A kromatográfia típusai
|
|
- Péter Rácz
- 8 évvel ezelőtt
- Látták:
Átírás
1 A kromatográfia típusai
2 A kromatográfia típusai Az oldott anyag az álló fázis felületére kerül Az oldott anyag a felületet borító folyadékba kerül A kation kovalensen kötött a felületen az anion ionosan adszorpciós megoszlási ioncsere anioncserélő gyanta Nagymolekulák kívül haladnak A kismolekulák behatolnak a pórusokba méretkizárásos
3 Elektrokinetikus jelenségek Kolloid stabilitás Bányai István /II.
4 Előző előadás Adszorpció folyadék-szilárd felületen Töltött felületek kialakulása elektrolitok adszorpciója elektromos kettősréteg létrejötte Az elektromos kettősréteg modelljei Helmholtz-modell Gouy-Chapman modell (diffúz réteg vastagsága) Stern-modell Felületi potenciál Stern-réteg (Helmholtz síkokkal határolt) Stern-potenciál Zéta (nyírási-)-potenciál (de nem tudjuk mi az!)
5 Elektrokinetikus vagy zéta potenciál A oldószer (többnyire víz) a felület közelében nem mozdul, rátapad, de bizonyos távolságtól már a folyadék elmozdul a felülethez képest. Azt a síkot, ami a felületet (részecskét) beburkoló tapadó réteget és az elmozduló folyadékréteget elválasztja nyírási felszínnek (surface of shear) vagy nyírási síknak (the slipping plane) nevezzük. Az elektrosztatikus potenciál közeghez viszonyított értéke ebben a nyírási síkban az ún. zéta potenciál vagy elektrokinetikai potentiál. Nyírási sík Ezt tudjuk mérni!
6
7 Elektrokinetikus vagy zétapotenciál kolloidokon A nyírási síkon belül a részecske egy dinamikai egységként viselkedik Elektrolit hatás Kolloidok oldataiban: elektromos kettősréteg jön létre minden egyes részecske körül. A részecske körül lévő folyadék két részből áll: a belső (Stern) réteg, ahol az ionok erősen kötöttek és egy külső a, diffúz ahol kevésbé. Ezen a diffúz rétegen belül egy nevezetes határ az un. nyírási sík jön létre, amely elválasztja a tapadó és a felülethez képest elmozduló folyadék réteget, és amelyen belül a részecske egy dinamikai egységként viselkedik.
8 Elektrokinetikai potenciál különböző oldatokban 1 0 Nyírási sik Vasoxid ph NTP ~ vasoxid 0,01 M KCl ph 4 2. vasoxid M KCl ph 5 3. vasoxid M KCl ph kationos tenzid 3 + stabilis Stern sik = 2 = 3 Koagulál, ha < 5 mv - stabilis [Al 3+ ]
9 Elektrokinetikus jelenségek Technika Mit mérünk Mi mozog Elektroforézis sebességet részecske Mi okozza a mozgást külső elektromos térerő Elektroozmózis sebességet folyadék a kapillárisban külső elektromos térerő Áramlási potenciál potenciál különbséget folyadék mozog nyomás különbség Ülepedési potenciál potenciál különbséget részecske sűrűség különbség = 1. Elektroforézis: folyadék áll, a részecske mozog 2. Elektroozmózis: töltött felület áll, folyadék mozog 3. Áramlási potenciálok: áramló folyadék generál töltést (fordított elektroozmózis) 4. Ülepedési potenciál: mozgó töltés generál potenciált 5. Elektrolitikus lerakódás/ leválasztás)
10 Elektroforetikus mozgékonyság F F el F fric el QE fv F fric QE v Q v u f E f ze ze u 6 a kt / D u e C 0 a Egy makro ion esetében az ellenion felhő vastagsága befolyásolja a mozgékonyságot, a C konstans fokozatosan változik 1-től 1.5 ig, ahogy a a változik: Ha a κa > > 1 vékony kettős réteg akkor nem befolyásolja az eredő térerőt, a C =1 (Smoluchowski) Ha a κa << 1 vastag kettős réteg" C= 3/2 befolyásolja az eredő térerőt Elektroforetikus mozgékonyság a zéta potenciállal kifejezve.
11 Elektroforézis gélben
12 Elektroforézis A DNS protein kölcsönhatás bizonyítása EMSA (electrophoretic mobility shift assay). A nem kötött DNS gyorsabban mozog denaturált gélben mint a proteinhez kötött. Gél elektroforézis Polyacrylamide Gel Electrophoresis (PAGE)
13 Izoelektromos fókuszlás (IEF) Izoelektromos fókuszálás során ph gradienst alkalmaznak. A protein nem mozog tovább, ha az izoelektromos pontjának megfelelő ph-hoz ér. Bármely más ponton töltése van és így elektromos erőtérben mozogni fog OTES/Protein_Properties/protein_purification.htm
14 Izoelektromos fókuszálás (IEF) + u e ( electrophoretic mobility (EPM)) elektroforetikus mozgékonyság A méretkizárást el kell kerülni. A gél maga lehet ph-gradiensre készítve azaz amfolit csoportokat építenek bele. - Amfolitok keverékére feszültséget adva stacionáris gradiens létrehozható A proteinek két irányban mozoghatnak a töltéstől függően.
15 Elektro-ozmotikus áramlás Diffúz réteg Elektroozmózis kapillárisban. A körök jelzik a molekulákat és az ionokat. A nyilak jelzik az áramlási sebességeket. Az erőtér hatására áramló ionok hozzák mozgásba a folyadékot. Diffúz réteg Milyen az áramlási profil?
16 Elektroozmózis (LB layers) Az elektroozmotikus áramlás a ph és a kapilláris anyagának függvénye Az elektro-ozmózist a felület módosításával változtathatjuk. EOF (electro osmotic flow) töltött felület áll, folyadék mozog házfalak szárítása
17 Kapilláris elektroforézis 1
18 Capillary electrophoresis 2.
19 Move in capillary Neutral Elektroforetikus mozgékonyság: felületi potenciál (zeta potenciál), méret
20 Nem-ekvivalens vagy ioncsere adszorpció Az adszorbensben már eleve vannak ionok, az elektrolit valamelyik ionja kötődik az adszorbensen. Az ioncsere egy megfordítható reakció, amelyben valamelyik oldott ion sztöchiometrikusan cserélődik a szilárd szorbens azonos töltésű mozgékony ionjával XR KA KR XA RY KA RA KY Kationcsere, anioncsere, savas kationcserélő, ph-tól függő amfoter felületek stb. a jegyzetből elolvasni.
21 Kolloidstabilitás DLVO elmélet (Derjaguin, Landau and Verwey, Overbeek) A kettősréteg EDL, zetapotenciál, Eredő kölcsönhatás, energiagát a liofób kolloid részecskék között (szuszpenziók, emulziók) A koaguláció sebességét befolyásolják Liofil kolloidok stabilitása (makromolekuláris és micelláris oldatok), termodinamikai
22 Stabilis és instabilis rendszerek:üledéktérfogat Buzágh-kísérletek Tömör üledék Laza halmaz üledéktérfogat a) koagulált, b) flokkulált Irreverzibilis, reverzibilis, Gyógyszeripar, kerámia ipar, festék, színezék, papíripar, víztisztítás, stb Ha nincs taszítás akkor a nagyobb vonzás nagyobb üledéktérfogat Bázikus bizmutnitrat tömény szuszpenzio fehér pigment, kontraszt anyag
23 Részecskék közötti kölcsönhatás Brown-mozgás, ütközések kölcsönhatások? A stabilitás a vonzó és taszító kölcsönhatások viszonyától függ. Nagy taszítás stabil rendszer. A vonzás van der Waals erőkből származik A taszítás a hasonló töltésű részecskék taszításából és vagy a részecske-oldószer (hidratáció) kölcsönhatásból ered. Nincs taszítás Nagyobb zéta potenciál stabilabb rendszer, jobban diszpergált, nem vagy nagyon lassan koagulál, és ha ekkor ülepszik akkor tömör irreverzibilis üledéket ad Van taszítás
24 A van der Waals vonzás részecskék között vákuumban E r J 6 A ~ 11, Téglatesteknél: Atomok vagy molekulák közötti vonzás vákumban (pontszerű): r A diszperziós kölcsönhatás additivitása miatt a vonzás nagyobb részecskék között is működik, a hatótávolsága jóval nagyobb, függ a geometriától. Két a sugarú gömb esetében H távolságban a vonzó kölcsönhatás V A, [J]: V A H A H 2 H A Hamaker állandó, J a V A H Aa 12H
25 Hamaker modell A Hamaker állandó a molekuláris kölcsönhatásokból számítható Molekulák az 1 részecskében Molekulák a 2 részecskében A ~ 2 q Függ a geometriától! A: Hamaker állandó, q: db atom /tf, van der Waals konstans 6 EA ~ r, J vákuumban A részecskék közötti vonzóerő a molekulák közötti (diszperziós) vonzóerőkből épül fel (a molekulák függetlenül hatnak), azok összege
26 Vonzás közegben effektív Hamaker állandó A részecskék között lévő folyadék erősen csökkenti a Hamaker állandót közegben A V H H A effektiv : kvarc: J víz: J, szénhidrogének: J H (m) távolságban a vonzó kölcsönhatás V A, J
27 A töltött részecskéket diffúz ionatmoszféra veszi körül exp ( xx ) St St x St 1/: adebye távolság Felületi töltés (ζ~ψ 0 ~ ph) sókoncentráció (κ, z). x St Plane of shear
28 Az átlapoló ellenion atmoszféra taszítást, V R eredményez H V R A lazán kötődő ellenionok diffúz ionatmoszférát alkotnak. A részecskék közeledésekor az ionatmoszférák egymásba hatolnak és az azonos töltések miatt taszítás lép fel. Mivel az ionok koncentrációja a Boltzmann eloszlás szerint rohamosan nő, így a taszítás is exponenciálisan nő. 2 VR H 0 exp H H ~ részecskék közötti távolság, ψ 0 felületi potenciál
29 Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus taszítás és a vonzás eredője a DLVO elmélet szerint: V T [J] V T = V A + V R H V A H Aa 12H Az elektrosztatikusan stabilizált rendszer érzékeny a felszíni potenciál értékére (ζ~ψ~ ph, saját ion) és az ionerősségre (κ, z). R ( ) exp V H a kt z H ze St exp 1 2kT ze St exp 1 2kT Figyeljünk a szélső értékekre!
30 Eredő kölcsönhatás Kinetikailag stabilis a szol, ha V max >>kt azaz V max /kt>>0 Minél magasabb a gát annál kevesebb részecske jut át rajta, potenciál gátolt koaguláció. [J] Az elektrosztatikusan stabilizált rendszer érzékeny a felszíni potenciál értékére (ζ~ψ~ ph, saját ion) és az ionerősségre (κ, z). H [m] szol Gél csapadék Szol-gél átalakulás: Időben egyre több részecske ütközik, és kerül a másodlagos minimumba, a gyenge vonzóerő hatására az adott távolságban marad, azaz kapcsolódik. Ha ezek a kötéspontok az egész térfogatra kiterjednek, akkor a rendszer gélesedik. A gél egy kvázi szilárd rendszer, alakállandó, amit ebben az esetben fizikai térhálósodás okoz, de könnyen (a másodlagos minimum mélysége kicsi ~1-2kT) átmegy folyékonnyá.
31 Koaguláció (c.c.c) [J] 1 2 Mi az a só koncentráció ( vagy n 0 ) amelynél éppen eltűnik a taszítás (potenciálgát)? Ekkor minden ütköző részecske összetapad, csapadék válik ki.
32 Kritikus koaguláltató koncentráció Mi az a só koncentráció ( vagy n 0 ) amelynél éppen eltűnik a taszítás (potenciálgát)? Ekkor minden ütköző részecske összetapad. Ha a potenciál gát V max (J) ( sokkal nagyobb mint a kinetikus energia kt akkor a rendszer stabilis. Amikor nincs energiagát, akkor minden ütköző részecske összetapad: gyors koaguláció. A koaguláció valószínűsége ütközéskor P=1
33 A krit. koag. konc. vegyértékszabálya ccc.. 1/ z 6 1: 0,0156 : 0,00137 Schulze Hardy szabály: a kritikus koaguláltató érték a vegyérték reciprok hatodik hatványával arányos.
34 A koaguláció sebessége, a stabilitási arány A Smoluchowski egyenlet szerint a koaguláció sebessége a részecske szám, N p csökkenéséből: dn dt p kn d 2 p k d a diffúzió kontrolált gyors koaguláció sebességi állandója k s a lassú gátolt diffúzió sebességi állandója A stabilitási arány: k Ha nincs energia gát akkor az ütközés d az ütközések száma W gyakoriságát, a koaguláció sebességét k s azeredményes ütközések száma a diffúzió és a koncentráció szabja meg: Egy diszperzió stabilitása nő: ha a méret nő, ha a zéta dn p 2 8 Da N potenciál nő(ζ >25mV), csökken a Hamaker állandó, p vgyors dt csökken az ionerősség, csökken a hőmérséklet.
35 W elektrolit koncentráció függése W k / k rapid slow A c.c.c amelynél éppen eltűnik a taszítás (potenciálgát). Ekkor minden ütköző részecske összetapad. A sebesség nem nő tovább. A stabilitás nem csökken tovább.
Elektrokinetikus jelenségek Kolloid stabilitás
Elektrokinetikus jelenségek Kolloid stabilitás Bányai István 2011-12/II. http://dragon.unideb.hu/~kolloid/ Elektrokinetikus vagy zeta potenciál A oldószer (többnyire víz) a felület közelében nem mozdul,
Az adszorpció néhány alkalmazása. Kromatográfia: az analitika anyag rövid összefoglalása
Az adszorpció néhány alkalmazása Kromatográfia: az analitika anyag rövid összefoglalása A kromatográfia elve Mi a kromatográfia? Elválasztási módszer. Az elválasztani kívánt két (több) komponenst külön
Az elektromos kettős réteg és speciális alakulásai. Bányai István DE Fizikai Kémiai Tanszék
Az elektromos kettős réteg és speciális alakulásai Bányai István DE Fizikai Kémiai Tanszék A felületi töltés F( ) 0 A felületi töltés szerepe a liofób kolloidok stabilitásában DLVO elmélet. A hidrofób
A kettős réteg speciális alakulása
A kettős réteg speciális alakulása Stern-modell, ionok véges mérettel zeta-layer Φ 0 ψ 0 surface potential Φ/V ψ zeta v. nyírási sík ψφ St d Stern-p. ζ potential Stern-layer x (indiv.u.) 2 a Stern rétegben
Kolloidok stabilizálása. Bányai István 2016/1.
Kolloidok stabilizálása Bányai István 2016/1. www.kolloid.unideb.hu A kolloidok stabilitása (lehet ismételt ábrák) A hidrofób kolloidok elektrosztatikus stabilizálása Kolloidstabilitás DLVO elmélet (Derjaguin,
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása.
Az elektromos kettősréteg. Az elektromos potenciálkülönbség eredete, értéke és az azt befolyásoló tényezők. Kolloidok stabilitása. Adszorpció oldatból szilárd felületre Adszorpció oldatból Nem-elektrolitok
Sztérikus stabilizálás. Bányai István 2014/2.
Sztérikus stabilizálás Bányai István 2014/2. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus
Kolloidstabilitás. Berka Márta. 7. előadás 1
Kolloidstabilitás Berka Márta 7. előadás 1 Liofób kolloidok stabilitása Termodinamikai és kinetikai stabilitás fogalma liofób és liofil kolloidok fogalma DLVO elmélet (Derjaguin, Landau és Verwey, Overbeek)
Sztérikus stabilizálás. Bányai István /2.
Sztérikus stabilizálás Bányai István 2011-12/2. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus
Kolloidok stabilizálása. Bányai István 2015/1.
Kolloidok stabilizálása Bányai István 2015/1. Kolloid stabilitáshoz taszítás kell. Elektrosztatikus stabilizálás V R V S Két töltött gömb közötti eredő kölcsönhatás A kölcsönhatási potenciál az elektrosztatikus
Kolloidkémia 5. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia
Kolloidkémia 5. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat
Kolloidstabilitás. Berka Márta 2010/2011/II
Kolloidstabilitás Berka Márta 2010/2011/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes
Elektrosztatikus és sztérikus stabilizálás. Bányai István és Novák Levente /2. félév
Elektrosztatikus és sztérikus stabilizálás Bányai István és Novák Levente 2014-15/2. félév Kolloid rendszerek (szerkezet alapján) inkoherens rendszerek önálló részecskék koherens (kohézív) rendszerek Diszperziós,
Kolloidkémia 8. Előadás Kolloidstabilitás. Szőri Milán: Kolloidkémia
Kolloidkémia 8. Előadás Kolloidstabilitás Szőri Milán: Kolloidkémia 1 Kolloidok stabilitása Termodinamikailag lehetnek stabilisak (valódi oldatok) Liofil kolloidok G oldat
Adszorpció erős elektrolitok vizes oldataiból
Adszorpció erős elektrolitok vizes oldataiból Berka Márta Bányai István 1 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens Nem-ekvivalens vagy ioncsere
Szilárd-folyadék határfelület Erős elektrolit adszorpció. Berka Márta és Bányai István 2010/2011/II
Szilárd-folyadék határfelület Erős elektrolit adszorpció Berka Márta és Bányai István 2010/2011/II 1 Adszorpció erős elektrolitok vizes oldataiból Erős elektrolit adszorpció Molekuláris vagy ekvivalens
Adszorpció folyadék-szilárd határfelületen. 2011-12/II Bányai István
Adszorpció folyadék-szilárd határfelületen 2011-12/II Bányai István 1 Közönséges Jelentősége bibliai példa keserű víz (ioncsere) kromatográfia (papíron, oszlopon) elektródok, kozmetikumok, hajápolás Kevésbé
Határfelületi elektromos tulajdonságok ( tétel) Előadás: március 11
Határfelületi elektromos tulajdonságok (1113. tétel) Előadás: március 11 FELÜLETI TÖLTÉSEK KIALAKULÁSA S/L HATÁRFELÜLETEN ioncserélő gyanták (állandó töltés): kation cserélő anion cserélő _ SO 3 H CH 2
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
Adszorpció folyadékelegyekből 2. Elektrolit oldat
Adszorpció folyadékelegyekből 2. Elektrolit oldat Bonyolultabb, mert min. 3 komponens van: anion, kation és oldószer. Általában 5 komponens: anion, kation, oldószer-anion, oldószer-kation, disszociálatlan
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia
Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat
Szedimentáció, elektroforézis. Biofizika előadás Talián Csaba Gábor
Szedimentáció, elektroforézis Biofizika előadás Talián Csaba Gábor 2012.03.20. szedimentáció = ülepedés Sedeo2, sedi, sessum ül Sedimento 1 - ülepít Cél: 1 - elválasztás 2 - a részecskék méretének vagy
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Kapilláris elektroforézis
Kapilláris elektroforézis Kapilláris elektroforézis. Elméleti alapok: elektroozmózis, eof meghatározása, szabályzása elválasztási hatékonyság, zónaszélesedés 1 Kapilláris elektroforézis A kapilláris elektroforézis
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Kolloidstabilitás. Berka Márta 2009/2010/II
Kolloidstabilitás Berka Márta 2009/2010/II Kolloid stabilitáshoz taszítás kell. Sztérikus stabilizálás V R V S sztérikus stabilizálás: liofil kolloidok alkalmazása védőhatás adszorpció révén (természetes
A kromatográfia típusai. Az analitika anyag rövid összefoglalása
A kromatográfia típusai Az analitika anyag rövid összefoglalása Kromatográfia Mi a kromatográfia? Elválasztási módszer. Az elválasztani kívánt két (több) komponenst külön fázisba visszük: elnevezések szerint
Diffúzió 2003 március 28
Diffúzió 3 március 8 Diffúzió: különféle anyagi részecskék (szilárd, folyékony, gáznemű) anyagon belüli helyváltozása. Szilárd anyagban való mozgás Öndiffúzió: a rácsot felépítő saját atomok energiaszint-különbség
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA
HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
ozmózis osmosis Egy rendszer termodinamikailag stabilis, ha képződése szabadentalpia csökkenéssel jár, állandó nyomáson és hőmérsékleten.
ozmózis osmosis termodinamikai stabilitás thermodynamic stability kinetikai stabilitás kinetic stability felületaktív anyagok surfactants, surface active materials felületinaktív anyagok surface inactive
Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban
Szakértesítő 1 Interkerám szakmai füzetek A folyósító szerek viselkedése a kerámia anyagokban A folyósító szerek viselkedése a kerámia anyagokban Bevezetés A kerámia masszák folyósításkor fő cél az anyag
Reakciókinetika és katalízis
Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.
Többkomponensű rendszerek. Diszperz rendszerek. Kolloid rendszerek tulajdonságai. Folytonos közegben eloszlatott részecskék - diszperz rendszerek
Többkomponensű rendszerek 7. hét Folytonos közegben eloszlatott részecskék - diszperz rendszerek homogén - kolloid - heterogén rendszerek - a részecskék mérete alapján Diszperz rendszerek Homogén rendszerek
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek. Szőri Milán: Kolloidkémia
Kolloidkémia 5. előadás Határfelületi jelenségek II. Folyadék-folyadék, szilárd-folyadék határfelületek 1 Határfelületi rétegek 2 Pavel Jungwirth, Nature, 2011, 474, 168 169. / határfelületi jelenségek
KAPILLÁRIS ELEKTROFORÉZIS. dolgozat az Elválasztási műveletek a biotechnológiai iparokban c. tárgyhoz
KAPILLÁRIS ELEKTROFORÉZIS dolgozat az Elválasztási műveletek a biotechnológiai iparokban c. tárgyhoz DIENES DÓRA I. ÉVF. PHD HALLGATÓ 1999 Bevezetés - Elektroforézis Az elektroforézis olyan elválasztási
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet
Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek A talajszennyezés csökkenése/csökkentése bekövetkezhet Természetes úton Mesterséges úton (kármentesítés,
Kolloidkémia előadás vizsgakérdések
Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben
Molekulák mozgásban a kémiai kinetika a környezetben
Energiatartalék Molekulák mozgásban a kémiai kinetika a környezetben A termodinamika és a kinetika A termodinamika a lehetőség θ θ θ G = H T S A kinetika a valóság: 1. A fizikai rész: - a reaktánsoknak
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek
Kolloid állapotjelzők. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
Kolloidkémia előadás vizsgakérdések
Kolloidkémia előadás vizsgakérdések Egyenletek, képletek esetén minden esetben adja meg a szimbólumok jelentését, és azok mértékegységét!!! Ábrák esetén jelölje melyik tengelyen mit ábrázol, milyen egységben
3/11/2015 SZEDIMENTÁCIÓ ELEKTROFORÉZIS. Szedimentáció, elektroforézis. Alkalmazások hematológia - vér frakcionálása
PÉCSI TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR hematológia - vér frakcionálása Példa: teljes vérkép www.aok.pte.hu SZÉTVÁLASZTÁSI MÓDSZEREK: SZEDIMENTÁCIÓ ELEKTROFORÉZIS vérplazma (55 %) BIOFIZIKA
Fehérjék elválasztására alkalmazható mikrofludikai rendszerek Bioanalyzer, LabChip rendszerek. A készülékek működési elve, felépítésük, alkalmazásuk.
Fehérjék elválasztására alkalmazható mikrofludikai rendszerek Bioanalyzer, LabChip rendszerek. A készülékek működési elve, felépítésük, alkalmazásuk. Kapilláris elektroforézis tömegspektrometriás detektálással
Vg = fv. = 2r2 ( ρ ρ 0 )g. v sed. 3 r3 πg = 6πη 0. V = 4 3 r3 π
Szedimentáció, elektroforézis BÓDIS Emőke, TALIÁN Csaba Gábor Biofizika előadás 2011 Február 28. Szedimentáció Általában a cél a részecskék méretének vagy tömegének a meghatározása. A gravitáción alapuló
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Bevezetés a talajtanba VIII. Talajkolloidok
Bevezetés a talajtanba VIII. Talajkolloidok Kolloid rendszerek (kolloid mérető részecskékbıl felépült anyagok): Olyan két- vagy többfázisú rendszer, amelyben valamely anyag mérete a tér valamely irányában
Biofizika szeminárium
Szedimentáció, elektroforézis Biofizika szeminárium 013.04.3-5. Makromolekulák analízise és elválasztása Miért van szükség centrifugára? 50kg / mol 3 6 10 / mol = 3 8,33 10 kg Helyzeti energia változása
Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
Az élethez szükséges elemek
Az élethez szükséges elemek 92 elemből kb. 25 szükséges az élethez Szén (C), hidrogén (H), oxigén (O) és nitrogén (N) alkotja az élő szervezetekben előforduló anyag 96%-t A fennmaradó 4% legnagyobb része
A kémiai kötés. Kémiai kölcsönhatás
A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:
ELEKTROFORÉZIS TECHNIKÁK
11. fejezet ELEKTROFORÉZIS TECHNIKÁK ELEKTROFORÉZIS Olyan elválasztási technikák, amelyben a molekulák elektromos erőtér hatására különbözőképpen mozdulnak el, és ezáltal szétválaszthatók. Dr. Pécs Miklós
Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Katalízis. Tungler Antal Emeritus professzor 2017
Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb
Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek
Kolloid állapotjelzık. Molekuláris kölcsönhatások. Határfelületi jelenségek: fluid határfelületek Dr. Berka Márta és Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék http://dragon.unideb.hu/~kolloid/
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
Szikes talajok kémiai tulajdonságai és laboratóriumi vizsgálata. Filep Tibor
Szikes talajok kémiai tulajdonságai és laboratóriumi vizsgálata Filep Tibor Szikes talajok kémiai tulajdonságai Szikes talajok Kémiai szempontból azon talajok csoportja, amelyek képződésében, és folyamataiban
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Altalános Kémia BMEVESAA101 tavasz 2008
Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
A kolloidika tárgya, a kolloidok osztályozása rendszerezése. Bányai István www.kolloid.unideb.hu
A kolloidika tárgya, a kolloidok osztályozása rendszerezése Bányai István www.kolloid.unideb.hu A mindennapi élet: anyagok, eljárások Ipar élelmiszerek: levesek, zselék, élelmiszer színezés, habok építőipar:
A kolloidika alapjai. 4. Fluid határfelületek
A kolloidika alapjai 4. Fluid határfelületek Kolloid rendszerek csoportosítása 1. Folyadék-gáz határfelület Folyadék-gáz határfelület -felületi szabadenergia = felületi feszültség ( [γ] = mn/m = mj/m 2
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
Elektromos alapjelenségek
Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével
5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény
Kötések kialakítása - oktett elmélet
Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
1. Elektromos alapjelenségek
1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos
Kapilláris elektroforézis lehetőségei. Szabó Zsófia Országos Gyógyintézeti Központ Immundiagnosztikai Osztály
Kapilláris elektroforézis lehetőségei Szabó Zsófia Országos Gyógyintézeti Központ Immundiagnosztikai Osztály Elektroforetikus elválasztás alapja: az oldott anyagok elektromos térben különböző sebességgel
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE
S ZERVES ALAPANYAGOK ISMERETE, DISZPERZ RENDSZEREK KÉSZÍTÉSE TANULÁSIRÁNYÍTÓ Ismételje át a szerves kozmetikai anyagokat: 1. Szerves alapanyagok ismerete szénhidrogének alkoholok (egyértékű és többértékű
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Elekroforézis erős elektromos terekben
Elekroforézis erős elektromos terekben 043360 sz. OTKA téma (2003-2007) ZÁRÓJELENTÉSE A klasszikus elméletekben leírt és sokoldalúan tanulmányozott elektroforézist (ef) széleskörűen alkalmazzák felületek,
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet
Szűrés Gyógyszertechnológiai alapműveletek Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Szűrésnek nevezzük azt a műveletet, amelynek során egy heterogén keverék, különböző
Elektroforézis technikák
Elektroforézis technikák Az elektroforézis olyan elválasztási technika, amelynek alapja az ionok elektromos térbeli mozgékonysága. A pozitív töltésű ionok a negatív elektród irányába vándorolnak, még a
Nagyhatékonyságú folyadékkromatográfia (HPLC)
Nagyhatékonyságú folyadékkromatográfia (HPLC) Kromatográfiás módszerek osztályba sorolása 2 Elúciós technika A mintabevitel ún. dugószerűen történik A mozgófázis a kromatogram kifejlesztése alatt folyamatosan
BIOFIZIKA I OZMÓZIS Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS
BIOFIZIKA I OZMÓZIS - 2010. 10. 26. Bugyi Beáta (PTE ÁOK Biofizikai Intézet) OZMÓZIS BIOFIZIKA I - DIFFÚZIÓ DIFFÚZIÓ - ÁTTEKINTÉS TRANSZPORTFOLYAMATOK ÁLTALÁNOS LEÍRÁSA ONSAGER EGYENLET lineáris, irreverzibilis
A borok tisztulása (kolloid tulajdonságok)
A borok tisztulása (kolloid tulajdonságok) Tisztasági problémák a borban Áttetszőség fogyasztói elvárás, különösen a fehérborok esetében Zavarosságok: 1. bor felületén (pl. hártya); 2. borban szétszórtan