Kvantumstatisztikus korrelációk a nagyenergiás fizikában. Csanád Máté ELTE Atomfizikai Tanszék április 28.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kvantumstatisztikus korrelációk a nagyenergiás fizikában. Csanád Máté ELTE Atomfizikai Tanszék április 28."

Átírás

1 Kvantumstatisztikus korrelációk a nagyenergiás fizikában Csanád Máté ELTE Atomfizikai Tanszék április 28.

2 Az előadás vázlata Egyfotonos interferencia és a HBT-effektus A kvantumfizika alapjai Kvantumstatisztika, Bose Einstein-korrelációk Femtoszkópia Alkalmazás: nagyenergiás nehézion-ütközések Kísérleti technikák Csanád Máté 2/46

3 Mikroszkópia és hullámhossz Hullám + objektum = interferencia, ha λ méretskála A fény hullámhossza nm között van: ennél kisebb tárgyat nem láthatunk vele (1μm = 10-6 m, mikroszkóp) Elektronmikroszkóp: nanoszkóp 1 nm = 10-9 m = 10 Å felbontás Biológiai struktúrák felbontása Atomok mérete: kb m Atomi erő mikroszkóp! Atommag: 1 fm = m Femtoszkóp? Csanád Máté 3/46

4 Egyfotonos interferencia Mi történik, ha a kétrés-kísérlet forrása nagyon gyenge? Egyszerre csak egy foton érkezik résekre Ez a legkisebb energiacsomag, nem oszolhat két részre! Lesz interferencia? Igen, de fokozatosan jelenik csak meg A foton önmagával interferál? A két lehetőség interferál önmagával! Csanád Máté 4/46

5 Egy meglepő felfedezés: a HBT-korreláció Rádiócsillagászat: Jansky, 1933, furcsa 24 órás oszcilláció; a csillagok is sugároznak a rádióhullámú tartományban! R. H. Brown: rádióhullámú távcsővel vizsgálta a Szíriuszt R. Q. Twiss matematikust kérte fel a kísérlet hátterének közös kidolgozására Furcsa korrelációt talált az eredményekben Csanád Máté 5/46

6 Mit jelent az, hogy korreláció? Hallgatóság, magasságok gyakorisága N(h) Magasságkülönbségek: N Δh = N h N h + Δh, átlag h-ra magasság [cm] Kivéve, ha sok az egypetéjű ikerpár: váratlanul sok egyforma magasság növekedés a nulla pontban! Ekkor N 0 > N h N h Korreláció: elárulja az ikerpárok számát! magasságkülönbség [cm] magasságkülönbség [cm] Csanád Máté 6/46

7 korreláció erőssége A HBT-korreláció R. H. Brown megfigyelése: a két detektor kis távolsága esetén nagy a korreláció a két detektor között Együttes intenzitás túl gyakori : I(A, B) > I A I(B) Mi a korreláció oka? Interferencia? Két különböző foton között sosem lehet interferencia P. A. M. Dirac, A kvantummechanika alapjai Miért csökken le a korreláció a detektorok távolságával? d távolság detektortávolság Csanád Máté 7/46

8 korreláció erőssége A HBT-effektus klasszikus leírása A detektorban az átlagos intenzitás I A, a és b forrásból B detektorban I B intenzitás A forrás méretétől függően sokféle geometria lehetséges Az átlagos együttes intenzitás: I A I B Mindez nagyon leegyszerűsítő tárgyalás, de kb. működik Brown mérése: C Δ = I AI B = cos Δ, ahol I A I B 2 Δ = krd C Δ 1, ha d R L, mérés: = cos Δ L C 0 1 A pontszerűnek tűnő forrás (csillag) mérete mérhető: 30 nanoradián Nanoszkóp (radiánban) De mi van a fotonokkal? R a b korreláció! ~1/R detektortávolság d d Csanád Máté 8/46

9 A HBT-effektus klasszikus alapokon A két pontforrásból jövő gömbhullám adott helyen: 1 A a r = r r a αeik r r a +iφ a a R b Az A detektorba érkező teljes hullám: d d A r A = 1 L αeikr aa+iφ a + βe ikr ba+iφ b Az intenzitás itt: I A = A r A 2 = 1 L 2 α 2 + β 2 + α βe ik(r ba r aa )+i Φ b Φ a + c. c. Ennek időátlagában kaotikus (random fázisú, termikus) sugárzás esetén eltűnnek a fázisok I A = I B = 1 L 2 α 2 + β 2 Csanád Máté 9/46

10 A HBT-effektus klasszikus alapokon Az intenzitások szorzatának időátlaga viszont mást mutat: I A I B = A r A 2 A r B 2 Itt A r A 2 = 1 L 2 α 2 + β 2 + α βe ik(r ba r aa )+i Φ b Φ a + c. c. miatt a fázisok egy-egy tagban kiesnek Végül az alábbi adódik: I A I B = 1 L 4 α 2 + β L 4 α 2 β 2 cos k(r aa r ba + r ab r bb ) Azaz innen α = β és d, R L esetén C AB Δ = I AI B = krd cos I A I B 2 L R AB Δ = C AB Δ 1 C AB 0 1 = cos krd L R a b d d Csanád Máté 10/46

11 A HBT-effektus klasszikus alapokon (0, R) a R b (0,0) L A B L, d L, R + d 2 R d 2 Ԧr aa = Ԧr ab = Ԧr ba = Ԧr bb = R d L, 2 R + d L, 2 +R + d L, 2 +R d L, 2 r aa r ba + r ab r bb = 2 L 2 + R + d L 2 + R d 2 4 Rd L C AB Δ = I AI B = krd cos I A I B 2 L R AB Δ = C AB Δ 1 C AB 0 1 = cos krd L Csanád Máté 11/46

12 A tudatlanság néha áldás Hogy két foton különböző detektorokba való érkezése korrelált lehet: meglepően sokak számára ez eretnek, sőt, nyilvánvalóan abszurd ötlet volt. Félreérthetetlen formában közölték ezt velünk, személyesen, levélben, nyomtatásban; és laborkísérletek publikációján keresztül mutatták meg, hogy tévedünk. Messze voltam attól, hogy ki tudjam számolni, a kísérletünk elég érzékeny lehet-e egy csillag vizsgálatára. Ehhez ismernem kellett volna a fotonokat, és mérnökként fizikai tanulmányaim jóval a kvantummechanika előtt megálltak. Még az is lehet, hogy különben, sok fizikushoz hasonlóan arra jutottam volna, hogy a dolog nem működhet a tudatlanság néha áldás a tudományban. Boffin: Személyes történet a radar, a rádiócsillagászat és a kvantumoptika korai időszakából (R. H. Brown) Csanád Máté 12/46

13 A tudatlanság néha áldás Érdekes megnézni az elektron töltésére vonatkozó, Millikant követő méréseket. Ha az idő függvényében ábrázoljuk ezeket, látjuk, hogy az első kicsit nagyobb Millikan értékénél, a következő még nagyobb, és így tovább, míg egy bizonyos, Millikan értékénél nagyobb számnál meg nem állapodnak. Miért nem mérték egyből helyesen az értéket?... Amikor a kísérlet vezetője Millikanénél lényegesen nagyobb számot kapott, azt gondolta, biztos valamit rosszul csinált és megkereste ennek okát. Ha Millikanhez közeli értéket talált, akkor nem olyan alaposan nézte át a kísérletet. Tréfál, Feynman úr? Egy mindenre kíváncsi pasas kalandjai (R. P. Feynman) Csanád Máté 13/46

14 Az eddigiek összegzése A fény elektromágneses hullám, intenzitása (erőssége) a hullámzó tér négyzetével arányos A fény ugyanakkor fotonokból is áll Nem a fotonok interferálnak, hanem a lehetőségek, azaz a lehetséges útvonalak R. H. Brown megfigyelése: a csillag különböző pontjaiból érkező fény (rádióhullám) interferál A fény-távcsőben pontszerű csillag mérete mérhető! Ezek különböző fotonok! Hogyan lehetséges az interferencia? Csanád Máté 14/46

15 A részecskék hullámtermészete Ha a fény lehet részecske, akkor az elektron is lehet hullám? Igen, sőt, az atomok, molekulák is! Egymolekula-interferencia szerves makromolekulákal (ftálocianin-származék) Kétrés-kísérlet C 60 molekulákkal: Csanád Máté 15/46

16 A kvantumfizika alapjai Mi felel meg a elektromágneses hullám intenzitásának? Észlelési valószínűség, avagy megtalálási valószínűség Mi hullámzik? Hát a hullámfüggvény! A részecske egyúttal Ψ x hullám, k hullámszámmal Erre k = p/ħ összefüggés igaz (ahol p az impulzus) Így P x = Ψ x 2 a részecske megtalálási valószínűsége Egy részecske bárhova becsapódhat Sok részecske már követi a P(x) eloszlást Ténylegesen észlelhető is Hogy Ψ x kérdése micsoda? Interpretáció Csanád Máté 16/46

17 A részecskék megkülönböztethetlensége Öt golyóból hányféleképpen választhatunk kettőt? = 5! = 10 a lehetőségek száma 2!3! Mi van, ha a golyók helyett részecskékről beszélünk? Megkülönböztethetetlenek! Csak egy lehetőség! Kétrészecske hullámfüggvény szimmetrizálandó Két részecske A és B állapotban: Ψ AB 12 = 1 2 Ψ 1 A Ψ 2 B + Ψ 1 B Ψ 2 A Csanád Máté 17/46

18 A kvantumstatisztika születése S. N. Bose, India, 1922: egyetemi előadása során azt akarta bemutatni, hogy a Planck-féle kvantummechanika ellentmond a megfigyeléseknek Egyszerű statisztikai hibát vétett az órán Ezzel azonban egyeztek az adatok! Bose-féle statisztika? Senki nem hitt neki Einstein igen, közös cikkek 1924-ben Bose Einstein-statisztika! A fotonok felcserélhetőek Megtalálási valószínűségük szimmetrikus Csanád Máté 18/46

19 A HBT-effektus kvantumos magyarázata Szimmetrizált hullámfüggvény : mindegy, hogy a A és b B vagy a B és b A Ezért a fotonok a vártnál jobban szeretnek egy irányba menni Konkrétan e ikx alakú hullámfüggvényekből megkapható a két részecske együttes valószínűsége a két detektorban: P A, B P A P(B) = 1 + cos k Rd L Az eredmény ugyanaz, mint a klasszikus esetben A korreláció szélessége a forrás méretével ford. arányos Bose Einstein-korreláció! Csanád Máté 19/46

20 HBT-effektus két kvantumos forrás esetén Egyrészecske hullámfüggvények Ψ B b = e ikr bb+iφ b és Ψ A a = e ikr aa+iφ a Kétrészecske hullámfüggvény: Ψ AB = 1 2 Ψ A a Ψ B b + Ψ B a Ψ A b a megkülönböztethetetlenség miatt Innen az egyre normált egyrészecske h.fv.-ek miatt P A, B C AB = P A P(B) = 1 Ψ a 2 A Ψ b B + Ψ a b B Ψ 2 A ahol a a termikus, azaz a fázisokra vett átlag Innen a klasszikus esethez hasonlóan az eredmény C AB = 1 + cos k r aa r ba + r ab r bb ha d R L 1 + cos k Rd L Csanád Máté 20/46

21 Bose Einstein-korreláció, kiterjedt források Kiterjedt, S(r) eloszlású forrás esetén mi történik? Az előzőekhez hasonlóan Ψ r = e ikr, Ψ 2 r 1, r 2 = 1 2 eik 1r 1 e ik 2r 2 + e ik 1r 2 e ik 2r 1 N 1 k = S r, k Ψ r 2 d 4 r N 2 k 1, k 2 = S r 1, k 1 S r 2, k 2 Ψ 2 r 1, r 2 2 d 4 r 1 d 4 r 2 C 2 k 1, k 2 = N 2 k 1,k 2 S 1 + ሚ q,k N 1 k 1 N 1 k 2 ሚS 0,K ahol q = k 1 k 2, K = (k 1 +k 2 )/2 Egyszerűbben: C q = 1 + ሚS q 2, ahol ሚS q = S r e iqr Invertálható (?), azaz C q -ból S(r) rekonstuálható Közelítések: nincs más kölcsönhatás, nincsenek sokrészecske korrelációk, termikus emisszió, 2 Csanád Máté 21/46

22 Bose Einstein-korrelációk és femtoszkópia HBT-jelenség: forrás alakja korrelációs függvény C k = 1 + ሚS k 2 Fourier-transzformált és eredeti függvény: egyértelmű kapcsolat! A korreláció elárulja a forrás térbeli alakját! Egyfajta mikroszkópként működik, hiszen térbeli alak rekonstruálható Akármilyen mérettartományban: teraszkóp,, femtoszkóp Sőt, időben változó források esetén az időbeli struktúra is kideríthető! Nagyon gyors változások észlelhetőek Csanád Máté 22/46

23 Az eddigiek összegzése Mindennek van részecske- és hullámtulajdonsága A kvantumfizikában a fotonok megkülönböztethetetlenek Emiatt két foton hullámfüggvénye szimmetrikus Ebből adódik a Bose Einstein-korreláció A korreláció a forrás Fourier-transzformáltja A forrás alakja vizsgálható! Bozonok: Bose Einstein-korreláció Fermionok: Fermi Dirac-antikorreláció Csanád Máté 23/46

24 Ősrobbanás a laborban Az Univerzum korszakai: Csillagok Atomok Atommagok Nukleonok Elemi részek? Hogyan vizsgáljuk? Mini ősrobbanás Nehéz atommagok nagyenergiás ütközése Csanád Máté 24/46

25 Nehéz magok nagyenergiás ütközései Kezdetben extrém magas hőmérséklet, Kelvin! Protonok, neutronok megolvadnak, Ősrobbanás utáni állapot jöhet újra létre Kvarkanyag kiszabadul, kvark-gluon-plazma formájában Ahogy lehűl, megfagy, igen rövid idő alatt A megfagyott részecskéket észleljük Csanád Máté 25/46

26 Mit észlelünk mindebből? Csak a szétrepülő részecskéket! Csanád Máté 26/46

27 Femtoszkópia a nagyenergiás fizikában Nagyenergiás fizika egyik fő célja: a hatalmas részecskegyorsítókban létrehozott mini ősrobbanásban keletkező anyag megismerése Hogyan férhetünk hozzá a keletkező anyag térbeli és időbeli struktúrájához, ha ilyen gyorsan megfagy? A kifagyott bozonok (pionok) HBT-korrelációi segítségével! Pionkeltés térbeli eloszlása: korrelációs függvényből hozzáférhető Lássuk, hogy néz ki mindez a valóságban Csanád Máté 27/46

28 Hogyan mérjük a korrelációs függvényt? Párok impulzuseloszlása: sok effektus keveredése Detektorok akceptanciája Részecskék impulzuseloszlása, stb Eseménykeverés: valódi és kevert párok eloszlása, A(q) és B(q) Kevert párok: csak kvantumstatisztikai korreláció nincs C q = A(q)/B(q) Korrelácós fv. Csanád Máté 28/46

29 A mérés kihívásai: splitting/merging Nyomkövetés (lásd Siklér Ferenc előadása): nyomok összekötése egy track rekonstruálásához Merging: közeli részecskék 1 trackként rekonstruálódnak Splitting: egy részecske 2 trackként rekonstruálódik Térbeli páreloszlásokon vágások alkalmazás Egy tracking detektor Egy PID detektor Csanád Máté 29/46

30 A mérés kihívásai: háttérkeverés Alapötlet: vegyünk N pool háttéreseményt adott eseményosztályban (pl centralitás és Zvertex szerint) Legyen egy eseményünk N pionnal A módszer: párosítsunk minden piont az háttéresemény-pool minden pionjával B módszer: párosítsunk minden piont random eseményekből vett N random pionnal C módszer: készítsünk egyetlen kevert eseményt N random, különböző eseményből vett pionnal N pool N pool A módszer π π π π π π π π π π π π π π π π B módszer π π π π π π π π N pool π π π π π π π π C módszer π π π π π π π π π π π π π π π π π π π π π π π π π 30

31 Mi van a fenti, egyszerűsített képen túl? Néhány jelenség bonyolítja az előzőekben bemutatott egyszerű képet Nem statikus forrás: bonyult forrás és korrelációs fv. Végállapotbeli kölcsönhatások: Vizsgált bozonok közti erős kölcsönhatás Töltött bozonok közti elektromágneses kölcsönhatás Részecskék egy része rezonanciabomlásból keletkezik Jó néhány 50 fm/c-nél később elbomló részecske Ezek bomlástermékei máshogy korrelálnak Koordinátarendszer szerepe 1D vagy 3D impulzus függvényében mérjük C k -t? Mindezekből sok plusz információ nyerhető Csanád Máté 31/46

32 Egy realisztikus forrásfüggvény Legyen a forrás S(r)~e r 2 x 2R2 r 2 y x 2R2 r z 2 y 2R2 z Ebből a Fourier-trafóval C k = 1 + e k x 2 R x 2 k y 2 R y 2 k z 2 R z 2 Általánosabb eset, v r sebességmező, T(r) hőmérsékleti eloszlás és n r sűrűség esetén: mv r p 2 S(r)~n(r)e 2mT(r) R Legyen v i = ሶ i r R i, n = n 0 e i r 2 x 2R2 r 2 y x 2R2 r z 2 y 2R2 z Ekkor C k = 1 + e k x 2 R x 2 k y 2 R y 2 k z 2 R z 2, ahol, T = T 0 R x 0 R y 0 R z 0 R x R y R z R i 2 = R i m T 0 ሶ R i 2 1 (azaz nem a geometria méret) Amit valójában mérünk: homogenitási hossz 1/κ Csanád Máté 32/46

33 Végállapoti kölcsönhatások A kölcsönhatások elrontják az egyszerű C k = 1 + ሚS k 2 képet Töltött pionok: elég a Coulomb-kölcsönhatást venni Síkhullámok helyett oldjuk meg a Schr.-egyenletet, V r = α r Egyszerű közelítés, retardáció, átlagtér stb. nélkül Coulomb-hullámfüggvényt szimmetrizáljuk Ezzel C 2 k 1, k 2 = S r 1, k 1 S r 2, k 2 Ψ 2 C r 1, r 2 2 d 4 r 1 d 4 r 2 Bonyolult transzformáció, nehezen invertálható (lásd még László András unfolding előadását) Gyakran alkalmazott módszer: C Bose Einstein q = K q C mért q, ahol K q = S r 1,k 1 S r 2,k 2 Ψ 2 0 r 1,r 2 2 d 4 r 1 d 4 r 2 S r 1,k 1 S r 2,k 2 Ψ 2 C r 1,r 2 2 d 4 r 1 d 4 r 2 Feltevés a forrásra, Coulomb-kcsh leválasztása Csanád Máté 33/46

34 Rezonanciabomlások Rezonancia-pionok: S r = S core r + S halo r Ekkor ሚS q = ሚS core q + ሚS halo q Core: primordiális pionok, 5-10 fm méretű regióból jönnek Halo: rezonanciabomlásokból, >50 fm távolságból Fourier: inverz szélesség, 50 fm 4 MeV/c (ħ = 197 MeV fm/c) ሚS halo q nagyon keskeny, gyakorlatilag nem mérhető Detektorok impuzusfelbontása rosszabb ennél Mérhető impulzusokra C q = 1 + λ ሚS q 2, ahol λ = S core S core Csanád Máté 34/46

35 Érdekes eredmények a rezonancia-pionokkal Rezonancia-pionok pl η mezonból Királis szimmetria forró kvarkanyagban helyreállhat Ekkor az η tömege lecsökken Ebből sok pion keletkezik rezonanciabomlással A mag/glória arány lecsökken Lyuk a λ(m T ) függésben Közegbeli tömegmódosulás? Csanád Máté 35/46

36 Korrelációs függvény illesztése, 1D példa Raw data: nyers korrelációs fv. Coulomb factor: korrekció a Coulombköncsönhatásra Illesztett paraméterek: a: alak l: erősség R: skála N,e: háttér Csanád Máté 36/46

37 side Az out-side-long rendszer, HBT sugarak 1D változóban többnyire: q inv = q 2 = k 1 k vagy 4D információ kinyerhető? Általánosságban: C 2 q = 1 + λe R μν 2 q μ q ν Pár-koordinátarendszer! Out: a pár átlagos transzverz imp. iránya Long: nyaláb-irány Side: mindkettőre merőleges Ekkor az átlagos side impulzus nulla, K side = 0 Tipikusan LCMS-ben (longitudinally comoving system) Nulla átlagos long. impulzus, i.e. K μ = (M t, K t, 0,0) Ekkor: q 0 = m 1t 2 2 m 2t 2M t, q out = p 1t 2 2 p 2t 2K t, q side = p 2xp 1y p 1x p 2y, q K 0 = E 2p 1z E 1 p 2z t M t Tömeghéjfeltétel: q μ K μ = 0 q 0 = K t q M out = β t q out t Az R 2 μν mátrixból R out, R side, R long nem nulla: HBT sugarak Szögfüggés vizsgálata: R os is megjelenik Csanád Máté 37/46

38 Példa 3D korrelációs függvények C q out, q side, q long mérése, 3D illesztés, sugarak 3D-ben Csanád Máté 38/46

39 out A kibocsátás időtartama Időfüggő forrás, Δτ kibocsátási időtartam S(r, τ)~e τ τ 0 2Δτ 2 Jelentése: kifagyás τ 0 sajátidő környékén Egyszerű hidrodinamikai eredmény: 2 R out = R2 1+ m + β t T0 u t 2 t 2 Δτ 2 2 side 2 R side = R2 1+ m t T0 u t 2 Skálázás m t változóban RHIC: out és side irányú sugarak kb megegyeznek! Csanád Máté 39/46

40 Elsőrendű fázisátalakulás kizárva! Out-side különbség: pionkeletkezés időtartama Elsőrendű fázisátalakulás: Out» Side Hidrodinamikai jóslat: Out Side ~50 modell rossz: HBT rejtély Kísérlet: Out Side Azonnali kifagyás Csanád Máté 40/46

41 A kvark-hadron fázistérkép Maganyag vs. kvarkanyag: átalakulás hol és miként? Csanád Máté 41/46

42 Másodrendű fázisátalakulás? Másodrendű fázisátalakulások esetén: kritikus exponensek A kritikus pont környékén Fajhő ~ ((T-T c )/T c ) -a Szuszepcibilitás ~ ((T-T c )/T c ) -g Korrelációs hossz ~ ((T-T c )/T c ) -n A kritikus pontban Térbeli korrelációs függvény ~ r -d+2-h Ginzburg-Landau: a=0, g=1, n=0.5, h=0 QCD 3D Ising modell, h=0.05 Random tér hozzáadása esetén: h=0.5 Ez az exponens a térbeli eloszlás alakjától függ: mérhető! Kritikus pontban az alak-kitevő 0.5 Csanád Máté 42/46

43 A kritikus pont keresése Kétrészecske korreláció (térbeli) Újraszórás anomális diffúzió, Általánosított határeloszlás-tétel Nem Gauss hanem Lévy eloszlás! Lévy(R,a): Fourier[exp(- Rq a )] Korrelációs exponens = Lévy index α Másodrendű fázisátalakulás: α = 0.5 Rács-QCD: nagy energián cross-over Alacsony energián α mérendő! Csanád Máté 43/46

44 A kritikus pont keresése Lévy HBT-vel Lévy exponens α: α = 2 (Gauss), α = 1 (Cauchy), α = 0.5 (CEP) Mérések sok energián folyamatban Legközelebb a Cauchy-hoz Csanád Máté 44/46

45 A kritikus pont keresése Ugyanakkor a kritikus pontban más, nem-monoton viselkedések is felfedezhetőek Out-side különbség ill. side mínusz átlag alakulása pl: Kritikus pont s NN = 40 TeV környékén? Csanád Máté 45/46

46 A HBT sugarak részecske- és impulzusfüggése Transzverz tömeg skálázás jól látható Enyhe eltérés kaon- és pionpárok között Csanád Máté 46/46

47 A HBT sugarak méretfüggés Résztvevő nukleonok száma: rendszer kezdeti térfogata HBT sugarak: kezdeti lineáris mérettel skáláznak Csanád Máté 47/46

48 A HBT sugarak méretfüggése Vezessük be a kezdeti nukleoneloszlás σ x,y szélességeit Kezdeti transzverz méret: 1 തR 2 = 1 σ x σ y 2 Ezzel való skálázás jobb: HBT sugarak erre érzékenyebbek Csanád Máté 48/46

49 Összegzés Brown és Twiss: interferenciajelenség Bose és Einstein: kvantumstatisztika HBT effektus: bozonok szimmetriája miatt korreláció Fermionok: Fermi Dirac-statisztika, antikorreláció Korreláció forrás alakja; femtoszkópia Mini ősrobbanás feltérképezhető méter méret mp élettartam mp kifagyási idő Csanád Máté 49/46

50 Köszönjük a figyelmet! A témában diákok jelentkezését várjuk az Atomfizikai tanszéken Csanád Máté 50/46

A tudatlanság néha áldás avagy mekkora a laborban létrehozott ősrobbanás

A tudatlanság néha áldás avagy mekkora a laborban létrehozott ősrobbanás A tudatlanság néha áldás avagy mekkora a laborban létrehozott ősrobbanás Csanád Máté ELTE Atomfizikai Tanszék http://csanad.web.elte.hu/ 2014. december 11. Az előadás vázlata A fény természete: hullám

Részletesebben

Bose-Einstein korrelációk a nagyenergiás nehézion-zikában

Bose-Einstein korrelációk a nagyenergiás nehézion-zikában Bose-Einstein korrelációk a nagyenergiás nehézion-zikában Kísérleti mag- és részecskezikai szeminárium el adás Kincses Dániel Fizika BSc III. ELTE TTK 2014.10.16. Kincses Dániel (ELTE TTK) Bose-Einstein

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

LÉVY- FEMTOSZKÓPIA A NAGYENERGIÁS FIZIKÁBAN

LÉVY- FEMTOSZKÓPIA A NAGYENERGIÁS FIZIKÁBAN LÉVY- FEMTOSZKÓPIA A NAGYENERGIÁS FIZIKÁBAN CSANÁD MÁTÉ, ELTE ATOMFIZIKAI TANSZÉK MAGFIZIKUS TALÁLKOZÓ JÁVORKÚT, 2018. AUGUSZTUS 30. 2/39 AZ ELŐADÁS VÁZLATA Nagyenergiás fizika: ősrobbanás a laborban A

Részletesebben

Kurgyis Bálint. Eötvös Loránd Tudományegyetem, Budapest ELTE,

Kurgyis Bálint. Eötvös Loránd Tudományegyetem, Budapest ELTE, Háromdimenziós Bose Einsteinkorrelációk mérése a PHENIX kísérletnél Kurgyis Bálint Eötvös Loránd Tudományegyetem, Budapest Kísérleti mag és részecskefizika szeminárium ELTE, 018.1.17. A korai Univerzum

Részletesebben

A v n harmonikusok nehézion-ütközésekben

A v n harmonikusok nehézion-ütközésekben A v n harmonikusok nehézion-ütközésekben Bagoly Attila ELTE TTK Kísérleti mag- és részecskefizikai szeminárium 2014. november 27. Bagoly Attila (ELTE TTK) A v n harmonikusok nehézion-ütközésekben 2014.

Részletesebben

Rádl Attila december 11. Rádl Attila Spalláció december / 21

Rádl Attila december 11. Rádl Attila Spalláció december / 21 Spalláció Rádl Attila 2018. december 11. Rádl Attila Spalláció 2018. december 11. 1 / 21 Definíció Atommagok nagyenergiás részecskével történő ütközése során másodlagos részecskéket létrehozó rugalmatlan

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény

Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Egzakt hidrodinamikai megoldások alkalmazása a nehézionfizikai fenomenológiában néhány új eredmény Csanád Máté, Nagy Márton, Lőkös Sándor ELTE Atomfizikai Tanszék Magfizikus Találkozó Jávorkút 2012. szeptember

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja

NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja NA61/SHINE: Az erősen kölcsönható anyag fázisdiagramja László András Wigner Fizikai Kutatóintézet, Részecske- és Magfizikai Intézet 1 Kivonat Az erősen kölcsönható anyag és fázisai Megfigyelések a fázisszerkezettel

Részletesebben

Theory hungarian (Hungary)

Theory hungarian (Hungary) Q3-1 A Nagy Hadronütköztető (10 pont) Mielőtt elkezded a feladat megoldását, olvasd el a külön borítékban lévő általános utasításokat! Ez a feladat a CERN-ben működő részecskegyorsító, a Nagy Hadronütköztető

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz

Részletesebben

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.

Azonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban. Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

Részecske azonosítás kísérleti módszerei

Részecske azonosítás kísérleti módszerei Részecske azonosítás kísérleti módszerei Galgóczi Gábor Előadás vázlata A részecske azonosítás létjogosultsága Részecske azonosítás: Módszerek Detektorok ALICE-ból példa A részecskeazonosítás létjogosultsága

Részletesebben

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék

Axion sötét anyag. Katz Sándor. ELTE Elméleti Fizikai Tanszék Az axion mint sötét anyag ELTE Elméleti Fizikai Tanszék Borsányi Sz., Fodor Z., J. Günther, K-H. Kampert, T. Kawanai, Kovács T., S.W. Mages, Pásztor A., Pittler F., J. Redondo, A. Ringwald, Szabó K. Nature

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

KVANTUMMECHANIKA. a11.b-nek

KVANTUMMECHANIKA. a11.b-nek KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300

Részletesebben

Kétrészecske Bose Einstein-korrelációs függvények vizsgálata a STAR kísérletben

Kétrészecske Bose Einstein-korrelációs függvények vizsgálata a STAR kísérletben Kétrészecske Bose Einstein-korrelációs függvények vizsgálata a STAR kísérletben Pintér Roland László Fizika BSc III. Témavezetők: Csanád Máté, Kincses Dániel ELTE TTK Atomfizikai Tanszék 2018 Tudományos

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12

Dr. Berta Miklós. Széchenyi István Egyetem. Dr. Berta Miklós: Gravitációs hullámok / 12 Gravitációs hullámok Dr. Berta Miklós Széchenyi István Egyetem Fizika és Kémia Tanszék Dr. Berta Miklós: Gravitációs hullámok 2016. 4. 16 1 / 12 Mik is azok a gravitációs hullámok? Dr. Berta Miklós: Gravitációs

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

Háromdimenziós BoseEinstein-korrelációk nehézion-ütközésekben

Háromdimenziós BoseEinstein-korrelációk nehézion-ütközésekben Háromdimenziós BoseEinstein-korrelációk nehézion-ütközésekben Kurgyis Bálint Fizika BSc. III. Témavezet : Csanád Máté ELTE TTK Atomzikai Tanszék 2018. november 12. TUDOMÁNYOS DIÁKKÖRI DOLGOZAT Absztrakt

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Lévy-típusú Bose Einstein-korrelációk mérése az NA61/SHINE kísérletnél

Lévy-típusú Bose Einstein-korrelációk mérése az NA61/SHINE kísérletnél Lévy-típusú Bose Einstein-korrelációk mérése az NA61/SHINE kísérletnél Pórfy Barnabás Témavezetők: Csanád Máté, László András Eötvös Loránd Tudományegyetem 2018 Kivonat Univerzumunkat első mikromásodpercében

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Bevezetés a nehéz-ion fizikába

Bevezetés a nehéz-ion fizikába Bevezetés a nehéz-ion fizikába Zoltán Fodor KFKI RMKI CERN Zoltán Fodor Bevezetés a nehéz ion fizikába 2 A világmindenség fejlődése A Nagy Bummnál minden anyag egy pontban sűrűsödött össze, ami azután

Részletesebben

Részecskegyorsítókkal az Ősrobbanás nyomában

Részecskegyorsítókkal az Ősrobbanás nyomában Csanád Máté Részecskegyorsítókkal az Ősrobbanás nyomában Zrínyi Ilona Gimnázium Nyíregyháza, 2010. december 10. www.meetthescientist.hu 1 26 Az anyag szerkezete Atomok proton, neutrok, elektronok Elektron

Részletesebben

Két- és háromrészecske kvantumstatisztikus korrelációk a nagyenergiás fizikában Szakdolgozat

Két- és háromrészecske kvantumstatisztikus korrelációk a nagyenergiás fizikában Szakdolgozat Eötvös Loránd Tudományegyetem Természettudományi kar Két- és háromrészecske kvantumstatisztikus korrelációk a nagyenergiás fizikában Szakdolgozat Báskay János Fizika Bsc III Témavezető: Csanád Máté ELTE

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Erős terek leírása a Wigner-formalizmussal

Erős terek leírása a Wigner-formalizmussal Erős terek leírása a Wigner-formalizmussal Berényi Dániel 1, Varró Sándor 1, Vladimir Skokov 2, Lévai Péter 1 1, MTA Wigner FK, Budapest 2, RIKEN/BNL, Upton, USA Wigner 115 2017. November 15. Budapest

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Atommagok alapvető tulajdonságai

Atommagok alapvető tulajdonságai Atommagok alapvető tulajdonságai Mag és részecskefizika 5. előadás 017. március 17. Áttekintés Atommagok szerkezete a kvarkképben proton szerkezete, atommagok szerkezete, magerő Atommagok összetétele izotópok,

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Határtalan neutrínók

Határtalan neutrínók Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,

Részletesebben

JÁTSSZUNK RÉSZECSKEFIZIKÁT!

JÁTSSZUNK RÉSZECSKEFIZIKÁT! JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com

Részletesebben

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 4. (e) Kvantummechanika. Utolsó módosítás: december 3. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 4. (e) Kvantummechanika Utolsó módosítás: 2014. december 3. 1 A Klein-Gordon-egyenlet (1) A relativisztikus dinamikából a tömegnövekedésre és impulzusra vonatkozó

Részletesebben

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1

Gyorsítók. Veszprémi Viktor ATOMKI, Debrecen. Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by NKTH and OTKA (H07-C 74281) 2009. augusztus 17 Hungarian Teacher Program, CERN 1 Az anyag felépítése Részecskefizika kvark, lepton Erős, gyenge,

Részletesebben

Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben

Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben Eötvös Loránd Tudományegyetem Természettudományi Kar Diplomamunka Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben Kincses Dániel Fizikus MSc Témavezet : Csanád Máté ELTE

Részletesebben

Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok

Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet

Részletesebben

Részecske korrelációk kísérleti mérése Englert Dávid

Részecske korrelációk kísérleti mérése Englert Dávid Részecske korrelációk kísérleti mérése Englert Dávid ELTE szeminárium 2014. december 11. Motiváció nehézion ütközések, vn anizotrópia paraméter Koordináta térben lévő anizotrópia az azimuthális szögben

Részletesebben

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky-

egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- egyetemi állások a relativitáselmélet általánosítása (1915) napfogyatkozás (1919) az Einstein-mítosz (1920-tól) emigráció 1935: Einstein-Podolsky- Rosen cikk törekvés az egységes térelmélet létrehozására

Részletesebben

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír Mérést végezték: Márkus Bence Gábor Kálmán Dávid Kedd délelőtti csoport Mérés ideje: 05/15/2012 Beadás ideje: 05/26/2012 Érdemjegy: 1 1. A mérés rövid

Részletesebben

Abszolút és relatív aktivitás mérése

Abszolút és relatív aktivitás mérése Korszerű vizsgálati módszerek labor 8. mérés Abszolút és relatív aktivitás mérése Mérést végezte: Ugi Dávid B4VBAA Szak: Fizika Mérésvezető: Lökös Sándor Mérőtársak: Musza Alexandra Török Mátyás Mérés

Részletesebben

Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben

Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben Töltött részecske multiplicitás analízise 14 TeV-es p+p ütközésekben Veres Gábor, Krajczár Krisztián Tanszéki értekezlet, 2008.03.04 LHC, CMS LHC - Nagy Hadron Ütköztető, gyorsító a CERN-ben 5 nagy kísérlet:

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

A világegyetem elképzelt kialakulása.

A világegyetem elképzelt kialakulása. A világegyetem elképzelt kialakulása. Régi-régi kérdés: Mi volt előbb? A tyúk vagy a tojás? Talán ez a gondolat járhatott Georges Lamaitre (1894-1966) belga abbénak és fizikusnak a fejében, amikor kijelentette,

Részletesebben

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G.

Pósfay Péter. ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. A Naphoz hasonló tömegű csillagok A Napnál 4-8-szor nagyobb tömegű csillagok 8 naptömegnél nagyobb csillagok Vörös óriás Szupernóva

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

A legkisebb részecskék a világ legnagyobb gyorsítójában

A legkisebb részecskék a világ legnagyobb gyorsítójában A legkisebb részecskék a világ legnagyobb gyorsítójában Varga Dezső, ELTE Fiz. Int. Komplex Rendszerek Fizikája Tanszék AtomCsill 2010 november 18. Az ismert világ építőkövei: az elemi részecskék Elemi

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

Kísérlettervezés alapfogalmak

Kísérlettervezés alapfogalmak Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján

Részletesebben

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai

az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók

Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:

Részletesebben

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján

Szilárdtestek sávelmélete. Sávelmélet a szabadelektron-modell alapján Szilárdtestek sávelmélete Sávelmélet a szabadelektron-modell alapján A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra

Részletesebben

Folyadékszcintillációs spektroszkópia jegyz könyv

Folyadékszcintillációs spektroszkópia jegyz könyv Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Bevezetés a részecskefizikába Kölcsönhatások Az atommag felépítése Az atommag pozitív töltésű protonokból (p) és semleges neutronokból (n) áll. A protonok és neutronok kvarkokból + gluonokból állnak. A

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek

Atommodellek. Az atom szerkezete. Atommodellek. Atommodellek. Atommodellek, A Rutherford-kísérlet. Atommodellek Démokritosz: a világot homogén szubsztanciájú oszthatatlan részecskék, atomok és a közöttük lévı őr alkotja. Az atom szerkezete Egy atommodellt akkor fogadunk el érvényesnek, ha megmagyarázza a tapasztalati

Részletesebben

Részecskefizika kérdések

Részecskefizika kérdések Részecskefizika kérdések Hogyan ad a Higgs- tér tömeget a Higgs- bozonnak? Milyen távla= következménye lesznek annak, ha bebizonyosodik a Higgs- bozon létezése? Egyszerre létezhet- e a H- bozon és a H-

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK

Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Egy kvantumradír-kísérlet

Egy kvantumradír-kísérlet Egy kvantumradír-kísérlet "Részecske vagyok, vagy hullám, Élek-e vagy ez a hullám? Megmondanám, hogyha tudnám, De mindent én sem tudhatok." Részlet a Fizikus Indulóból Tartalmi kivonat Bevezetés Feynman

Részletesebben

Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben

Lévy-típusú kétrészecske HBT-korrelációs függvények mérése a PHENIX kísérletben Eötvös Loránd Tudományegyetem Természettudományi Kar Tudományos Diákköri Dolgozat Lévytípusú kétrészecske HBTkorrelációs függvények mérése a PHENIX kísérletben Kincses Dániel Fizikus MSc Témavezet k: Csanád

Részletesebben

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens

Kutatóegyetemi Kiválósági Központ 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Kutatóegyetemi 1. Szuperlézer alprogram: lézerek fejlesztése, alkalmazásai felkészülés az ELI-re Dr. Varjú Katalin egyetemi docens Lézer = speciális fény koherens (fázisban) kicsi a divergenciája (irányított)

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

17. Diffúzió vizsgálata

17. Diffúzió vizsgálata Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.11.24. A beadás dátuma: 2011.12.04. A mérés száma és címe: 17. Diffúzió vizsgálata A mérést végezte: Németh Gergely Értékelés: Elméleti háttér Mi is

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

A fény korpuszkuláris jellegét tükröző fizikai jelenségek

A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény korpuszkuláris jellegét tükröző fizikai jelenségek A fény elektromágneses sugárzás, amely hullámjelleggel és korpuszkuláris sajátosságokkal is rendelkezik. A fény hullámjellege elsősorban az olyan

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet

A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet A Lederman-Steinberger-Schwartz-f ele k et neutrn o ks erlet Modern zikai ks erletek szemin arium Kincses D aniel E otv os Lor and Tudom anyegyetem 2017. február 21. Kincses Dániel (ELTE) A két neutrínó

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Bose-Einstein korrelációk mérése és vizsgálata nagyenergiás mag-mag ütközésekben

Bose-Einstein korrelációk mérése és vizsgálata nagyenergiás mag-mag ütközésekben Bose-Einstein korrelációk mérése és vizsgálata nagyenergiás mag-mag ütközésekben K faragó ónika Fizikus Sc Témavezet : Csanád áté ELTE TTK Atomzikai Tanszék 01. május 1. Kivonat Nagyenergiás ütközésekben

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben