AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN
|
|
- Kinga Kelemenné
- 10 évvel ezelőtt
- Látták:
Átírás
1 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN VÉRTESI VERA Kivonat. A szóprobléma vagy másnéven ekvivalenciaprobléma félcsoportok felett azt a kérdést vizsgálja, hogy két kifejezés mikor vesz fel minden behelyettesítésre azonos értéket. Ebben a cikkben belátom Volkov (2001) sejtését, amely szerint egy konkrét 19 elemű 0-egyszerű félcsoportra a szóprobléma conp-teljes Bevezetés A számítógépek egyre nagyobb térhódítása tapasztalható a matematikai, speciálisan az algebrai kérdések bonyolultságának elemzésében. Azt gondolhatnánk, hogy egy adott algebrai struktúrára vonatkozó állítás ellenőrzése mindössze egy alkalmas program megírásának kérdése. Egy ilyen programnak azonban nemcsak a számítógépek képességei, hanem a matematikai logika is határt szab. Az egyik legtöbbet vizsgált ilyen kérdés a szóprobléma: a feladat annak eldöntése, hogy két adott kifejezés megegyezik-e tetszőleges behelyettesítés mellett ig nem volt ismert olyan félcsoport, amelyre a szóprobléma conp-teljes lenne. Végül Volkov (2002) mutatott egy körülbelül elemszámú félcsoportot, amelyre a feladat conp-teljes. Nem sokkal később Kisielewicz (2002) konstruált egy néhány ezer elemű példát. Szabó Csabával (2003) megadtunk egy 13 elemű félcsoportot, amelyre a probléma conp-teljes. A legkisebb elemszámú példa Klima (2003) eredménye: az úgynevezett Brandt-monoid, amely hatelemű. A 0- egyszerű félcsoportok olyan építőkövei a félcsoportoknak, mint a csoportok körében az egyszerű csoportok. Mindkét esetben a struktúra fő faktorairól van szó. Így remélhető, hogy azon 0-egyszerű félcsoportok karakterizálása, amelyekre a szóprobléma polinomiális, segíthet a félcsoportok általános karakterizálásában is. Az eddigiekben a 0-egyszerű félcsoportok közül csak olyanokra voltak eredmények, amelyek struktúracsoportjára a szóprobléma conp-teljes, és ebből automatikusan adódott az eredeti félcsoportra is a conpteljesség; illetve a kombinatorikus 0-egyszerű félcsoportokra, amelyekre A kutatást az OTKA N67867 és K67870 számú pályázatai támogatták. 1
2 2 VÉRTESI VERA a probléma polinomiális (Seif, Szabó 2000). E cikkben belátom Volkov (2001) sejtését, amely szerint egy konkrét 19 elemű 0-egyszerű félcsoportra a szóprobléma conp-teljes. Ez a legkisebb olyan példa, amelynek struktúracsoportjára polinomiális a szóprobléma, de magára a félcsoportra mégis conp-teljes. 2. Előzmények, alapfogalmak Mivel a szóprobléma bonyolultságelméleti vizsgálata a számítástudomány és az algebra határterületén van, ezért mindkét témakörben le kell rögzíteni a jelöléseket, definiálni kell az alapfogalmakat. Ennek a fejezetnek ez az egyik fő célja. Ugyanakkor betekintést szeretnénk adni a szóproblémával kapcsolatos eddigi eredményekbe is Számítási bonyolultság. Nem célunk a bonyolultságelmélet egzakt felépítése, inkább csak a szükséges fogalmak felelevenítése. A témát kimerítően tárgyalja a szakirodalom [15, 17]. A számítási bonyolultság a számítástudomány azon területe, amely annak okát kutatja, hogy egyes problémákat miért olyan nehéz számítógéppel megoldani. Ezen nehézség mértéke alapján az eldöntési problémák, vagy más néven nyelvek, bonyolultsági osztályokba sorolhatóak. Most csak azon bonyolultsági osztályokat fogjuk áttekinteni, melyekre a későbbiekben szükségünk lesz, ilyen a P, NP, conp nyelvosztályok és az NP-teljes, conp-teljes nyelvek. Azt mondjuk, hogy egy algoritmus polinomiális, ha futásideje a bemenet méretének egy polinomjával becsülhető 2. Eldöntendő kérdések egy halmaza P-ben van, ha van egy minden bemenetre polinomidőben válaszoló algoritmus. Ilyen például az osztó nyelv, mely az a és b bemenetekről azt kérdezi, hogy a osztója-e b-nek. A kérdésekre pl. az Euklideszi algoritmus polinomidőben választ ad. Eldöntendő kérdésekből álló halmazt NP-belinek nevezünk, ha az igen válasz egy polinomidőben ellenőrízhető tanúval bizonyítható (ez az osztály épp abban különbözik a P-től, hogy ebben az esetben a tanút nem az algoritmus szolgáltatja, hanem adottnak vesszük, pl. egy orákulum súgja). NP-beli például az összetett nyelv, amely során egy bemenetként kapott a számról kell eldönteni, hogy összetett-e. Hiszen ha a válasz igen, akkor tanúként megadhatjuk egy osztóját, amelyről az előbbiek szerint polinomidőben ellenőrízhető, hogy valóban osztó. Hasonlóan, egy nyelv conp-ben van, ha a nem válasz bizonyítható polinomiális tanúval. Ilyen például a prím 3 nyelv, melynél egy bemenetként kapott a számról azt kell eldönteni, hogy prím-e. Általában véve, ha 2 Nem térünk ki rá, hogy pontosan mit is nevezünk algoritmusnak, és milyen egységekben mérjük a tárat, illetve az időt. 3 A közelmúltban a prím nyelvről megmutatták [1], hogy valójában P-beli is.
3 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 3 egy A nyelv NP-beli, akkor az A C nyelv, amely azt kérdezi egy bementről, hogy nem teljesül-e A, conp-beli. Azt mondjuk, hogy egy A nyelv polinomiálisan redukálható B nyelvre (A P B), ha A minden bemenetéhez polinomidőben adható B-nek egy olyan bemenete, amelyre B pontosan akkor igaz, ha A igaz volt az eredeti problémára. A és B polinomiálisan ekvivalens (A P B), ha B P A és A P B. Egy nyelv NP-teljes, ha minden NP-beli nyelv redukálható rá polinomiálisan. Tehát valamilyen értelemben az NP-teljes nyelvek a legnehezebbek az NP-beli nyelvek közül. A conp-teljes nyelvosztály hasonlóan definiálható. Jól ismert NP-teljes problémák: a sat, mely egy bemenetként kapott konjunktív normálformában adott Boole-formuláról kérdezi, hogy kielégíthető-e; A 3sat, mely a sat megszorítása az olyan konjunktív normálformában adott Boole-formulákra, melyekben minden klóz pontosan három literált tartalmaz; Valamint az r-color (r 3), melynél egy bemenetként kapott gráfról kell eldönteni, hogy színezhető-e r színnel. A bonyolultságelmélet egyik legtöbbet vizsgált problémája az úgynevezett relációhomomorfizmus-probléma (Constraint Satisfaction Problem, csp). Egy B = (S, ) relációs struktúra az S alaphalmazból, és egy az S-en adott r-változós, S r, relációból áll. csp(b) egy adott B = (S, ), relációsstruktúrára a következő: minden bemenetként kapott A = (T, ν) ugyanolyan típusú relációs struktúráról el kell dönteni, hogy van-e relációtartó T S leképezés? A probléma nyilvánvalóan NP-beli. A csp legismertebb esetei a sat, a gráfhomomorfizmusprobléma és a színezettgráfhomomorfizmus-probléma. Ugyanakkor, mint azt Feder és Vardi [5] belátta minden csp redukálható egy páros gráf színezettgráfhomomorfizmus-problémájára is. A kutatások mai fő célja dichotómia tételek bizonyítása általános esetben. Sokan azt gondolják, hogy ha van bonyolultsági osztály P és NP között, akkor van ilyen bonyolultságú csp probléma is Gráfok. A klasszikus gráfelméleti fogalmakon kívül, mint a gráf, páros gráf, csúcs (pont), él, többszörös él, hurokél, egyszerű gráf, pont foka, részgráf, út, séta, ciklus, kör, összefüggő gráf, összefüggőségi komponens, színezés, szükségünk lesz néhány kevésbé ismert gráfelméleti fogalomra is. A G(A, B, E) páros gráf szomszédsági mátrixa egy olyan A B -es 0-1 mátrix, melynek az M(a, b) eleme 1, ha a megfelelő a A és b B csúcsok között él fut G-ben, és 0 egyébként. Két azonos csúcshalmazú, G(V, E) és H(V, F), esetleg többszörös éleket tartalmazó gráf uniója: (G H)(V, E F), tehát csúcshalmaza megegyezik G illetve H csúcshalmazával, az élhalmaz az élhalmazok uniója,
4 4 VÉRTESI VERA és egy adott e E F él multiplicitása a két gráfbeli multiplicitásának összege. A G(V, E) és H(W, F) gráfok közötti (gráf)homomorfizmus a csúcshalmazok olyan ϕ : V W leképezése, mely élt élbe visz, azaz (u, v) E-ből következik (ϕ(u), ϕ(v)) F. Ha H részgráfja G-nek, és a ϕ : G H gráfhomomorfizmus fixen hagyja H csúcsait (ϕ H id), akkor ϕ G-nek H-ra való retrakiciója. Rögzítsünk egy H(W, F) gráfot. A H-ra vonatkozó gráfhomomorfizmusprobléma, hom(h) során egy bemenetként kapott G(V, E) gráfról azt kell eldönteni, hogy van-e G-nek H-ba menő homomorfizmusa. Természetesen ez a probléma NP-beli. Ha H tartalmaz hurokélet, akkor mindig létezik ilyen homomorfizmus. Ugyanakkor általában a kérdés nehezen megválaszolható, hiszen például ha H = K r az r csúcsú teljes gráf, akkor ez épp G r-színezhetőségének kérdése, ami NP-teljes (r 3). Hurokélet nem tartalmazó gráfokra Hell és Nešetřil [8] bebizonyította, hogy ha a gráf páros, akkor hom P-beli, nem párosokra pedig NP-teljes. A H-ra vonatkozó retrakciós probléma, ret(h) esétben az a kérdés, hogy egy bemenetként kapott G, H-val izomorf H részgráfot tartalmazó gráfnak létezik-e retrakciója H -re. Büki és Szabó [2] által bizonyítottak szerint, ha J n az n n-es csupa 1-esből álló mátrix, I n pedig n n-es egységmátrix, akkor, ha H szomszédsági mátrixa J n I n, akkor ret(h) NP-teljes. Tehát például a hatszögre NP-teljes a probléma. A színezettgráfhomomorfizmus-probléma, oal(h) annak eldöntése, hogy egy bemenetként kapott G(V, E) gráfhoz és f : V W részleges leképezéshez található-e olyan ϕ : G H homomorfizmus, mely f-nek kiterjesztése. Azon G-beli csúcsokat, amelyekre f meg van adva, nevezzük színezettnek. Ez a kérdéskör magában foglalja a hom(h) és ret(h) problémákat is, így legalább olyan bonyolult. Feder, Hell és Huang belátták [6], hogy minden hurokélet nem tartalmazó nem páros gráfra oal(h) NP-teljes. Páros gráfok esetében csak a legalább 6 hosszú páros körökre, azaz például a hatszögre sikerült NP-teljességet bizonyítaniuk. Feder és Vardi [5] belátta, hogy a csp redukálható a páros gráfok színezettgráfhomomorfizmus-problémájára. A továbbiakban szükségünk lesz még egy H-ra vonatkozó eldöntendő kérdésre, ehhez definiáljuk a páros homomorfizmus fogalmát: egy G H homomorfizmus páros, ha az összes f F él inverzképének elmeszáma páros, azaz ϕ 1 (f) 0 (mod2). Az úgynevezett pároshomomorfizmusprobléma, 2hom(H), során egy bementként kapott G gráfról kell eldönteni, hogy minden ϕ : G H homomorfizmusra páros-e. Mint azt majd a 31. tételben belátjuk ez a probléma conp-teljes a hatszögre.
5 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN A szóprobléma. Az algebra napjainkban egyre szélesebb körben vizsgált területe az algebrai bonyolultságelmélet, amely az algebra tárgykörében felmerülő kérdések megoldására adható algoritmusok nehézségének mértékével foglalkozik. Ide tartozik a szóprobléma is, amely egy effektív módon (pl. a Cayley-táblájával) adott A algebra fölött azt a kérdést vizsgálja, hogy teljesül-e két tetszőleges kifejezésre (u és v), hogy minden behelyettesítésre egyenlő értéket vesznek fel, azaz, hogy u v azonosság-e A-ban. A szóproblémának több változata fogalmazható meg aszerint, hogy milyen fajta kifejezéseket engedünk meg bemenetként (mi lehet u és v). Egy adott algebra felett egy kifejezést termnek nevezünk, ha az adott algebra feletti alapműveletkből, és változókból áll, formálisan a típushoz tartozó kifejezésalgebra elemeiről van szó. Például félcsoportok esetében egy term x 1 x 2 x m alakú. Egy kifejezés polinom, ha algebrabeli konstansok is szerepelhetnek benne. Így a két univerzális algebrai szempontból legfontosabb változat a term-ekvivalenciaprobléma (term-eq) és a polinomekvivalenciaprobléma (pol-eq), amikor tehát a bemenetként kapott kifejezések termek illetve polinomok. Amennyiben a 0 benne van az algebrában, értelmezhetőek a term 0 és a pol 0 problémakörök is, amelyek során egy bemenetként kapott t termről, illetve p polinomról kell eldönteni, hogy azonosan 0-e? A pol 0 a pol-eq egy megszorítása, és ha a 0 konstans A-ban, akkor a term 0 a term-eq megszorítása. Az egyenletmegoldhatósági probléma, pol-sat, term-sat pedig az előzőekhez hasonlóan azt kérdezi, hogy az u = v egyenletnek van-e megoldása. Véges struktúrákra mindkét problématípus behelyettesítéssel eldönthető, ezért ilyenkor a feladat bonyolultsága a kérdés. Mivel minden term egyben polinom is, ezért a term-eq (term-sat) mindig legfeljebb olyan nehezen eldönthető, mint a pol-eq (pol-sat). A szóprobléma változatai természetesen conp-ben vannak, hiszen ha a két kifejezés nem egyenlő, akkor ennek egy gyorsan ellenőrizhető bizonyítéka az a behelyettesítés, amelyre a kifejezések különböző értékeket vesznek fel. Hasonlóan látható, hogy az egyenletmegoldhatósági probléma NP-beli. Az eddigieket összfoglalva: 1. állítás. []Tetszőleges A algebrára (1) term-eq(a) P pol-eq(a) conp; (2) term-sat(a) P pol-sat(a) NP; (3) Ha 0 A, akkor pol 0(A) P pol-eq(a); (4) Ha pedig 0 konstans is A-ban, akkor term 0(A) P term-eq(a).
6 6 VÉRTESI VERA Adott struktúratípusoknál általában a dichotómia bizonyítása a cél, azaz, hogy a szóprobléma (egyenletmegoldhatósági probléma) a struktúrák egy részére P-beli, a többire conp-teljes (NP-teljes). A továbbiakban a szóproblémával kapcsolatos eddigi eredményeket foglaljuk össze. Minden a továbbiakban szerplő struktúra végesnek tekintendő Gyűrűk. Régóta ismert [12], hogy kommutatív gyűrűkre a szóprobléma P-beli, ha a gyűrű nilpotens, és conp-teljes egyébként. Burris és Lawrence [3] belátta, hogy ugyanez igaz a gyűrűkre általában is: a term-eq P-beli, ha a gyűrű nilpotens, és conp-teljes egyébként. Így persze nem nilpotens gyűrűkre a pol-eq is conp-teljes. Kiderült továbbá, hogy nilpotens gyűrűk esetében a [3]-beli algoritmus még a pol-eq-ra is polinomiális lefutású. Azaz gyűrűk esetében a két szóprobléma azonos bonyolultságú. Ez az összefüggés nem minden algebrai struktúrára igaz: kombinatorikus teljesen 0-egyszerű félcsoportokra a term-eq probléma mindig P-beli, azonban van olyan kombinatorikus 0-egyszerű félcsoport, amelyre a pol-eq conp-teljes, erre konstruálunk példát a illetve a fejezetekben. A 2-elemű gyűrűre, Z 2 -re a term-eq conp-teljessége a 3sat NP-teljességének egyszerű következménye. Azonban a visszavezetés során összegek magas hatványait használják, melyeket monomok összegeként kifejtve már nem polinomiális visszavezetést kapnánk. Ezért Willard definiálta a szóproblémának egy másik változatát, az úgynevezett Σ - verziót (term Σ -eq, pol Σ -eq) amikor a két megadott szó csak monomok összege lehet. Ez a mód természetesebb, hiszen például a klasszikus algebrában a polinomokat is ilyen formában szoktuk megadni. A kérdés ebben az esetben is a szokásos, csak bizonyos szavak kifejtve lényegesen hosszabbak lehetnek, így a bemenő adatok mérete változik. Ha egy gyűrűre az eredeti szóprobléma P-beli, akkor nyilván polinomiális a Σ -verziója is. Willard és Lawrence [14] igazolták, hogy ha a Jacobson-radikál szerinti faktor kommutatív, akkor a term Σ -eq P-beli; azon M n (F q ) mátrixgyűrűkre pedig conp-teljes, amelyekre az invertálható elemek csoportja nem feloldható. Ezzel megoldották az n 3 illetve q 4 eseteket. Az eddig még megoldatlan esetekre, az M 2 (Z 2 ) és az M 2 (Z 3 ) mátrixgyűrűkre a [21] és a [20] cikkekben Szabó Csabával beláttuk, hogy a probléma ekkor is conp-teljes, tehát term Σ -eq conp-teljes a nemkommutatív teljes mátrixgyűrűkre, és persze polinomiális a kommutatívokra. Valójában ennél erősebb állítást sikerült igazolni; azt, hogy a fenti mátrixgyűrűk multiplikatív félcsoportjában is conp-teljes a szóprobléma. Ez az addig ismerteknél nagyságrendileg kisebb példát adott olyan félcsoportra, amelyben
7 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 7 a szóprobléma conp-teljes. Beláttuk még [22] hogy a nemkommutatív mátrixgyűrűknek már a multiplikatív félcsoportjában is conp-teljes a probléma. Ezen eredmény felhasználásával bizonyítható véges gyűrűkre a dichotómia: a term Σ -eq bonyolultsága is csak a Jacobson-radikál szerinti faktortól függ: P-beli, ha a faktor kommutatív, és conp-teljes egyébként Csoportok. Csoportokra a kérdés koránt sincs megoldva. Horváth, Lawrence, Mérai és Szabó [9] megmutatták, hogy nem feloldható csoportokra a term-eq conp-teljes, valamint tudjuk hogy nilpotens csoportokra P-beli [7]. Itt ugyanis, ha van ellenpélda, akkor van korlátos elemszámú is. A nem nilpotens, de feloldható csoportokra nincsenek általános eredmények, a kérdés még S 4 -re is nyitott. Horváth Gábor [10] egy TDK dolgozatában megmutatta, hogy bizonyos metaciklikus csoportokra a term-eq conp-teljes Félcsoportok ben Szabó és Seif [18] megmutatták, hogy minden csp-hez van egy olyan S 0-egyszerű félcsoport hogy az adott csp polinomiálisan ekvivalens pol-sat(s)-sel. Ettől kezdve mindkét szóprobléma gyors karriert futott be. Először Popov és Volkov [16] mutattak egy olyan ( elemű) félcsoportot, amelyre a term-eq conp teljes, majd ugyanebben az évben Kisieliewicz mutatott egy párezer elemszámú példát ugyanerre. Szabó Csabával [21, 20] igazoltuk, hogy term-eq(m 2 (Z 2 )) és term-eq(m 2 (Z 3 )) conp-teljes, és ennek kapcsán mutattunk egy 13 elemű példát is. Ezután elkezdődtek a szisztematikus kutatások. Klíma [13] illetve Szabó és Seif [19] igazolták, hogy a legkisebb elemszámú ilyen félcsoport a hatelemű Brandt monoid. Szabó és Seif [19] pedig megmutatták, hogy kombinatorikus 0- egyszerű félcsoportokra a term-eq mindig P-beli. Nagy kérdés volt, hogy teljesül-e ez minden olyan 0-egyszerű félcsoportra, amely alapcsoportja feloldható. Erre a kérdésre keresem a választ ezen cikk 3.3. fejezetében Egy újabb szóprobléma. Pawel Idziak és Szabó Csaba új szemszögből vizsgálták a szóprobléma változatait, arra keresték a választ, hogy mi történik akkor, ha megengedjük végessok művelet hozzávételét a típushoz (pl. csoport estén a kommutátort). Ez az úgynevezett - (csillag-) problémakör. Az új műveletek, művelettáblái az
8 8 VÉRTESI VERA előkészítés során kiszámíthatóak, majd később bemenetként elfogadhatóak az ezen műveletekkel alkotott kifejezések is. A probléma bonyolultságát ez jelentősen megváltoztathatja. Idziak és Szabó megvizsgálták a pol-sat * probléma bonyolultságát kongruenciamodulárisvarietásokra. A prímhatvány-rendű algebrák direkt összegeként nem előálló kettes típusú nilpotens algebrák kivetélével sikerült dichotomiát bizonyítaniuk egyszerű félcsoportok. Ebben a fejezetben egy rövid leírást adunk a teljesen 0-egyszerű- illetve Rees-mátrix félcsoportokról, alapvető tulajdonságaikról, bemutatva közben további vizsgálataink fő tárgyát, M 19 -et. Bizonyos alapvető félcsoportelméleti fogalmakat eleve ismertnek feltételezünk, ezek és a fejezetben tárgyalt egyéb fogalmak illetve állítások megtalálhatóak a szakirodalomban [4, 11]. Adott egy G csoport, és egy M mátrix, melynek elemei a G {0} halmazból kerülnek ki, és minden sora illetve oszlopa legalább egy nemnulla elemet tartalmaz. Jelölje Λ az M mátrix oszlopainak, I a sorainak indexhalmazát. Az M mátrixhoz tartozó G struktúracsoportú Rees-mátrix félcsoport, M(I, Λ, G; M) alaphalmaza I G Λ {0}. A 0 elnyelő elemként viselkedik: 0(i, g, λ) = (i, g, λ)0 = 0. A nemnulla elemek szorzását az alábbi képlettel definiáljuk: { (i, gm(λ, j)h, µ) ha M(λ, j) G, (i, g, λ)(j, h, µ) =. 0 egyébként Ellenőrízhető, hogy a fent definiált szorzás asszociatív, így M(I, Λ, G; M) valóban félcsoport. A félcsoport elemeire az (i, g, λ) jelölés helyett gyakran az i, λ jelölést használjuk, amennyiben a csoportelem nem lényeges. Jelölje π I, π G, π Λ a nemnulla elemek első-, második illetve harmadik korrdinátájára való vetítést. Egy adott Rees-mátrix félcsoportot több különböző mátrixszal is lehet reprezentálni, erről szól az alábbi lemma: 2. lemma. [] Legyen M(I, Λ, G; M) egy Rees-mátrix félcsoport, ekkor: (1) Az M mátrix két oszlopát illetve sorát felcserélve izomorf Reesmátrix félcsoportot kapunk; (2) Az M mátrix egy oszlopát illetve sorát egy csoportelemmel megszorozva izomorf Rees-mátrix félcsoportot kapunk. A Rees-mátrix félcsoportnál a szorzás egyszerűen kiszámolható művelet: amennyiben az eredmény nem 0, csak az első és az utolsó tényezőktől függ az értéke. A következő lemma ezt az összefüggést hívatott formalizálni:
9 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 9 3. lemma. [] Legyen M(I, Λ, G; M) egy Rees-mátrix félcsoport, b = i, λ, d = j, µ, c 1 = (i 1, g 1, λ 1 ), c 2 = (i 2, g 2, λ 2 ),...,c n = (i n, g n, λ n ) M(I, Λ, G; M), ekkor: (1) b d = 0 pontosan akkor, ha M(λ, j) = 0; (2) c 1 c 2 c n = 0 pontosan akkor, ha található olyan k {2, 3,...n} index, melyre c k 1 c k = 0; (3) Ha c 1 c 2 c n 0, akkor c 1 c 2 c n = π I (c 1 ), π Λ (c n ) = i 1, λ n. A Rees-mátrix félcsoportok definíciója az alábbi, egyszerű példán szemléltethető, amely egyben ezen cikk tárgya is: 4. példa. [] Legyen G = Z 2 = a, és legyen: P = a Ekkor Λ = I = {1, 2, 3}. Legyen M 19 = M(I, Λ, Z 2 ; P). M 19 -ben a szorzás a következőképpen működik: (1, a, 1)(2, 1, 1) = (1, 1, 1), hiszen P(1, 2) = a, és mivel P(2, 2) = 0, 1, 2 2, 1 = 0. Általában M 19 -ben az i, λ j, µ szorzat, akkor és csak akkor 0, ha λ = j. Van egy jól ismert, klasszikus példa is Rees-mátrix félcsoportokra: L n (F), a legfeljebb 1 rangú n n-es mátrixok multiplikatív félcsoportja az F véges test felett. 5. tétel. []L n (F) Rees-mátrix félcsoport. Bár a bizonyítás ismert, és nem is nehéz, a teljesség kedvéért álljon itt. Bizonyítás: Legyen V = F n, legyenek {l i = v i : i I}, V egydimenziós alterei, azaz I = F n 1. Legyen továbbá I = Λ. Definiáljuk az M F 1 Λ I -es mátrixot F {0} felett a következőképpen: M(λ, i) = vλ Tv i. Minden A 1 rangú mátrix diád, így egyértelműen írható fel A = αv i vλ T alakban, ahol α F, i I, λ Λ. Az A = αv i vλ T (i, α, λ) és a 0 0 leképezés izomorfizmust létesít L n (F) és az M(I, Λ, F ; M) Rees-mátrix félcsoport között. A Rees-mátrix félcsoportoknak van egy kevésbé formális tárgyalásmódja is, az úgynevezett szendvicsmátrixos reprezentáció. Ekkor M(I, Λ, G; M) elemei a legfeljebb 1 nemnulla elemet tartalmazó I Λ -es mátrixok, szorzásukat pedig a szokásos mátrixszorzásból öröklik az M, mint szendvicsmátrix beiktatásával. Pontosabban: A B = AMB A dimenziókat összehasonlitva rögtön látszik, hogy a szorzás értelmes. A művelet asszociativitása a mátrixok szorzásának asszociativitásából azonnal következik. A két definíció valóban ugyanaz: a 0 mátrixnak
10 10 VÉRTESI VERA feleljen meg a 0, egyébként egy A 0-nak pontosan egy eleme nemnulla, legyen pl. az i-edik sor λ-adik eleme g, feleltessük meg ekkor A-nak az (i, g, λ) félcsoportelemet. Ez tényleg izomorfizmust ad. Az előbbi példa a szendvicsmátrixos terminológiában: 6. példa. [] a = a a = A kombinatorikus teljesen 0-egyszerű félcsoportok olyan Rees-mátrix félcsoportok, melyeknek struktúracsoportja triviális. Tehát egy adott M, csupa 0 sort illetve oszlopot nem tartalmazó Λ I -as 0-1 mátrixhoz tartozó S M = M(I, Λ, 1; M) kombinatorikus teljesen 0-egyszerű félcsoport alaphalmaza: I Λ {0} = { i, λ : i I, λ Λ} {0} A 0 elnyelő elem, azaz 0 i, λ = i, λ 0 = 0, a többi elem szorzata pedig: { i, µ ha M(λ, j) 0, i, λ j, µ =. 0 egyébként Minden S = M(I, Λ, G; M) Rees-mátrix félcsoport redukálható kombinatorikus 0-egyszerű félcsoporttá: egyszerűen az M struktúramátrix minden nemnulla elemét kicseréljük egyesre, jelölje ezt M 1, legyen ekkor a kombinatorikus redukált S 1 = S M 1. Így például 4. példában tárgyalt félcsoport kombinatorikus redukáltja az A = mátrixhoz tartozó S A teljesen kombinatorikus 0-egyszerű félcsoport. Definiálható általában egy tetszőleges ϑ : G H csoporthomomorfizmus szerinti redukált is: Legyen M ϑ, az a mátrix, melyet M-ből úgy kapunk, hogy M-ben minden g G elemet kicserélünk ϑ(g)-re, ekkor S ϑ-redukáltja S ϑ = M(I, Λ, H; M ϑ ). Természetes módon definiálható egy ϑ : S S ϑ félcsoporthomomorfizmus is, a ϑ(0) = 0, ϑ((i, g, λ)) = (i, ϑ(g), λ) képlettel. A redukált félcsoport elég sok információt megőriz az eredeti félcsoportról, például egy kifejezés nemnullaságát. Így ha csak erre vagyunk kíváncsiak, akkor elég csak a kombinatorikus teljesen 0-egyszerű félcsoportokat vizsgálni. 7. megjegyzés. []Tetszőleges S = M(I, Λ, G; M) Rees-mátrix félcsoportra: (1) term-eq(s ϑ ) P term-eq(s);
11 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 11 (2) pol-eq(s ϑ ) P pol-eq(s); (3) term 0(S ϑ ) P term 0(S); (4) pol 0(S ϑ ) P pol 0(S) Miért épp M 19?. A teljesen 0-egyszerű félcsoportok olyan építőkövei a félcsoportoknak, mint a csoportok körében az egyszerű csoportok (mindkét esetben a struktúra fő faktorairól van szó). Így remélhető, hogy azon 0-egyszerű félcsoportok karakterizálása, amelyekre a term-eq polinomiális, segíthet a félcsoportok általános karakterizálásában is, ez a cikk tekinthető egy kezdő lépésnek ebben az irányban. Természetes kérdés, hogy van-e egyáltalán olyan 0-egyszerű félcsoport, amelyre term-eq conp-teljes? Mi lehet a legegyszerűbb ilyen félcsoport? A kombinatorikus teljesen 0-egyszerű félcsoportokra term-eq polinomiális, így köztük nem is érdemes a példát keresni. Ha egy 0-egyszerű fécsoport struktúramátrixában nem is jelennek meg az 1- en kívül más csoportelemek, akkor felette a szóprobléma ekvivalens a kombinatorikus redukáltja, és a struktúracsoportjabeli szóproblémával. Mivel a csoportok szóproblémájáról még kevesebbet tudunk, mint a félcsoportokéról, és amúgy is inkább félcsoportokról szóló eredményt szeretnénk bizonyítani, így ezektől az esetektől is eltekintünk. Fogadjuk el, hogy egy 0-egyszerű félcsoport annál egyszerűbb, minél több nullát tartalmaz a struktúramátrixa, és minél egyszerűbb a struktúracsoportja. A 2. lemma többszöri alkalmazásával, megmutatható, hogy a fennmaradó 0-egyszerű félcsoportok közül a legegyszerűbb valóban M 19. Még egy ok, amiért talán érdemes M 19 -et vizsgálni, hogy van egy természetes reprezentációja transzformációkkal. Vegyük ehhez a három elemen ható transzformáció-félcsoportot, T 3 -at ( T 3 = 3 3 = 27). Soroljuk az elemeit rangjuk szerint 3 csoportba: T 3 (3) = S 3 a 3 rangúak, T 3 (2) a 2 rangúak és T 3 (1) az 1 rangúak. Mivel kompozíció során a rang nem nőhet, így T 3 (1) ideál T 3 -ban. Vegyük T 3 (2) T 3 (1) szerinti Rees-faktorát, azaz húzzuk össze T 3 (1)-et egyetlen 0-elemmé. A kapott félcsoport 19 elemű, és mint az Clifford és Preston [4] híres félcsoportelméleti könyvébenben bizonyítva van, izomorf M 19 -cel. A cikkben a következő tételt látjuk be: 8. tétel. [] term-eq(m 19 ) conp-teljes. Végezetül leírjuk M 19 néhány fontos tulajdonságát: 9. lemma. [] Legyen b = i, λ, d = j, µ M 19 és c 1 = (i 1, g 1, λ 1 ), c 2 = (i 2, g 2, λ 2 ),...,c n = (i n, g n, λ n ) M 19, ekkor: (1) b d = 0 pontosan akkor, ha P(λ, j) = 0, azaz ha λ = i;
12 12 VÉRTESI VERA (2) M 19 idempotens elemei: {(i, g, λ) : λ i}; (3) c 1 c 2 c n = 0 pontosan akkor, ha található olyan k {2, 3,...n} index, melyre c k 1 c k = 0, azaz λ k 1 = i k ; (4) Jelölje l = {1 k n 1 : i k = 1, λ k+1 = 2} (a szorzatban fellépő extra a-k számát). Ekkor, ha c 1 c 2 c n 0, akkor c 1 c 2 c n = (i 1, g 1 g 2 g n a l, λ n ). 3. Mi könnyű? Mi nehéz? A számítástudomány szemszögéből könnyű az, amire van polinomiális algoritmus, azaz P-ben van, nehéz pedig, ami conp-teljes. A továbbiakban a szóproblémát próbáljuk ebből a nézőpontból vizsgálni, különös figyelmet fordítva eredeti témánkra, a Rees-mátrix félcsoportok szóproblémájára P-beli problémák. Azt, hogy egy adott struktúrára a szóprobléma P-beli, mi sem bizonyítja jobban, mint hogy megadunk egy tényleges polinomidejű algoritmust az eldöntésére. Általában ez az algoritmus, mint az alábbi fejezetben is, az azonosságok pontos karakterizációját használja. Nem mindig szükséges a teljes karakterizáció, elég azt belátni, hogy csak polinomsok behelyettesítést kell ellenőrizni az azonosság igazolásához a Brute Force exponenciálissok helyett. Goldmann és Russel [7] például ezt a módszert alkalmazza a nilpotens csoportok szóproblémájának P-beliségének bizonyításához term-eq(s A ). A továbbiakban teljesen kombinatorikus 0-egyszerű félcsoportok feletti azonosságokat vizsgálunk. Mint látszani fog, egy jó megközelítés adódik ehhez a gráfokon keresztül. Ezért most az eddigi fogalmakat átültetjük a gráfelmélet területére. Tetszőleges S M kombinatorikus teljesen 0-egyszerű félcsoporthoz természetes módon definiálható egy H M (Λ, I, F) páros gráf: az a gráf, amelynek szomszédsági mátrixa épp M, igy például a 2.4. fejezetben definiált S A -hoz tartozó páros gráf, épp egy hatszög: H 6 : λ 1 λ 2 λ 3 i 1 i 2 i 3 Ismert, hogy a félcsoportok felett egy term egyszerűen t = x 1 x 2 x n alakú, ahol az x i -k nem feltétlenül különbözőek. Jelölje X t = {x 1, x 2,...,x n }
13 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 13 a t-ben előforduló változók halmazát. Tetszőleges t termhez konstruálunk egy G t (A t, B t, E t ) páros gráfot a következőképpen: legyen A t = {a x : x X t }, B t = {b x : x X t } és fusson él a x és b y között, ha az xy kifejezés részszava t-nek. A könnyebb érthetőség kedvéért álljon itt egy példa erre. 10. példa. [] Legyen t = x 1 x 2 x 1 2 x 3 x 4 x 5 2 x 2 x 1 2 x 2 x 1 x 2. A t-hez tartozó gráf: G t : A t : a 1 a 2 a 3 a 4 a 5 B t : b 1 b 2 b 3 b 4 b 5 Ezen gráf-konstrukciók segítségével vizsgálhatjuk az S M feletti termeket: 11. lemma. [] Legyen t = x 1 x 2 x n, ahol az x i -k nem feltétlenül különbözőek. Legyen továbbá ε : X t S M t egy kiértékelése. Ekkor a fenti jelölésekkel: (1) ε(t) 0 akkor és csak akkor, ha ε(xy) 0 t semelyik xy alakú részszavára sem; (2) Ha ε : X t S M nem veszi fel a 0-át semilyen x-re sem, akkor definiálható egy ϕ t : G t H M leképezés a következő formulával: ϕ t (a x ) = π Λ (ε(x)) és ϕ t (b x ) = π I (ε(x)); (3) ε(t) 0 pontosan akkor, ha ε nem veszi fel a 0-át, és az ekkor definiálható ϕ t : G t H M leképezés gráfhomomorfizmus. Ezen leírás segítségével már pontososan karakterizálhatóak S A azonosságai. A pontos leírást Szabó es Seif [19] cikke tartalmazza, most az egyszerűség kedvéért ezeket az eredményeket már csak az előbbi példában adott S A félcsoportra tárgyaljuk. 12. állítás. [] Legyenek t = x 1 x 2...x n, s = y 1 y 2... y m termek. Ekkor a fent bevezetett jelölésekkel t s pontosan akkor teljesül S A -ban, ha mindkét alábbi feltétel teljesül: : (I) G t = G s ; : (II) x 1 = y 1 és x n = y m. Valójában ez az állítás egy az egyben igaz az olyan struktúramátrixú félcsoportokra, amelyek nem csak néhány, csupa 1-esből álló blokkot tartalmaznak, azaz amelyekhez tartozó H M páros gráf nem teljes páros gráfok diszjunkt uniója.
14 14 VÉRTESI VERA Bizonyítás: Láttuk, hogy H A = H 6 épp egy hatszög. Ha (I) teljesül, akkor a két termben ugyanazok az xy kifejezések szerepelnek részszóként, azaz 3. lemma 2. pontja alapján t és s ugyanakkor nulla. (II) teljesülése pedig a 3. lemma 3. pontja szerint azt biztosítja, hogy ha egy behelyettesítésre a termek nem nullák, akkor egyenlőek. A csak akkor irányhoz elég konkrét behelyettesítéseket adni, melyekre a két term nem egyenlő. Tegyük fel, hogy (I) nem teljesül, azaz G t G s. Ez kétféleképpen fordulhat elő: vagy a két gráf csúcshalmaza különbözik, vagy az élhalmazuk. Az első esetben X t X s. Az általánosság megszorítása nélkül feltehető, hogy x X t \ X s. Tekintsük ekkor a következő behelyettesítést: { 0 ha z = x, ε(z) = 2, 3 egyébként, ekkor ε(t) = 0 2, 3 = ε(s). Ha az élhalmaz nem egyezik meg, akkor megint feltehető, hogy (x, y) E t \ E s, azaz az xy kifejezés részszava t-nek, de s-nek nem, ekkor az ε(z) = 2, 1 ha z = x, 1, 3 ha z = y, 2, 3 egyébként behelyettesítésre ε(t) = 0 ε(s). Tegyük fel, hogy (II) valamelyike nem teljesül, és tekintsük a következő behelyettesítéseket:. ε(z) = { 1, 2 ha z = x1, 3, 2 egyébként. Ha x 1 y 1, akkor ε(t) = 1, 2 3, 2 = ε(s). ε(z) = { 3, 2 ha z = xn, 3, 1 egyébként. Ekkor x n y m esetén ε(t) = 3, 2 3, 1 = ε(s). Mivel ezek a tulajdonságok polinomidőben tesztelhetőek, így: 13. következmény. []term-eq(s A ) P-beli. Az azonosságok hasonló karakterizációjával belátható, hogy: 14. tétel. []Minden teljesen kombinatorikus 0-egyszerű félcsoportra, term-eq P-beli.
15 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN conp-teljes problémák. A conp-teljesség bizonyítására lényegében egyetlen módszer létezik: visszavezetjük egy már ismerten conp-teljes problémára, azaz megmutatjuk, hogy amennyiben az eredeti probléma gyorsan megoldható, akkor az ismert probléma is (ez az úgynevezett Karp-redukció). A bizonyítások csak abban térhetnek el, hogy az eredeti kérdést milyen módszerekkel, és milyen ismert problémára vezetjük vissza Az első példa. Popov és Volkov [16] muatott először példát olyan félcsoportra, melyben a szóprobléma conp-teljes. Mint minden első példa ez is akármilyen bonyolult lehetett. A konstrukció a sat-ra való visszaveztéssel ment. Egyszerűen definiáltak egy olyan félcsoportot, amelyben minden Boole-formula elkódolható, ez két elem által generált a, b szabad félcsoport egy faktora lesz. A P j = ab 15+j a 2 (0 j 14) elemek segítségével adhatóak meg a kifejezések alkotóelemei: A kifejezések (L): ( = P 0 P 2 P 1 ) = P 0 P 3 P 1 = P 0 P 4 P 1 = P 0 P 5 P 1 = P 0 P 6 P 1 1 = P 0 P 10 P 1 0 = P 0 P 11 P 1 A Relációk: (0), (1), ( 0), ( 1) (V 1 V 2 V k ), ahol V i {0, 1, 0, 1} W 1 W 2 W l, ahol W j a fenti alakú U = W, ha U, W / L 0 = 1 1 = 0 (0 0 = (0 (0 1 = (0 (1 0 = (0 (1 1 = (1 0 0 = = = = 1 (0) (0) = (0) (0) (1) = (1) (1) (0) = (1) (1) (1) = (1) Így kapunk egy félcsoportot, ami elkódolja a Boole-formulákat, és mindenesetre teljesülnek benne a Boole-formulák alapvető azonosságai. A
16 16 VÉRTESI VERA kérdés az, hogy ezektől a relációktól nem esik-e túlságosan össze a félcsoport, azaz a különböző Boole-formulákat tényleg különböző félcsoportelemek reprezentáják-e? Ennek bizonyítása nagyon hosszú és technikai, ezért nem részletezzük. Közben adható egy felső becslés a félcsoport méretére is: kijön, hogy legfeljebb elemű lehet pol-eq(s A ). Ezt a problémakört is érdemes visszavezetni a gráfokra, ugyanúgy, mint azt a term-eq esetében tettük. A polinomok a félcsoportok körében a következő általános alakba írhatóak: p = e 1 e 2 e n, ahol az e i -k (1 i n) vagy változók, vagy félcsoportbeli konstansok, és nem feltétlenül különbözőek. Feltehető, hogy p-ben nem szerepel a nulla konstansként, ekkor ugyanis p 0, azaz minden rá vonatkozó kérdés triviálisan eldönthető. Jelölje X p a p-ben előforduló változók, C p I Λ a p-beli konstansok halmazát. Definiáljuk továbbá a p-ben szereplő konstasok első illetve utolsó tagjainak halmazát: I p = π I (C p ) és Λ p = π Λ (C p ). Az fejezetben mutatott konstrukció mintájára most is definiálható egy gráf az adott p polinomhoz. Legyen tehát G p (A p, B p, E p ) a p-hez tartozó gráf, ahol A p = {a x : x X p } Λ p, B p = {b x : x X p } I p, továbbá a A p és b B p között fusson él, ha az a-nak és b-nek megfelelő változók vagy konstansok egymás mellett szerepelnek p-ben. Persze ha p egy term, akkor ez a konstrukció visszaadja az fejezetben tárgyalt gráfot. Nézzünk erre is egy példát: 15. példa. [] Legyen p = x 1 x 2 2, 3 x 2 2 3, 1 2, 1 x 3x 1 3, 2, a p-hez tartozó gráf: G p : A p : a 1 a 2 a 3 λ 1 λ 2 λ 3 B p : b 1 b 2 b 3 i 2 i 3 Ismét azt látjuk, hogy egy polinom nemnullasága egy gráfhomomorfizmusproblémára vezethető vissza, csak ezúttal színezettre. 16. lemma. [] Legyen p egy polinom, amelyben a 0 nem szerepel konstansként, ekkor a fenti jelölésekkel: (1) C p I Λ, így az identitás definiál egy f p : I p Λ p H leképezést; (2) Ha p 0, akkor f p részleges gráfhomomorfizmus; Tegyük fel, hogy f p részleges gráfhomomorfizmus és legyen ε : X p S M p egy kiértékelése, ekkor:
17 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 17 (3) ε(p) 0 akkor és csak akkor, ha ε(ef) 0 p semelyik ef alakú részszavára sem; (4) Ha ε nem veszi fel a 0-át semilyen x-re sem, akkor definiálható egy ϕ p : G p H leképezés a következő formulával: ϕ Ip Λ p f p és ϕ p (a x ) = π Λ (ε(x)) és ϕ p (b x ) = π I (ε(x)); (5) ε(t) 0 pontosan akkor, ε nem veszi fel a 0-át, és az ekkor definiálható ϕ t : G t H leképezés gráfhomomorfizmus; A lemma azonnali következménye: 17. következmény. []p 0 pontosan akkor, ha f p kiterjeszthető G p - re. Láttuk, hogy minden p 0 problémához természetes módon deifiniálható egy színezettgráfhomomorfizmus-probléma. Mint azt Seif és Szabó [19] igazolta, ennek a megfordítása is igaz: 18. állítás. []Legyen H M olyan gráf, melynek szomszédságimátrixa nem tartalmaz csupa nulla sort illetve oszlopot. Ekkor oal(h M ) minden input-problémájához definiálható olyan p polinom, amellyel pontosan akkor létezik a színezetthomomorfizmus, ha p 0. Bizonyítás: Legyen G(V, E) és f : V I Λ részleges homomorfizmus oal(h M ) egy bemenete. Ha a színezettgráfhomomorfizmusproblémának nem triviálisan nincs megoldása (ilyenkor például a p = (1, 1, 1) polinom megfelel az állításbeli követelményeknek), akkor G páros gráf, és van a csúcsainak egy olyan V = A B felosztása, hogy egyrészt A-n és B-n belül nem megy él, másrészt f(a) Λ és f(b) I. Jelölje az A-beli színezett csúcsokat Λ, a B-belieket I, az A-beli nem színezetteket A és a B-belieket B. Esetleg néhány új csúcs hozzávételével feltehető, hogy Λ = I és A = B. Legyen X p = X {x e : e E} változók egy halmaza, melyre X = A = B. Ekkor persze A és B halmazok indexelhetőek X-szel: A = {a x : x X} B = {b x : x X}. Továbbá legyen C = Λ = I, ekkor Λ és I indexelhető C-vel: Λ = {λ c : c C} I = {i c : c C}. Jelölje az így kapott páros gráfot G (A Λ, B I, E). Definiáljunk minden e = (a, b) E élhez egy w e szót: xyx e ha a = a x A és b = b y B, x λ w e = d, i d x e ha a = a x A és b = i d I, λ c, i c yx e ha a = λ c Λ és b = b y B., λ c, i c λ d, i d x e ha a = λ c Λ és b = i d I Legyen p = e E w e.
18 18 VÉRTESI VERA Ekkor a p-hez tartozó G p gráf, G -ből és még 2 E darab G egyegy pontjához kapcsolódó pontokból áll. És, mivel M minden sora illetve oszlopa tartalmaz nem 0 elemet, így a H gráf tetszőleges csúcsának van szomszédja, azaz pontosan akkor létezik G H M színezettgráfhomomorfizmus, ha van G p H M színezett-gráfhomomorfizmus is. Tehát p megfelel a követelményeknek. És így mivel pol 0 P pol-eq, és a 2.2. fejezetbeli megjegyzés szerint oal(h 6 ) NP-teljes: 19. tétel. []pol-eq(s A ) conp-teljes term-eq(m 19 ). A és a fejezetekhez hasonlóan ez a probléma is sikeresen vizsgálható gráfhomomorfizmusokon keresztül, azonban mivel már nem teljesen kombinatorikus 0-egyszerű félcsoportról van szó, így egy termhez tartozó gráfnak nemcsak az xy részszavakat, hanem azok multiplicitását is kódolnia kell. Ezért most egy t termhez a fejezetbeli G t (A t, B t, E t ) gráfon kívül egy többszörös éleket is tartalmazó G t (A t, B t, Ẽt) páros gráfot is definiálunk: legyen az (a x, b y ) E t multiplicitása Ẽt-ben az xy részszó t-beli előfordulásainak száma. 20. példa. []Így a 10. példában adott t-hez tartozó gráf: G t : A t : a 1 a 2 a 3 a 4 a 5 B t : b 1 b 2 b 3 b 4 b 5 Az eddigiekhez hasonlóan G t és G t gráf-konstrukciók segítségével tudjuk vizsgálni az M 19 feletti termeket: 21. lemma. [] Legyen t = x 1 x 2 x n, ahol az x i -k nem feltétlenül különbözőek. Legyen ε : X t M 19 t egy kiértékelése, ekkor a fenti jelölésekkel: (1) ε(t) 0 akkor és csak akkor, ha ε(xy) 0 t semelyik xy alakú részszavára sem; (2) Ha ε : X t M 19 nem veszi fel a 0-át semilyen x-re sem, akkor definiálható egy ϕ t : G t H 6 és egy ϕ t : Gt H 6 leképezés a következő formulával: ϕ t (a x ) = ϕ t (a x ) = π Λ (ε(x)) és ϕ t (b x ) = ϕ t (b x ) = π I (ε(x));
19 AZONOSSÁGOK 0-EGYSZERŰ FÉLCSOPORTOKBAN 19 (3) ε(t) 0 pontosan akkor, ha ε nem veszi fel a 0-át, és az ekkor a definiálható ϕ t : G t H 6 illetve ϕ t : G t H 6 leképezések gráfhomomorfizmusok; (4) Jelölje l t = {2 k n : ϕ t (a xk ) = 1, ϕ t (b xk+1 ) = 2}, és definiáljuk az η : X t Z 2 leképezést a következőképpen: η(x) = π G (ε(x)). Ekkor ha ε(p) 0, akkor ε(t) = (ϕ t (a x1 ), η(x 1 )η(x 2 ) η(x n ) a lt, ϕ t (b xn )) ; (5) l t = ϕ t 1 (λ 1, i 2 ) ; (6) Ha ε(t) 0, akkor ε(t) = (ϕ t (x 1 ), η(x 1 )η(x 2 ) η(x n ) a ϕt 1 (λ 1,i 2 ), ϕ t (x n )). A további vizsgálathoz egy technikai definicióra van szükségünk. H 6 a fejezetben definiált hatszög. Legyen G(A, B, E) egy (esetleg többszörös éleket tartalmazó) páros gráf, jelölje G i (A i, B i, E i ) (1 i k) az összfüggő komponenseit. Azt mondjuk, hogy két ϕ, ψ : G H 6 homomorfizmus forgatás-ekvivalens (ϕ ψ), ha vannak a H 6 hatszögnek olyan ω i : H 6 H 6 izomrfiái, melyekre ϕ Gi = ω i ψ Gi. Ekkor ϕ a ψ egy elforgatása. Könnyen látszik, hogy ekvivalenciareláció a G-ből H 6 -ba menő homomorfizmusok halmazán. 22. lemma. [] Legyen t egy term, jelölje G t a t-hez definiált gráfot. Legyen továbbá adva egy ϕ : G t H 6 homomorfizmus, ekkor: (1) ϕ : G t H 6 -nek pontosan egy olyan elforgatása van, melyre ψ(a t ) Λ és ψ(b t ) I; (2) Van egy olyan ε : X t M 19 kiérékelés, amelyhez tartozó ϕ t : G t H 6 homomorfizmus ϕ egy elforgatottja. A következőkben a 12. állításhoz hasonlóan leírjuk M 19 azonosságait, majd fokozatosan feltárjuk a term-eq(m 19 ) és a 2hom(H 6 ) közötti szoros összefüggést. 23. állítás. [] Legyenek t = x 1 x 2...x n, s = y 1 y 2...y m termek, a fent bevezetett jelölésekkel: t s pontosan akkor teljesül M 19 -ben, ha a következő négy feltétel mindegyike teljesül: : (I) G t = G s ; : (II) x 1 = y 1 és x n = y m ; : (III) Minden változó előfordulásának paritása megeggyezik t-ben illetve s-ben; : (IV) Tetszőleges M 19 feletti kiértékelésre az egymásutáni., 2 1,. tagok előfordulásának paritása megeggyezik t-ben ill. s-ben, azaz l t l s (mod 2) minden behelyettesítésre; Bizonyítás: 9. lemma alapján ezek a feltételek tényleg elégségesek. Az (I) és (II) feltételek a 12. állítás szerint már S A felett is szükségesek
20 20 VÉRTESI VERA voltak, így M 19 felett is. A többi feltétel szükségességét konkrét behelyettesítésekkel bizonyítjuk: Tegyük fel, hogy x nem felel meg a (III) feltételnek, azaz pl. páros sokszor szerepel t-ben, és páratlanszor s-ben. Tekintsük az alábbi behelyettesítést: { (2, a, 3) ha z = x, ε(z) = (2, 1, 3) egyébként. Ekkor ε(t) = (2, 1, 3) (2, a, 3) = ε(s). A (IV) feltétel szükséges a (III) feltétel teljesülése és a 16. lemma szerint. Az (I), (II) és (III) feltételek polinomidőben ellenőrízhetőek, így valójában elég csak a (IV) feltétel ellenőrizésével foglalkozni. És ha ez a három feltétel tényleg teljesül, akkor nem kell minden behelyettesítést külön kezelni: 24. lemma. []Tegyük fel, hogy t s a term-eq egy bemenete, ekkor a (III) feltétel teljesülése esetén elég az i, λ alakú behelyettesítéseket ellenőrizni a t s azonosság M 19 -beli teljesülésének bizonyításához. A továbbiakban mindent átfogalmazunk a gráfok nyelvére. (III ): Minden csúcs fokszámának paritása megegyezik G t -ben illetve G s -ban; (IV ): Minden M 19 feletti kiértékelésre a (λ 2, i 1 ) él ősképének paritása megegyezik ϕ t -nél, illetve ϕ s -nél, azaz: ϕ 1 t (λ 2, i 1 ) ϕ 1 s (λ 2, i 1 ) (mod 2) Mivel a hatszög forgásszimmetrikus, így a (IV ) feltétel ekvivalens az alábbival: (IV ): Minden M 19 feletti kiértékelésre az összes (λ, i) él ősképének paritása megegyezik ϕ t -nél, illetve ϕ s -nél, azaz ϕ 1 t (λ, i) ϕ 1 s (λ, i) (mod 2) Vezessük be a G t s (A t s, B t s, Ẽt s) = G t Gs jelölést. Ekkor a 22. lemma segítségével újabb ekvivalens feltételek fogalmazhatóak meg: (III ): Minden G t s -beli csúcs foka páros. (IV ): Minden ψ : Gt s H 6 homomorfizmusra az összes (λ, i) él ősképe páros, azaz ψ 1 (λ, i) 0 (mod2) 25. megjegyzés. []Az (IV ) feltételből következik az (III ) feltétel.
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Bonyolultságelméleti problémák algebrai struktúrákban
Bonyolultságelméleti problémák algebrai struktúrákban Doktori értekezés tézisei Készítette: Horváth Gábor Matematika Doktori Iskola Elméleti Matematika Doktori Program Iskolavezet : Dr. Laczkovich Miklós
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.
Algoritmuselmélet Bonyolultságelmélet Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 12. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Gy ur uk aprilis 11.
Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.
Algoritmuselmélet NP-teljes problémák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 13. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
ELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Logika és számításelmélet. 11. előadás
Logika és számításelmélet 11. előadás NP-teljesség Emlékeztetőül: NP-teljes nyelv Egy L probléma NP-teljes (a polinom idejű visszavezetésre nézve), ha L NP L NP-nehéz, azaz minden L NP esetén L p L. Azaz
definiálunk. Legyen egy konfiguráció, ahol és. A következő három esetet különböztetjük meg. 1. Ha, akkor 2. Ha, akkor, ahol, ha, és egyébként.
Számításelmélet Kiszámítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést, amire számítógéppel szeretnénk megadni a választ. (A matematika nyelvén precízen megfogalmazott
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
NP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha
ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig
Alap fatranszformátorok II
Alap fatranszformátorok II Vágvölgyi Sándor Fülöp Zoltán és Vágvölgyi Sándor [2, 3] közös eredményeit ismertetjük. Fogalmak, jelölések A Σ feletti alaptermek TA = (T Σ, Σ) Σ algebráját tekintjük. Minden
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged
Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül
Hadamard-mátrixok Előadó: Hajnal Péter február 23.
Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
3. Feloldható csoportok
3. Feloldható csoportok 3.1. Kommutátor-részcsoport Egy csoport két eleme, a és b felcserélhető, ha ab = ba, vagy átrendezve az egyenlőséget, a 1 b 1 ab = 1. Ezt az [a,b] = a 1 b 1 ab elemet az a és b
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
Polinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
A parciális törtekre bontás?
Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Diszkrét matematika II., 8. előadás. Vektorterek
1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
Formális nyelvek - 9.
Formális nyelvek - 9. Csuhaj Varjú Erzsébet Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c E-mail: csuhaj@inf.elte.hu 1 Véges
Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0
Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Gráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 11. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm () 1 / 1 NP-telesség Egy L nyelv NP-teles, ha L NP és minden L NP-re L L. Egy Π döntési feladat NP-teles, ha Π NP és
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ
DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ B szakirány 2014 június Tartalom 1. Fák definíciója ekvivalens jellemzései... 3 2. Hamilton-kör Euler-vonal... 4 3. Feszítőfa és vágás... 6 4. Címkézett
karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja
Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus
Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
MM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Adatbázisok elmélete 12. előadás
Adatbázisok elmélete 12. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla
Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és
1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.
1 Diagonalizálás Diagonalizálható mátrixok Ismétlés Legyen M,N T n n Az M és N hasonló, ha van olyan A lineáris transzformáció, hogy M is és N is az A mátrixa egy-egy alkalmas bázisban Az M és N pontosan
Általános algebra. 1. Algebrai struktúra, izomorfizmus. 3. Kongruencia, faktoralgebra március Homomorfizmus, homomorfiatétel
1. Algebrai struktúra, izomorfizmus Általános algebra 2. Részalgebra, generálás 3. Kongruencia, faktoralgebra 2013 március 8. 4. Homomorfizmus, homomorfiatétel 1. Algebrai struktúra, izomorfizmus 2. Részalgebra,
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
1. Bevezetés A félév anyaga. Gyűrűk és testek Ideál, faktorgyűrű, főideálgyűrű Gauss-egészek, két négyzetszám tétel Az alaptételes gyűrűk jellemzése A számfogalom lezárása Algebrai és transzcendens számok
1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
BONYOLULTSÁGELMÉLET ÉS ALGEBRA
BONYOLULTSÁGELMÉLET ÉS ALGEBRA AZ OTKA K67870 PÁLYÁZAT ZÁRÓJELENTÉSE A pályázat résztvevői az algebra és a bonyolultságelmélet határterületét kutatták. A pályázat időtartama alatt 43 publikáció született,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy
Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!
függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor
HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:
Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN
PÁROS HOSSZÚ KÖRÖK GRÁFOKBAN CSIKVÁRI PÉTER Kivonat. Ebben a jegyzetben bebizonyítjuk Bondy és Simonovits következő tételét. Ha egy n csúcsú egyszerű gráf nem tartalmaz C k kört akkor az éleinek száma
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
Modern irányzatok a bonyolultságelméletben: éles korlátok és dichotómia tételek
Modern irányzatok a bonyolultságelméletben: éles korlátok és dichotómia tételek Marx Dániel Paraméteres Algoritmusok és Bonyolultság Kutatócsoport Informatikai Kutatólaboratórium SZTAKI 05. június 5. Kombinatorikus
Bonyolultságelméleti problémák algebrai struktúrákban
Bonyolultságelméleti problémák algebrai struktúrákban Doktori értekezés Készítette: Horváth Gábor Matematika Doktori Iskola Elméleti Matematika Doktori Program Iskolavezet : Dr. Laczkovich Miklós Programvezet
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
17. előadás: Vektorok a térben
17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Algebra és számelmélet blokk III.
Algebra és számelmélet blokk III. 2008/2009 tavasz Károlyi Gyula órái alapján Molnár Attila 2. óra 2009. március 10. 1. Generált, normális és karakterisztikus részcsoportok 1.1. Definíció (Generált részcsoport).
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 2. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Egyenletek, egyenlőtlenségek VII.
Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz
Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot
Egyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
Klasszikus algebra előadás. Waldhauser Tamás március 24.
Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az
Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév
1. oldal, összesen: 6 Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév NÉV:... 1. Legyenek,Q,M páronként diszjunkt halmazok; /= Ř, Q > 2, M = 3. Egyszalagos, determinisztikus Turing gépnek
Egészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
Széchenyi István Egyetem, 2005
Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.
Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK