A lineáris törésmechanika alapjai
|
|
- Mária Ráczné
- 8 évvel ezelőtt
- Látták:
Átírás
1 A lineáris törésmechanika alapjai Tihanyi Károly Tartalom Bevezetés... 1 Törésmechanikai elméletek... 1 Lineárisan rugalmas törésmechanika... 2 Feszültség intenzitás elmélete... 2 Energia elmélete... 5 Irodalomjegyzék... 8 Bevezetés Törésmechanika a törésre való méretezéssel foglalkozó tudományág. A hagyományos szilárdsági méretezéssel szemben, feltételezi, hogy az anyag nem tökéletes folytonosságú, hanem abban valamilyen oknál fogva repedések vannak jelen. A törésmechanika feladata annak eldöntése, hogy a repedés milyen feltételek mellett terjed tovább.[1] Ennek a tudománynak az alapját képező repedéseknek az anyag makroszkópikus folytonossági hiányait hívjuk. Az anyagot összetartó kémiai kötés a repedés környezetében külső vagy belső feszültségek, esetleg az anyagot körülvevő közeg hatására megszűnik. Ez a folyamat végül az adott alkatrész törésével teljesedik ki.[2] Törésmechanikai elméletek A törésmechanika viszonylag fiatal tudományág, az 1950-es évek végétől kezdték el kidolgozni a különböző anyagokra, illetve repedésterjedési típusokra érvényes elméleteket. Bár Griffith által már az 1920-as években kidolgozott repedésterjedésre vonatkozó elméletét is lehet a kezdet kezdetének tekinteni. A repedés terjedés feltételének azt tekinti, hogy a felszabaduló rugalmas alakváltozással tárolt energia nagyobb, mint a keletkező felületek felületi energiája. Elméleti megfontolásai azonban csak a szélsőségesen rideg anyagokra igazak. Kimutatták, hogy még a legridegebb anyagokban is a repedés csúcsánál létrejön egy atomi méretekben mérhető képlékenyen alakváltozott anyagrész. Az ő elméletét aztán Irwin dolgozta tovább, figyelembe véve a repedés előtti képlékeny tartományt is.[1,2] A törésmechanikai elméletek alapvetően kétféle megközelítéssel élnek, az előzőekben ismertetett repedésterjedéshez szükséges energia elméletéből, vagy pedig a repedés csúcsánál a külső/belső névleges feszültségek által létrehozott feszültség-, alakváltozási mező meghatározásából, vezetnek le olyan összefüggéseket, melyekből eldönthetővé válik, hogy a repedés terjedni fog-e vagy
2 sem. Lineárisan rugalmas anyagokra, ahol egyszerű geometriai feltételek esetén komplex feszültség függvényekből levezetett analitikus megoldások nyújtanak kielégítő pontosságú törési kritériumokat. A fenti törésmechanikai elméletekből kielégítő pontosságú törési feltételekhez lehet jutni, olyan esetekben, ahol a repedés előtti képlékeny tartomány lényegesen kisebb, mint a repedés mérete.[2] Azokban az esetekben azonban, mikor a képlékenyen alakváltozott anyagrész mérete már jelentős a képlékeny törésmechanika megközelítéseivel kell élni. Az egyik ilyen a COD-elmélet (= crack opening displacement), amely nem a repedéscsúcs feszültségintenzitásával, hanem az elmozdulás, a kritikus repedéskinyílás segítségével állapít meg repedésterjedési kritériumokat. A másik, igen elterjedten használt J-integrál elmélet, amely a repedéscsúcs körül kialakult rugalmasan alakváltozott mező energiájából, valamint elmozdulás, feszültség mezőből kiindulva határoz meg törési feltételt.[2] Ezeken kívül születtek még elméletek a fáradásos repedésterjedési -, hőfáradásos repedésterjedési -, valamint a korróziós repedés terjedési sebesség megahatározására. A dinamikus erőhatások pedig a repedés megindulási, repedés terjedési, valamint repedés megállási elméleteket dolgoztak ki.[2] Lineárisan rugalmas törésmechanika Feszültség intenzitás elmélete A lineárisan rugalmas törésmechanika feszültség intenzitás levezetett törési kritériumhoz először érdemes megvizsgálni Neuber feszültség koncentrációs tényezőjét. Az 1.ábrán látható lemez alakú próbatestet névleges húzófeszültséggel terhelünk, ebben egy ellipszis alakú repedés található. Az ellipszis hossztengelye hosszúságú, a repedés végeinek lekerekítési sugara. Ekkor többtengelyű feszültség állapot alakul ki, melynek a húzás irányú komponense az ábrán látható eloszlású. Ennek a maximuma: (1), ahol formatényező az (2). Látható, hogy minnél nagyobb a repedés hossza a szélességéhez képest annál nagyobb ez az érték. Valódi repedésméreteknél a maximális feszültség 2-3 nagyságrenddel nagyobb is lehet, mint a névleges feszültség, esetén, pedig a a -hez tart.[1]
3 1.ábra: Neuber feszültség koncentrációs tényezőhöz tartozó értékek [3] A Neuber feszültség koncentrációs elv éles bemetszésekre, azaz lekerekítési sugarú repedésekre nem alkalmazható. A probléma megoldása egy síkban fekvő hosszúságú, éles bemetszésű repedést tartalmazó test feszültségállapotának meghatározásából indul ki. A modell különböző terhelési módokra egy végtelen méretű, lemezszerű testben, a repedés csúcsának környezetében szilárdságtani számítások útján határozza meg a különböző feszültségkomponensek nagyságát az repedéscsúcstól mért távolság, és a repedés síkjával bezárt szög függvényében. A modell értelmezését segítő vázlat a 2.ábrán látható. Ha a lemezre a repedés síkjára merőleges irányú feszültség hat, akkor a, húzófeszültségek, valamint a nyírófeszültségek értéke a következő egyenletekkel írható fel:
4 2.ábra: Egy végtelen, lemezszerű anyag feszültség intenzitási tényezőjének meghatározásához szükséges jelölések értelmezése [4] Ha síkbeli feszültségi állapotban van a test, akkor a, ha azonban az, azaz síkbeli alakváltozási állapot írja le a test viselkedését, akkor az egyenletből a. Látható, hogy a, és a -hez tartozó egyenletek mindegyike egy csak a repedés méretétől és a feszültség nagyságától függő tagból és egy csak a repedés csúcsától való távolságtól és iránytól függő tagok szorzatából áll. A feszültségmező, tehát egy értékkel jellemezhető, melyet feszültségintenzitási tényezőnek neveznek és a mértékegysége vagy. Ha ennek mértéke meghalad egy az anyagra, illetve a falvastagságra jellemző értéket a repedés elkezd instabilan terjedni, ezt a mérőszámot kritikus feszültségintenzitási tényezőnek nevezzük és -vel jelöljük. A feszültség intenzitási tényező indexében levő I a terhelési módra utal, a repedés síkjára merőleges húzófeszültségen kívül még két féle terhelési módot különböztetünk meg. A II terhelési mód esetén az igénybevételi állapot a repedés terjedési irányával párhuzamos, a III mód esetén pedig a lemez síkjából kifelé mutat és az előző kettőre merőleges. Mindhárom terhelési módhoz különböző anyagtól és falvastagságtól függő kritikus feszültségintenzitási tényezők tartoznak, melyeket rendre,, -vel jelölnek. A különböző terhelési módok a 3. ábrán láthatóak, a gyakorlatban a -nek van jelentősége.[1,2]
5 3.ábra: Végtelen lemezalakú test három különböző terhelési módja [4] Előzöleg említésre került, hogy a kritikus feszültségintenzitási tényező a falvastagságtól is függ, ui. vékony lemezekre a síkbeli feszültségi állapot, míg a vastag lemezekre síkbeli alakváltozási állapot a jellemző, mint ismeretes ebben az esetben egy a lemez síkjára merőleges feszültségkomponens is ébred. A -t a vastagság függvényében ábrázoló diagram a 4.ábrán látható. maximumát a vastagságnál veszi fel, míg értéktől kezdve az alakváltozási állapot gyakorlatilag síkbeli. Energia elmélete 4.ábra: Kritikus feszültségintenzitási tényező falvastagság függése [5] Az lineáris rugalmas törésmechanika energia elméletének tárgyalásához, először érdemes Griffith repedésterjedési modelljét vizsgálni. A megállapításait kizárólag rugalmasan alakváltozott anyag repedésterjedésére mondja ki, ahol a terhelő névleges feszültség a repedés terjedése alatt semmilyen alakváltozást nem okoz a vizsgált darabon, tehát az általa végzett munka 0. Alapfeltevése az volt, hogy a repedés terjedése során a keletkező felületek felületi feszültségéből származó plusz energiának, és a repedés környezetében rugalmas alakváltozással tárolt energia felszabadulásának az összege mindig a stabilisabb állapot felé mozdul, tehát csökken. Azaz az ( felületi feszültségből származó energia, rugalmas energia felszabadulásából származó energia) megváltozása a repedés növekedésének függvényében mindig kisebb, mint 0. Ha az 2. ábrán látható, az előző alfejezetben már vizsgált végtelen lemez alakú testre nézzük, akkor a következő féleképpen juthatunk el a repedésterjedési kritériumhoz: A felületi feszültség növekedéséből származó energia:, ahol 2a a repedés hossza, v a lemez vastagsága, S pedig a fajlagos felületi feszültség, a képlet elején levő 2-es szorzó repedés két végére utal. A tárolt rugalmas energia:, magyarázatára nem térek ki külön, az összefüggés elején lévő a lineárisan rugalmas alakváltozás munkája. Ha ezeket behelyettesítjük a kiinduló összefüggésbe és szerint deriválva megvizsgáljuk, hogy milyen feltételek mellett csökken, akkor a feszültség intenzitási tényezőt kifejező összefüggést kapunk:
6 Vizsgálatok kimutatták, hogy ez az összefüggés csak ideálisan rideg törésnél érvényes, mert még a legridegebb anyagokban is játszódik le képlékeny alakváltozás.[1] A valóságos repedésterjedéseknél az anyagban tárolt rugalmas energia felszabadulás mellett terhelő erők munkájára is szükség van. Az energia elméletének bevezetéséhez érdemes az 5. ábrán látható elrendezést szemügyre venni. 5.ábra: 2a hosszúságú repedést tartalmazó rugalmasan alakváltozó lemez modellje [2] Ha az anyag lineárisan rugalmas, akkor a lemez egy rugóként is modellezhető és fölírható rá a következő összefüggés:, ahol rugómerevség függ az eredeti hossztól, a rugalmassági modulustól és a repedés hosszúságától. Amennyiben egy adott terhelő erő esetén a repedés hossza megnő, a rugómerevség is vele nő, melyet a 6. ábra szemléltet.
7 6.ábra: A rugómerevség és a hosszváltozásának hatására munkát viszünk a rendszerbe [2] Látható, hogy a vizsgált darab megnyúlt azaz a sraffozott háromszögnek megfelelő nagyságú munkát vittünk a rendszerbe, amely a repedés növelésére fordítódott. Képletekkel fölírva: Ha ennek a repedésterjedésre fordított munkának nézem a repedés hossza szerinti megváltozását, akkor a G-vel jelölt fajlagos energia felszabadulásnak nevezett értékhez jutok. G mértékegysége MPam vagy MPamm. A G-ből és a kifejezhetőek a következő képletek segítségével: feszültség intenzitási tényezők is Síkbeli feszültségi állapot esetén: Síkbeli alakváltozási állapot esetén: Az első képletet megvizsgálva nagyon hasonló a Griffith által megállapított feltételhez, amelyből megállapítható, hogy a G ideálisan törékeny anyagok esetében éppen a fajlagos felületi feszültség kétszerese, azaz 2S. A valóságban ennél 3 nagyságrenddel nagyobb értékeket mértek. A különbség a képlékeny alakváltozás által felemésztett energiából adódik.
8 Felkészülést segítő kérdések Milyen törésmechanikai elméletek léteznek? Milyen a tengelyirányú feszültség eloszlása egy ellipszis alakú bemetszést tartalmazó lemezszerű test esetében a Neuber elmélet szerint? Van egy teljes keresztmetszeten átérő, sík repedést tartalmazó végtelen, lemezszerű testünk, melyet a repedésre merőleges egytengelyű húzófeszültséggel terhelünk. A repedés környezetében felírható, feszültség állapotot jellemző egyenletekben mi lesz az a tag, amely csak a feszültségtől és a repedés méretétől függ? Mi feszültségintenzitási tényező jele és mértékegysége? Hogyan dönthető el a fenti esetben, hogy a repedés terjed-e vagy sem? Milyen terhelési módok léteznek? Hogyan befolyásolja a falvastagság mérete a kritikus feszültségintenzitási tényező nagyságát? Milyen alapfeltevésből indul ki a Griffith modell? Milyen repedésterjedési feltételt állapít meg a Griffith modell? Milyen kapcsolat van a Griffith modell és a feszültségintenzitási elmélet között? Hol alkalmazható a Griffith modell? Milyen plusz energiára van szükség a repedés terjedéséhez az energia elmélet szerint a Griffith modellhez képest? Mit nevezünk fajlagos energiafelszabadulásnak? Mi a jele és a mértékegysége? Milyen törési feltételt állapít meg a törésmechanika energia elmélete? Milyen kapcsolat áll fenn a fajlagos energiafelszabadulás és feszültségintenzitási tényezők között az egyes terhelési módok esetében? Ez a lineáris törésmechanikáról szóló összefoglaló eredetileg az Önálló Feladat 2 nevű tárgyhoz készült. Úgy gondoltam, hogy megosztom veletek, hátha segítelek titeket a törésmechanika alapjainak megértésében. Amennyiben a rövid összefoglalóban hibát találtok vagy egyéb észrevételetek van kérlek írjátok meg nekem a tihanyikaroly@fre .hu címre. Mindenkinek sikeres és hosszú távon hasznos felkészülést kívánok! Irodalomjegyzék [1] Dr. Gillemot László: Anyagszerkezettan és anyagvizsgálat, 1967 IBSN x [2] Horst Blumenauer Gerhard Pusch: Műszaki törésmechanika, 1987 IBSN [3] Dr. Csizmazia Ferencné: Anyagismeret I. diasor [4] [5] Dr Krállics György Reé András: Törés diasor [6]
9
A töréssel szembeni ellenállás vizsgálata
A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek
Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr.
Anyagismeret I. A töréssel szembeni ellenállás vizsgálata Összeállította: Csizmazia Ferencné dr. Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. Szívós vagy
Anyagszerkezettan és anyagvizsgálat 2015/16. Törés. Dr. Krállics György
Anyagszerkezettan és anyagvizsgálat 2015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai
Törés. Az előadás során megismerjük. Bevezetés
Anyagszerkezettan és anyagvizsgálat 015/16 Törés Dr. Krállics György krallics@eik.bme.hu Az előadás során megismerjük az állapottényezők hatását; a törések alapvető fajtáit, mechanikai és fraktográfiai
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
Anyagvizsgálatok. Mechanikai vizsgálatok
Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet
tervezési szempontok (igénybevétel, feszültségeloszlás,
Elhasználódási és korróziós folyamatok Bagi István BME MTAT Biofunkcionalitás Az élő emberi szervezettel való kölcsönhatás biokompatibilitás (gyulladás, csontfelszívódás, metallózis) aktív biológiai környezet
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
Járműelemek. Rugók. 1 / 27 Fólia
Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti
A töréssel szembeni ellenállás vizsgálata
A töréssel szembeni ellenállás vizsgálata 1 Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. 2 Szívós vagy képlékeny anyag Az anyag törését a csúsztatófeszültségek
5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás.
MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. KÉSZÜLT FERNEZELYI SÁNDOR EGYETEMI TANÁR ELŐADÁSI JEGYZETEI ÉS AZ INTERNETEN ELÉRHETŐ MÁS ANYAGOK
Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!
Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási
5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék
MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak
Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.
1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk
Fogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
A.2. Acélszerkezetek határállapotai
A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)
Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése
Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Tóth László, Rózsahegyi Péter Bay Zoltán Alkalmazott Kutatási Közalapítvány Logisztikai és Gyártástechnikai Intézet Bevezetés A mérnöki
ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ
Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
A szerkezeti anyagok tulajdonságai és azok vizsgálata
A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége
KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat)
KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) Kötések FUNKCIÓJA: Erő vagy nyomaték vezetése relatív nyugalomban lévő szerkezeti elemek között. OSZTÁLYOZÁSUK: Fizikai hatáselv szerint: Erővel záró
5.1. ábra. Ábra a 36A-2 feladathoz
5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o
Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai)
Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok (Erőművi berendezések élettartam számításának alapjai) Bevezetés. Az erőművek feladata a mindenkori fogyasztói igényeknek megfelelő
Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar
Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Élettartam számítás a helyi feszültségnyúlás viszonyok modellezése alapján
POLIMERTECHNIKA Laboratóriumi gyakorlat
MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:
Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.
Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív
Előadó: Érseki Csaba http://ersekicsaba.hu
Előadó: Érseki Csaba http://ersekicsaba.hu Extrudálás, mint kiinduló technológia Flakonfúvás Fóliafúvás Lemez extrudálás Profil extrudálás Csőszerszám* - Széles résű szerszám* - Egyedi szerszámok** * -
Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!
1 Lövés csúzlival Az [ 1 ] munkában találtuk az alábbi feladatot 1. ábra. A feladat Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Rugalmas állandók mérése
Rugalmas állandók mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. április 23. (hétfő délelőtti csoport) 1. Young-modulus mérése behajlásból 1.1. A mérés menete A mérés elméleti háttere megtalálható a jegyzetben
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén
Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
Fogorvosi anyagtan fizikai alapjai 8. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
Fogorvosi anyagtan fizikai alapjai 7.
Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 2. Kiemelt témák: Szilárdság, rugalmasság, képlékenység és szívósság összefüggései A képlékeny alakváltozás mechanizmusa kristályokban és
Fogorvosi anyagtan fizikai alapjai 7. Képlékeny viselkedés. Terhelési diagram. Mechanikai tulajdonságok 2. s sz (Pa) Tankönyv fejezetei: 16-17
rugalmas B mn 1. A rá ható erő következtében megváltozott alakját a hatás megszűntével visszanyerő. Vmihez hozzáütődve róla visszapattanó. merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát,
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
1. Ütvehajlító vizsgálat
1. Ütvehajlító vizsgálat Ütvehajlító vizsgálat segítségével megvizsgálhatjuk, hogy az adott körülmények között dinamikus igénybevétel hatására hogyan viselkedik az agyagunk. A körülményektől függően egy
1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók.
1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 18-29 oldalain található tananyagát! Tanulmányozza át a segédlet 8.2. és 8.3. fejezeteiben lévı kidolgozott feladatait,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
A beton kúszása és ernyedése
A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág
KÉPLÉKENYALAKÍTÁS ELMÉLET
KÉPLÉKENYALAKÍTÁS ELMÉLET KOHÓMÉRNÖK MESTERKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ANYAGTUDOMÁNYI INTÉZET Miskolc, 2008. 1. TANTÁRGYLEÍRÁS
Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető
Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal
Ütőmunka meghatározása acél próbatesten, Charpy-kalapáccsal, amely ingás ütő-hajlítómű (Charpyinga) Dr. Kausay Tibor
Ütőmunka meghatározása acél próbatesten, Charpy-kalapáccsal, amely ingás ütő-hajlítómű (Charpyinga) Dr. Kausay Tibor Dr. Kausay Tibor 1 Charpy-kalapács, 10 m kp = 100 J legnagyobb ütőenergiával A vizsgálatot
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika
Dunaújvárosi Főiskola Anyagtudományi és Gépészeti Intézet Mérnöki alapismeretek és biztonságtechnika Mechanikai anyagvizsgálat 2. Dr. Palotás Béla palotasb@mail.duf.hu Készült: Dr. Krállics György (BME,
tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.
Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például
Gyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete
KERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
Függvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)
Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
Tranziens jelenségek rövid összefoglalás
Tranziens jelenségek rövid összefoglalás Átmenet alakul ki akkor, ha van energiatároló (kapacitás vagy induktivitás) a rendszerben, mert ezeken a feszültség vagy áram nem jelenik meg azonnal, mint az ohmos
A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű
A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =
ERŐVEL ZÁRÓ KÖTÉSEK (Vázlat)
ERŐVEL ZÁRÓ KÖTÉSEK (Vázlat) Erővel záró nyomatékkötések Hatáselve: a kapcsolódó felületre merőleges rugalmas szorítás hatására a felület érintőjének irányába ható terheléssel ellentétes irányban ébredő
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
Rugalmasan ágyazott gerenda. Szép János
Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok
12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-
GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK
GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI TÉMAKÖRÖK Preisz Csaba mérnök-tanár Műszaki mechanika Statikai alapfogalmak - Erőrendszer fogalma - Vektorokkal végezhető alapműveleteket (erők felbontása,
1. A Hilbert féle axiómarendszer
{Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
Csvezetéki hibák értékelésének fejldése
Csvezetéki hibák értékelésének fejldése Dr. Nagy Gyula VIII. Országos Törésmechanikai Szeminárium Bevezetés Az üzemelő vezetékeken nagyszámú hiba, eltérés fordul elő. A korábbi, kivitelezésnél alkalmazott
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály
TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz
Toronymerevítık mechanikai szempontból
Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára
4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról
Reológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
IWM VERB az első magyar nyelvű törésmechanikai szoftver
IWM VERB az első magyar nyelvű törésmechanikai szoftver Lenkeyné Biró Gyöngyvér, Ludvik Hodulak, Igor Varfolomeyev Vázlat Repedésszerű hibák értékelési módszerei Európai törekvések (SINTAP és FITNET projektek)
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
2. Tantermi Gyakorlat A szerkezeti anyagok tulajdonságai és azok vizsgálata Nyomóvizsgálat, hajlítóvizsgálat, keménységmérés
SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat 2. Tantermi Gyakorlat A szerkezeti anyagok tulajdonságai és azok vizsgálata Nyomóvizsgálat,
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
A szerkezeti anyagok tulajdonságai és azok vizsgálata
A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minőség, élettartam A termék minősége
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.
Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.
Lengyelné Dr. Szilágyi Szilvia április 7.
ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:
Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén
Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert
Leggyakoribb fa rácsos tartó kialakítások
Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Jármű- és hajtáselemek I. (KOJHA 156) Hegesztés kisfeladat (A típus) Járműelemek és Hajtások Tanszék Ssz.: A/... Név:.........................................
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Vasúti teherkocsi tömbkerekek hőterhelése és törésmechanikája
JUHÁSZ Gábor István, OROSZVÁRY László BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gép- és Terméktervezés Tanszék Vasúti teherkocsi tömbkerekek hőterhelése és törésmechanikája XVII. econ Konferencia
GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A