tömege Optikai eljárással: A koncentrációváltozás mérése sugárgyengüléses módszerekkel (fénysugár abszorpció, röntgensugár-abszorpció) Centrifugálásos (centrifugális erőtér domináns, a Brown-mozgás elhanyagolható): Szőri Milán: Kolloid Kémia 26
27 Ülepítés és centrifugálás gyorsító erő (F gy ) lassító erő (F l ) F gy Vrg V g k F l dx f fv dt Súlyerő - felhajtó erő súrlódási tényező sebesség Stacionárius sebesség alakul ki, azaz gyorsulás nincs, mert a két erő egyenlővé válik: Gömb V V v r g fv 4r 3 3 k 9 f 6r 2r 2 r g Kisebb részecskék (r<100nm): diffúzió (konc. grad) Egyensúlyi eloszlás k (lamináris áramlás) Stokes r: ekvivalens sugár dx dt 2r 2 r k 9 x Centrifuga (centrifugális gyorsító erő) 2 x
28 Térben diffúz eloszlás Andreasen készülék (pipettás módszer) h Mintavétel: homogenizálás után időközönként mérni kell a h mélységben még ki nem ülepedett mennyiséget (mindig azonos térfogatú mintában). A mintavétel időpontjához rendelhető azon legkisebb részecskéknek a méretének számítása (Stokes-egyenlet), amelyek már biztosan kiülepedtek a pipetta alja fölötti folyadékoszlopból (mintavételt követő magasság korrekció). Egy adott r és annál nagyobb méretű részecskék relatív mennyiségét tükröző integrális méreteloszlás görbének meghatározása.
29 Kolloidstabilitás Szőri Milán: Kolloid Kémia 29
30 PLoS ONE 9(7): e doi: /journal.pone Kolloidinstabilitás belső állapotváltozással szemben Nincs termodinamikai stabilitás (annak irreverzibilis közelítése, öregedés): Polidiszperz rendszer: Eltérő részecskeméret, eltérő fizikai kémiai tulajdonságok (pl. oldékonyság és tenzió) Elsődleges részecskék változásai: Méretváltozása (több komponens esetén összetétel-változás) Elsődleges részecskék összetapadása másodlagos részecskék kialakulása Aggregátum szerkezetének átrendeződése: Módosul a méret és az alak, szolvátburok Belső szerkezet (pl amorfból kristályos) Szőri Milán: Kolloid Kémia 30
31 Másodlagos (kolloid)részecskék koacervátum taktoid kristályszerű pehely rúd lamella gömb Szőri Milán: Kolloid Kémia 31
32 Elektromos kettősréteg (lineáris exponenciális) Kicsi stabilitás Φ Felületi töltés (negatív) Stern réteg (lineáris exponenciális) Zeta réteg (felületi réteg mobil réteg) d Felületi potenciál Stern potenciál ζ potenciál Az elektromos potenciál (Φ): A felület elektromos töltésével megegyező töltésnek (itt negatív) a felülettől vett végtelen (nagyon nagy) távolságból egy bizonyos távolságig (d) való beviteléhez szükséges munka osztva az ion töltésével (Z) ([V] = [J]/[C]). Φ / mv Nagy stabilitás Stabil Közepes stabilitás Kicsi stabilitás Instabil (Gyors koagulálás vagy flokkulálás) Kicsi stabilitás Közepes stabilitás Stabil Nagy stabilitás Szőri Milán: Kolloid Kémia 32
33 A potenciált befolyásoló tényezők Stern réteg Zeta réteg Stern réteg Zeta réteg A felület elektromos továbbtöltése Felületaktív azonos töltésű ionnal A felület elektromos áttöltése Többértékű vagy felületaktív ellenionnal Szőri Milán: Kolloid Kémia 33
34 DLVO elmélet I. Φ max k B T, kinetikai stabilitás Φ max Flokkuláció Erős flokkuláció (Koaguláció) Szőri Milán: Kolloid Kémia 34 K. S. Birdi: Handbook of Surface and Colloid Chemistry, Third Edition, 478 old.
35 Koaguláció DLVO elmélet II. r D << a Φ r D >> a Perikinetikus koagulálás: hőmozgás miatti (Φ max k B T) Ortokinetikus koagulálás: külső erőtér hatására (Φ max k B T + uq + E áramlás ) Flokkuláció r D : elektromos kettősréteg vastagsága r: részecske sugara d Kritikus koaguláltató koncentráció (ccc): a sókoncentráció, amelynél már csak diffúziógátolt a koaguláció (minden ütközőrészecske összetapad). Szőri Milán: Kolloid Kémia 35 K. S. Birdi: Handbook of Surface and Colloid Chemistry, Third Edition, 478 old.
36 Kolloidstabilitás biztosítása I. Stabilizálási lehetőségek Diszperzitásfok (r) állandóságának biztosítása Eloszlás állandóságának biztosítása Szolvátréteggel + + Elegyes szolvátréteggel (bifil segédanyagokkal) Makromolekulákkal + - (hidszerű polimerkapcsolat) Elektromos kettősréteggel (ζ potenciál: minél nagyobb a felületi töltés és minél vastagabb a kettősréteg Elektromos kettősréteggel és szolvatációval Stabilizátor anyag (Stabilizátorok) + + Nemelektrolitok + (η növelése) Makromolekulák + + Elektrolitok Keveréssel + v ülepedés = 2r2 ρ r ρ k g 9η + + Polielektrolitok Ionos felületaktív anyagok Szőri Milán: Kolloid Kémia 36
37 Kolloid rendszerek előállítása/megszüntetése Külső állapotváltozások Homogén amikroszkópos diszperz rendszer Kondenzáció Disszolúció Kolloid diszperz rendszer Diszpergálás Koagulálás Heterogén durva diszperz rendszer Részecskeméret Diszperzitásfok Szőri Milán: Kolloid Kémia 37
38 Kolloid rendszerek előállítása Homogén amikroszkópos diszperz rendszer Kondenzáció Kolloid diszperz rendszer Diszpergálás Heterogén durva diszperz rendszer Kondenzáció Fizikai kondenzálás: Pl.: ködrészecskék kialakulása Kémiai kondenzálás: Pl.: csapadékképzés, polimerizáció Diszpergálás = aprítás + szétoszlatás Őrlés (csak a kolloid mérettartomány felső határa érhető el) Emulgeálás Peptizálás koherens rendszer (gél) dezaggregálása primer szemcsékre T,p Kémiai reakció Mechanikai Elektromos Kémiai Adalékolás Szőri Milán: Kolloid Kémia 38
39 Szőri Milán: Kolloid Kémia 39
40 ISO-k kolloidkémiai mérésekhez: Szőri Milán: Kolloid Kémia 40
Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia
Kolloidkémia 5. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat
Kolloidkémia 8. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia
Kolloidkémia 8. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat
Kolloidkémia. 7. Előadás Diszperz rendszerek általános jellemzése és állapotváltozásai. Szőri Milán: Kolloidkémia
Kolloidkémia 7. Előadás Diszperz rendszerek általános jellemzése és állapotváltozásai. Szőri Milán: Kolloidkémia 1 A kolloidika tárgya Azok diszperz rendszerek, amelyekben a méret legalább egy térdimenzióban
Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek
Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek
A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése.
A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Dr. Berka Márta Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat
A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István
A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István Motiváció 2 (két alapprobléma) Napi tapasztalatok Szilikózis (méret), vörösziszap Smog Új ötvözetek ( mikro struktúra ) Funkcionális
A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Berka Márta
A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Berka Márta egyetemi docens Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/ 1.óra
A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István
A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István Motiváció 1 Motiváció 2 (két alapprobléma) Napi tapasztalatok Szilikózis (méret), vörösziszap Smog Új ötvözetek ( mikro struktúra
Kolloidstabilitás. Berka Márta 2010/2011/II
Kolloidstabilitás Berka Márta 2010/2011/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes
A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István www.kolloid.unideb.hu
A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István www.kolloid.unideb.hu A mindennapi élet: anyagok, eljárások Ipar élelmiszerek: levesek, zselék, élelmiszer színezés, habok építőipar:
Kolloidok stabilizálása. Bányai István 2016/1.
Kolloidok stabilizálása Bányai István 2016/1. www.kolloid.unideb.hu A kolloidok stabilitása (lehet ismételt ábrák) A hidrofób kolloidok elektrosztatikus stabilizálása Kolloidstabilitás DLVO elmélet (Derjaguin,
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
A kolloid rendszer fogalma, felosztása. A felületi energia és a belső energia viszonya. Kolloid rendszer mikroheterogén rendszer fajtája.
A kolloid rendszer fogalma, felosztása Anyagi rendszerek: homogén heterogén A felületi energia és a belső energia viszonya. Mikroheterogén rendszer: felület-térfogat aránya felületi energia Kolloid rendszer
A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István DE Fizikai Kémiai Tanszék Gyógyszerész
A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István DE Fizikai Kémiai Tanszék www.kolloid.unideb.hu Gyógyszerész 2016.09.13. A mindennapi élet: anyagok, eljárások Ipar élelmiszerek:
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Allotróp módosulatok
Allotróp módosulatok Egy elem azonos halmazállapotú, de eltérő molekula- vagy kristályszerkezetű változatai. Created by Michael Ströck (mstroeck) CC BY-SA 3.0 A szén allotróp módosulatai: a) Gyémánt b)
Szedimentáció, elektroforézis. Biofizika előadás Talián Csaba Gábor
Szedimentáció, elektroforézis Biofizika előadás Talián Csaba Gábor 2012.03.20. szedimentáció = ülepedés Sedeo2, sedi, sessum ül Sedimento 1 - ülepít Cél: 1 - elválasztás 2 - a részecskék méretének vagy
Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék
A kolloidika tárgya. Miben mások a kolloid rendszerek? A kolloid rendszerek osztályozása, jellemzése. Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
Sztérikus stabilizálás. Bányai István 2014/2.
Sztérikus stabilizálás Bányai István 2014/2. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus
Reológia, a koherens rendszerek tulajdonságai
Reológia, a koherens rendszerek tulajdonságai Bányai István http://dragon.unideb.hu/~kolloid/ Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,
Kolloidstabilitás. Berka Márta. 7. előadás 1
Kolloidstabilitás Berka Márta 7. előadás 1 Liofób kolloidok stabilitása Termodinamikai és kinetikai stabilitás fogalma liofób és liofil kolloidok fogalma DLVO elmélet (Derjaguin, Landau és Verwey, Overbeek)
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
Sztérikus stabilizálás. Bányai István /2.
Sztérikus stabilizálás Bányai István 2011-12/2. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.
ozmózis osmosis termodinamikai stabilitás thermodynamic stability kinetikai stabilitás kinetic stability felületaktív anyagok surfactants, surface active materials felületinaktív anyagok surface inactive
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
Az átlagok jelentése és haszna
Az átlagok jelentése és haszna A különféle átlagok iránti szükséglet azért alakult ki, mert a különböző kísérleti módszerek eltérő módon érzékelik a polidiszperz rendszereket.a frakciók más-más tulajdonságaira
Ciklodextrinek alkalmazási lehetőségei kolloid diszperz rendszerekben
Ciklodextrinek alkalmazási lehetőségei kolloid diszperz rendszerekben Vázlat I. Diszperziós kolloidok stabilitása általános ismérvek II. Ciklodextrinek és kolloidok kölcsönhatása - szorpció - zárványkomplex-képződés
Kolloidkémia. 11. Előadás Koherens rendszerek. Szőri Milán: KolloidKémia express. Polym. Lett. 2017, 11, 199.
Kolloidkémia 11. Előadás Koherens rendszerek http://www.nanowerk.com/how_nanoparticles_are_made.php Szőri Milán: KolloidKémia 1 express. Polym. Lett. 2017, 11, 199. Koherens és inkoherens rendszerek Koherens
Bevezetés a talajtanba VIII. Talajkolloidok
Bevezetés a talajtanba VIII. Talajkolloidok Kolloid rendszerek (kolloid mérető részecskékbıl felépült anyagok): Olyan két- vagy többfázisú rendszer, amelyben valamely anyag mérete a tér valamely irányában
A kromatográfia típusai
A kromatográfia típusai A kromatográfia típusai Az oldott anyag az álló fázis felületére kerül Az oldott anyag a felületet borító folyadékba kerül A kation kovalensen kötött a felületen az anion ionosan
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek
Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek. N m J 2
Határelületi jelenségek 1. Felületi eszültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagszerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eszültség adhézió nedvesítés ázis ázisdiagramm
Reológia, a koherens (nem-koherens) rendszerek tulajdonságai
Reológia, a koherens (nem-koherens) rendszerek tulajdonságai Bányai István kolloid.unideb.hu Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Elektrosztatikus és sztérikus stabilizálás. Bányai István és Novák Levente /2. félév
Elektrosztatikus és sztérikus stabilizálás Bányai István és Novák Levente 2014-15/2. félév Kolloid rendszerek (szerkezet alapján) inkoherens rendszerek önálló részecskék koherens (kohézív) rendszerek Diszperziós,
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
5. előadás 12-09-16 1
5. előadás 12-09-16 1 H = U + PV; U=Q-PV H = U + (PV); P= áll H = U + P V; U=Q-P V; U=Q-P V H = Q U= Q V= áll P= áll H = G + T S Munkává nem alakítható Hátalakulás = G + T S 2 3 4 5 6 7 Szilárd halmazállapot
Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet
Szűrés Gyógyszertechnológiai alapműveletek Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrőberendezés 2 Szűrő berendezések Kettős szűrőprés Keretes szűrők Szűrés szűrő testekkel
A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával
Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?
Kolloidok stabilizálása. Bányai István 2015/1.
Kolloidok stabilizálása Bányai István 2015/1. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus
ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE
S ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE TANULÁSIRÁNYÍTÓ Ismételje át a szerves kozmetikai anyagokat: 1. Szerves alapanyagok ismerete szénhidrogének alkoholok (egyértékű és többértékű
Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet
Szűrés Gyógyszertechnológiai alapműveletek Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Szűrésnek nevezzük azt a műveletet, amelynek során egy heterogén keverék, különböző
Talajmechanika. Aradi László
Talajmechanika Aradi László 1 Tartalom Szemcsealak, szemcsenagyság A talajok szemeloszlás-vizsgálata Természetes víztartalom Plasztikus vizsgálatok Konzisztencia határok Plasztikus- és konzisztenciaindex
Molekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
gait k, rozzák k meg solják szembeni viselkedését, szerkezetét és a talajba került anyagok (tápanyagok, szennyezıanyagok, stb.
TALAJ KÉMIAI K TULAJDONSÁGAI A talaj kémiai k tulajdonságai gait a vízben v oldható sók k mennyisége és s minısége, a kolloidkémiai reakciók, k, a kémhatk mhatás s határozz rozzák k meg ezek befolyásolj
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Vg = fv. = 2r2 ( ρ ρ 0 )g. v sed. 3 r3 πg = 6πη 0. V = 4 3 r3 π
Szedimentáció, elektroforézis BÓDIS Emőke, TALIÁN Csaba Gábor Biofizika előadás 2011 Február 28. Szedimentáció Általában a cél a részecskék méretének vagy tömegének a meghatározása. A gravitáción alapuló
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
A talajok fizikai tulajdonságai I. Szín. Fizikai féleség (textúra, szövet) Szerkezet Térfogattömeg Sőrőség Pórustérfogat Kötöttség
A talajok fizikai tulajdonságai I. Szín Fizikai féleség (textúra, szövet) Szerkezet Térfogattömeg Sőrőség Pórustérfogat Kötöttség A talaj színe Munsell skála HUE 10YR A HUE megadja, hogy mely alapszínek
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Kolloidok jellemzése.
Kolloidok jellemzése www.kolloid.unideb.hu 1 A kolloidika Olyan rendszerek fizikai kémiája melyben a szokásos intenzív változókon túl (p, T, c ) szerepel a méret az alak és a határfelület. A részecskék
Felületi jelenségek. Gáz folyadék határfelület. γ V 2/3 = k E (T kr -T) Általános és szervetlen kémia 8. hét. Elızı héten elsajátítottuk, hogy
Általános és szervetlen kémia 8. hét Elızı héten elsajátítottuk, hogy a többkomponenső homogén rendszereknek milyen csoportjai lehetségesek milyen sajátságai vannak az oldatoknak Mai témakörök határfelületi
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Anyagtudomány. Ötvözetek egyensúlyi diagramjai (állapotábrák)
Anyagtudomány Ötvözetek egyensúlyi diagramjai (állapotábrák) Kétkomponensű fémtani rendszerek fázisai és szövetelemei Folyékony, olvadék fázis Színfém (A, B) Szilárd oldat (α, β) (szubsztitúciós, interstíciós)
MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFOM
MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MA RKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARKETINFO MARK ETINFO MARKETINFO MARKETINFO
Kolloidkémia előadás vizsgakérdések
Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
26. Minek az adagolásával lehet leárnyékolni a felületi elektromos töltéseket?
26. Minek az adagolásával lehet leárnyékolni a felületi elektromos töltéseket? Inert elektrolitokkal. Ezek olyan elektrolitok, melyek a mikrofázist felépítő ionok közül egyiket sem tartalmazzák. 27. Mi
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Elektrokinetikus jelenségek Kolloid stabilitás
Elektrokinetikus jelenségek Kolloid stabilitás Bányai István 2011-12/II. http://dragon.unideb.hu/~kolloid/ Elektrokinetikus vagy zeta potenciál A oldószer (többnyire víz) a felület közelében nem mozdul,
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
KOLLOIDKÉMIA ANYAGMÉRNÖK BSc. NAPPALI TÖRZSANYAG
KOLLOIDKÉMIA ANYAGMÉRNÖK BSc. NAPPALI TÖRZSANYAG TANTÁRGYI MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2018/19. tanév I. félév 1 Tartalomjegyzék 1. Tantárgyleírás,tárgyjegyző, óraszám,
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
Biofizika I. DIFFÚZIÓ OZMÓZIS
1. KÍSÉRLET 1. kísérlet: cseppentsünk tintát egy üveg vízbe Biofizika I. OZMÓZIS 2012. szeptember 5. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet 1. megfigyelés: a folt lassan szétterjed és megfesti az egész
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
egyetemi tanár Nyugat-Magyarországi Egyetem
egyetemi tanár Nyugat-Magyarországi Egyetem Folyadékok szerkezeti jellemz i Az el adás témakörei: Mit nevezünk folyadéknak? - részecskék kölcsönhatása, rendezettsége - mechanikai viselkedése alapján A
Kolloidkémia előadás vizsgakérdések
Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Kolloid kémia Anyagmérnök mesterképzés (MSc) Vegyipari technológiai szakirány MAKKEM 274M
Kolloid kémia Anyagmérnök mesterképzés (MSc) Vegyipari technológiai szakirány MAKKEM 274M Tantárgyi kommunikációs dosszié (TKD) Miskolci Egyetem Műszaki Anyagtudományi Kar Kémiai Tanszék Miskolc, 2014
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Habok, emulziók, szolok. Makromolekulák. Az ozmózis jelensége. Asszociációs kolloidok.
Habok, emulziók, szolok. Makromolekulák. Az ozmózis jelensége. Asszociációs kolloidok. Aeroszolok Gázfázisú diszperziók: L/G köd; S/G füst Szmog: összetett rendszer London típusú (redukáló): S/L/G; szilárd
Kolloidstabilitás. Berka Márta 2009/2010/II
Kolloidstabilitás Berka Márta 2009/2010/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes
Kolloidok jellemzése. kolloid.unideb.hu
Kolloidok jellemzése kolloid.unideb.hu 1 A kolloid rendszerek jellemzése 1. A rendszer diszperzitásfoka (azaz a méret) méreteloszlás (a fajlagos felület jelentősége) 2. Morfológia (alak, belső szerkezet)
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
Határfelületi jelenségek. Fogorvosi anyagtan fizikai alapjai 3. Általános anyagszerkezeti ismeretek E A J 2. N m
Határelületi jelenségek 1. Felületi eültség Fogorvosi anyagtan izikai alapjai 3. Általános anyagerkezeti ismeretek Határelületi jelenségek Kiemelt témák: elületi eültség adhézió nedvesítés ázis ázisdiagramm
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
Általános kémia vizsgakérdések
Általános kémia vizsgakérdések 1. Mutassa be egy atom felépítését! 2. Mivel magyarázza egy atom semlegességét? 3. Adja meg a rendszám és a tömegszám fogalmát! 4. Mit nevezünk elemnek és vegyületnek? 5.
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -
A kolloidika alapjai. 4. Fluid határfelületek
A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2
BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS
BIOFIZIKA I OZMÓZIS - 2010. 10. 26. Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I - DIFFÚZIÓ DIFFÚZIÓ - ÁTTEKINTÉS TRANSZPORTFOLYAMATOK ÁLTALÁNOS LEÍRÁSA ONSAGER EGYENLET lineáris, irreverzibilis
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Fizikai kémia Barus és Schneider: heterogén homogén fázis molekula Zsigmondy: ultramikroszkóp diszperz rendszerek
1861 Graham: kolloid krisztalloid Fizikai kémia 1 1892 Barus és Schneider: heterogén homogén fázis molekula 1903 Zsigmondy: ultramikroszkóp diszperz rendszerek 1 2 a heterogén rendszerben fázisok (diszkontinuitások)