Geometria. 1. feladat
|
|
- Ildikó Szalainé
- 5 évvel ezelőtt
- Látták:
Átírás
1 Geometri 1. feldt A kerületi és középponti szögek tétele lpján LAB =AO B (mivel LAB érintőszárú kerületiszög). Hsonlón KAB =AO 1 B. A szimmetri mitt AO O 1 =O 1 O B és BO 1 O =O O 1 A. Így AO O 1 =O 1 O B =LAB és BO 1 O =O O 1 A =KAB. Lássuk hol is járunk. H belátnánk, hogy LAKB húrnégyszög (1), kkor BAK =BLK, zz BLK =BO 1 O, zz KL O 1 O, így kész vgyunk. (1)-et pedig könnyen beláthtjuk szögszámolássl: LBK = O 1 BO =180-BO 1 O -BO O 1 (BO 1 O háromszögből), és LAK =LAB +BAK = =BO 1 O +BO O 1, így LAK +LBK =180, zz kész vgyunk.
2 Geometri.feldt Legyen k(mfp) P-n kívüli metszete AB-vel D és k(meq) Q-n kívüli metszete G. Állítás: BDMC húr4 Bizonyítás z első ábrár: PDM =180-MFE =180-MCB (felhsználv, hogy PDMF húr4 ). Bizonyítás második ábrár: PDM =PFM =BCM (felhsználv, hogy PDMF húr4 ). Hsonlón láthtó, hogy MGCB húr4. Így kpjuk, hogy B, D, M, G, C mind egykörön vnnk. Így DGC =180-DBC, zz AGD =DBC =ABC, zz ADG hsonló APQ, így DPGQ húr4. Így A k(pdfm)-re vontkozó htvány megegyezik A k(gqem)-re vontkozó htványávl, így A rjt vn két kör htványvonlán, zz MN egyenesén.
3 Geometri 3. feldt Legyen BC A-t nem trtlmzó ív felezőpontj E. Ismert, hogy EB=EI=EC=EI, zz E z I BC köréírt körének középpontj E. Legyen F BC oldl felezőpontj. Állítsunk merőlegest I -ból BC-re, merőleges tlppontj legyen T. Ezután állítsunk merőlegest B-ből I C-re. A két merőleges metszéspontj legyen M, ez z I CB mgsságpontj. Legyen még I z ABC beírt körének középpontj. Tehát feldt állítás: AI ME I EM hsonló I AI -höz, hiszen I, T, I egy egyenesen vnnk, és I, I, A is egy egyenesen vnnk ( szögfelezőn). Legyenek z oldlk szokásos módon,b,c és szögek is szokásos módon α, β, γ. Így, h I-ből merőlegest állítunk AB-re, tlppont Q, és felhsználjuk, hogy AQ = b+c, könnyen láthtjuk, hogy AI = b+c cos α. Ezután BEF -ből felhsználv, hogy EF merőleges BC-re és hogy BEF = 90 α, könnyen láthtjuk, hogy BE = AI = +b+c cos α ). sin(90 α ) = cos α (Így már tudjuk I A = BE = cos α -t és I A = I E + EI + AI = BE + Ismert, hogy I M=EF ( mgsságpont távolság csúcstól kétszer kkor, mint körüléírtkör középpontjánk távolság szemben lévő oldltól). EF-t könnyen számolhtjuk BEF -ből, hiszen tudjuk háromszög szögeit, és BF =, így EF = BEcos (90 α ) = tg (α ). Már csk I I -t kell kiszámolnunk. I I =I T, és I T ABC hözzáírt körének sugr, zz I T = +b+c tg( α ).
4 Már csk fel kell írnunk hsonlóságot: cos α + b + c cos α = tg (α ) + b + c tg( α )
5 4. A feldt során számoljunk irányított szögekkel, így eltekinthetünk diszkussziótól. A BD-vel C-n át húzott párhuzmos Q-bn metszi z AC ármérőjű kört, ekkor QO = CO, így OQC = QCO = γ és párhuzmosság mitt QOD = BOC = γ és DO = BO, így DQO = OCB = α. CEA = 90, így EF C = EAC = α = 90 α. CF Q = CAQ = AQO = 90 γ. Így QDP = 180 ODQ = 180 (180 α γ) = α + γ. QF P = 180 (90 α) (90 γ) = α + γ = QDP, így QDF P húrnégyszög, így P QD = EF C = 90 α, így P QO = 90. Válzószögek mitt DOA = γ = QOD, így P O QOA szögfelezője, tehát OAP = P QO = 90, így P A érinti z AC átmérőjű kört, így feldt állítás igz.
6 Geometri 4. feldt Messe EF AB-t H-bn és AD-t G-ben, és AP messe CD-t I-ben. Most vegyünk észre néhány hsonlóságot: EBH hsonló HAG háromszöghöz, hiszen EB AG. Hsonlón HAG hsonló GDF háromszöghöz. Ezen kívül GDF hsonló DAI-hez, mivel h AD körvonlt Q-bn metszi, kkor DAI = =QCA kerületi szögek egyenlősége mitt. QCA =CFE, mivel QA=CE (szimmetri mitt), zz két szög zonos hosszú ívhez trtozó kerületi szögek, így CFE =DAI. Ezeket hsonlóságokt hsználjuk fel: AH = αbh, HG = αeh, AG = αeb, GD = βag = αβeb, GF = βhg = αβeh, DF = βah = αβbh DI = γgd = αβγeb, AD = γdf = αβγbh Így DF = αβbh = BH BH és DI αβγeb γeb AB = BH = 1. Megint hsználjuk Q pontot. D pont körre vontkozó BH+AH α+1 htvány lpján: DQ DA = DF DC, és DQ DA = (AQ AD)AD = (EC AD)αβγBH = = (AD + BE AD)αβγBH = BE BHαβγ és DF DC = DF AB = αβbh (BH + AB) = = αβ(α + 1)BH, zz BH = 1 DF, zz EBγ α+1 átmegy AI és BD metszéspontján, zz P-n. = BH DI AB, így BH:HA=DF:FI, de ez zt is jelenti, hogy HF
7 5. F OB = OCB = CAD = α z érintő szárú szögek tétele mitt illetve váltószögek mitt. DOF G húrnégyszög, így F GD = 180 DOF = α. Így CAD = CGD, így CDAG húrnégyszög, így BGA = 180 ADC és ABG = 180 CBA = 180 ADC = BGA, így AG = AB.
8 Legyen N BB és CC egyenesek metszéspontj. Nevezzük el továbbá mgsságtlppontokt z ábrán láthtó módon! Mivel B CBC húrnégyszög, ezért B CC és B BC szögek megegyeznek. Továbbá mivel BM C C és BM B C szögek derékszögek, BM C M B C is egy körön vn, zz M B CM C és M B BM C szögek is megegyeznek. De mivel B, M C és C egy egyenesben vn, hsonlón C, M B, és B, ezért ezeket kivonv egymásból C CM C és z M B BB szögek megegyeznek. Így legyen BM B és CC egyenesek metszéspontj X B, BB és CM C egyeneseké pedig X C. (ezek metszéspontok háromszögekben lesznek, zz szkszokon). Így mivel fentiek mitt X BBX C és X B CX C szögek megegyeznek, X B, B, C, és X C egy körön vnnk. De így emitt, és BC B C kör mitt z NX C X B = CBX B = CBB = CC B. De hsonlón X C X B N = C B N. De így z NX B X C és z NC B háromszögek hsonlók lesznek, mert két szögpáruk megegyezik. De C X C H és X C C M C szögek meg fognk egyezni, mert C M C és X C M B párhuzmosk, hisz mindkettő merőleges z AC egyenesre. De így mivel CC B = NX C X B, ezért X B X C H = B C M C = B C H. De hsonlón H B C = HX B X C, zz C B H és z X C X B H háromszögek is hsonlók, mert két szögpáruk megegyezik. De így vegyük z N középpontú ngyítást (mi kár negtív rányú is lehet), mi X B -t B -be viszi. (Vn ilyen, mert három pont egy egyenesbe esik). Ekkor hsonlóság mitt ez hsonlóság X C -t C -be viszi (hisz N-t önmgáb). De h X B -t B -be viszi, X C -t pedig C - be, kkor hsonlóság mitt H-t H -be. ( háromszögek irányítás mitt). De így tudjuk, hogy egy N középpontú hsonlóság H-t H -be viszi, zz HH egyenes átmegy N-en. De így HH egyenes átmegy CC és BB egyenesek metszéspontján, zz három egyenes egy ponton megy át. Ezt krtuk belátni. A A M B H M C M B H M C M B C B N M B C M C X C H X B B M C XB X C H N B C B C (H C és M C egybeesik, kkor pedig nyilván átmennek egy ponton, mert N egybeesik H-vl, zz ezen ponton átmegy mindhárom szksz)
9 Geometri 7.feldt Legyenek beírtkör érintési pontji A 1, B 1, C 1. A hozzáírtkörök érintési pontji legyenek A, B, C. Legyen beírtkör középpontj I. Legyen súlypont S. A háromszög oldli legyenek, b, c és legyen félkerület s és legyen beírtkör sugr r és mgsságok szokásos módon m, m b, m c. A hozzáírt körök középpontji legyenek I A, I B, I C és sugrik r A, r B, r C. Ismert, hogy z AA, BB és CC egyenesek egy ponton mennek át, Ngel ponton. Az is ismert, hogy I, S, N egy egyenesen vn, Ngel egyenesen és IS:SN=1:. Legyen egy :-1 rnyú ngyítás S-ből. Az világos, hogy (A)=F A, (B)=F B, (C)=F C. Legyen A 1 S metszéspontj F B F C -vel D. Az előzőek lpján (A 1 )=D, és így D z F B F C oldlhoz trtozó hozzáírtkör. Így F B D=(F B F C +F C F A -F A F B )/, és mivel AF B F C egybevágó F A F B F C -gel, D z AF B F C beírt körének érintési pontj (mivel tudjuk, hogy beírtkör érintési pontjánk távolság z egyik csúcstól megegyezik hozzáírtkör érintésipontjánk távolság másik csúcstól). Ngyítsunk A-ból 1: ránybn. Ekkor AF B F C -ből, ABC lesz és D A -be megy át hiszen D és A megfelelő beírtkörök érintésipontji megfelelő oldlkon. Így A, D, A egy egyenesen vnnk és AD:AA =1:. (1) Ezen felül (N)=I. Állpítsuk meg z AN:AA 1 rányt. AN:AA 1 = (AN): (AA 1 )=F A I:F A D. Állítsunk merőlegest D-ből BC-re, tlppont legyen T. Ekkor TDF A hsonló IA 1 F A -höz, zz F A I:F A D=r:DT=r:(m /), mivel TD= m / (1) lpján. Most hsználjuk fel z ismert terület képleteket: rs= (m /), zz AN:AA 1 =:s. Így A 1 N:AA 1 =(s-):s=ap:aa 1. (s-):s=r:r A, és egy r:r A ngyságú ngyítás A-ból I-t I A -b viszi. De mivel P-t pedig A 1 -be viszi, IP csk r hosszú lehet, zz P rjt vn beírtkörön.
10 ABC háromszög oldlit és szögeit jelölje szokásos módon, b, c és α, β, γ. Legyen O beírt kör középpontj, A, B, C pedig z érintési pontji megfelelő oldlkon. A beírt kört jelölje k, z A -vel szemköztes pontját jelölje L. Be fogjuk látni, hogy A, L és A 1 egy egyenesre esik, illetve hogy XC = +b c, hol X = BC B L. Ezután két Menelosz-tétel segítségével belátjuk, hogy A 1L AL megegyeznek. = AN A 1 N = A 1P, így L és P pontok AP Húzzunk L-en keresztül párhuzmost BC-vel, messe ez AB és AC szkszokt P ill. Q pontokbn. Ekkor k kör L pontbn érinti BC-t, így k z AP Q háromszög A-vl szemköztes hozzáírt köre. ABC és AP Q háromszögek hsonlók, így egy A középpontú ngyítássl egymásb vihetőek. Ez ngyítás z A-vl szemköztes oldlhoz trtozó hozzáírt körök érintési pontjit is egymásb viszi, így A, L és A 1 egy egyenesre kell essenek. L, B, C és A egy körön vnnk, így LB C = LA C. Mivel LA átmérő és A érintési pont, ezért LA merőleges BC-re, zz LA B = 90. BA = BC (érintők), így CA B = 90 β, ezért LB C = LA C = β. AB C = 90 α, így LB A = 90 α β = γ = ACO. Így B L és OC párhuzmosk. Legyen X = BC B L. A X = A C = + b c. Ekkor XC = +b c. Tudjuk, hogy A L = A O, így párhuzmos szelők tétele mitt Hsználv Menelosz-tételt AA 1 C háromszögre és XL egyenesre (csk szkszok hosszávl számolv): AN A 1 N BC 1 C 1 A A1C A 1 B AL A1X A 1 L CX = 1. Így CB AB = 1. Felírv Menelosz-tételt z AA 1 B háromszögre és CC 1 egyenesre: A 1 L AL = A 1X CX CB AB = +b c + c+ b +b c +b c b+c = c+ b b + c = b+c c+ b = C 1A BC 1 BC CA 1 = AN A 1 N = A 1P AP. Mivel P és L egyránt AA 1 szksz belső pontji, ebből következik, hogy P és L pontok egybeesnek, így P z ABC háromszög beírt körére esik.
11
V. Koordinátageometria
oordinátgeometri Szkszt dott rányn osztó pont súlypont koordinátái 6 6 6 ) xf + 9 yf + N 7 N F 9 i ) 7 O c) O N d) O c N e) O O 6 6 + 8 B( 8) 7 N 5 N N N 6 A B C O O O BA( 6) A B BA A B O $ BA A B Hsonlón
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Nem mindig az a bonyolult, ami annak látszik azaz geometria feladatok megoldása egy ritkán használt eszköz segítségével
Nem mindig az a bonyolult, ami annak látszik azaz geometria feladatok megoldása egy ritkán használt eszköz segítségével Rátz László Vándorgyűlés 2018 Győr Fonyó Lajos Keszthelyi Vajda János Gimnázium A
IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN
4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z
(d) a = 5; c b = 16 3 (e) b = 13; c b = 12 (f) c a = 2; c b = 5. Számítsuk ki minden esteben a háromszög kerületét és területét.
Euklidész tételei megoldások c = c a + c b a = c c a b = c c b m c = c a c b 1. Számítsuk ki az derékszögű ABC háromszög hiányzó oldalainak nagyságát, ha adottak: (a) c a = 1,8; c b =, (b) c = 10; c a
11. évfolyam feladatsorának megoldásai
évolym eldtsoránk megoldási Oldjuk meg természetes számok hlmzán következő egyenleteket x ) y 6 x! 3 b) y 6 3 ) Átrendezve megoldndó egyenlet y 6 x! 3 H x 0, kkor H x, kkor H x, kkor H x 3, kkor H x, kkor
4. Vektorok. I. Feladatok. vektor, ha a b, c vektorok által bezárt szög 60? 1. Milyen hosszú a v = a+
4 Vektorok I Feladatok Milyen hosszú a v a b c vektor, ha a b, c vektorok által bezárt szög 60? c b, a, b, c és az a és Mit állíthatunk az BCD konvex négyszögről, ha B D B BC CB CD DC D 0? Igaz-e, hogy
Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik
Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
Kardos Montágh verseny Feladatok
Krdos Motágh versey Feldtok Az ABC háromszög hozzáírt köreiek középpotji O, P, Q, beírt köréek középpotj K Melyik állítás igz z lábbik közül? K z OPQ háromszög A) súlypotj B) mgsságpotj C) szögfelezőiek
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Mgyr Mtemtik Verseny onyhá, 011. március 11 15. 11. osztály 1. felt: Igzoljuk, hogy ármely n 1 természetes szám esetén. Megolás: Az összeg tgji k k 1+ k = = 1+ + n +... < 1+ 1+ n 3 1+ k
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)
Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei
FELVÉTELI VIZSGA, július 15.
BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
1012/I. 1012/II. 1013.
Húrnégyszögek, érintônégyszögek 7 0/ 0/ 0 008 Külsô pontól körhöz húzott érintôszkszok egyenlôk & A sokszög egy-egy csúcsáól induló érintôszkszok egyenlôk és két szomszédos oldl drji & Minden egyes érintôszkszól
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig
Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós
10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
Vektoralgebra feladatlap 2018 január 20.
1. Adott az ABCD tetraéder, határozzuk meg: a) AB + BD + DC b) AD + CB + DC c) AB + BC + DA + CD Vektoralgebra feladatlap 018 január 0.. Adott az ABCD tetraéder. Igazoljuk, hogy AD + BC = BD + AC, majd
Háromszögek hasonlóságával megoldható feladatok. szelôk tételének megfordítását az ABC AC és A 2. AC. Hasonlóan belátható, hogy AC ; C1 D 2 = 3
64 Hsonlóság Háromszögek hsonlóságávl megoldhtó feldtok 0 0 Húzzuk meg négyszög AC átlóját! Alklmzzuk párhuzmos szelôk tételének megfordítását z ABC AC és A B szelôire: AC ; A B Alklmzzuk párhuzmos szelôszkszok
Középpontos hasonlóság szerkesztések
Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Bevezetés. Alapműveletek szakaszokkal geometriai úton
011.05.19. Másodfokú egyenletek megoldás geometrii úton evezetés A középiskoli mtemtik legszerteágzóbb része másodfokú egyenletek megoldás. A legismertebb módj természetesen megoldóképlet hsznált. A képlet
Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Oktatási Hivatal A 0/04 tanévi Országos Középiskolai Tanulmányi erseny második forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 57 olyan háromjegyű szám, amelynek számjegyei
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.
ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC
Szinusz- és koszinusztétel
Szinusz- és koszinusztétel. Htározzuk meg z oldlk rányát, h α 0, β 60. α + β + γ 80 γ 80 α β 80 0 60 90 A szinusztételt felhsználv z oldlk rány: zz : : : sin β : sin 0 : sin 60 : sin 90 : : : : : :. Htározzuk
Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk
Gyakorló feladatsor 11. osztály
Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy
Húrnégyszögek, Ptolemaiosz tétele
Húrnégyszögek, Ptolemaiosz tétele Markó Zoltán 11C Húrnégyszögek Definíció: Húrnégyszögnek nevezzük az olyan négyszöget, amely köré kör írható Vagyis az olyan konvex négyszögek, amelyeknek oldalai egyben
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Egy geometria feladat margójára
Egy geometria feladat margójára Erdős Gábor 019. június. A feladat Az ABC szabályos háromszög AB oldalának felezőpontja F. A CF szakasz azon belső pontja a D pont, amelyre az ADB szög 90 fokos. A CF szakasz
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
Azok a csodálatos érintőnégyszögek
Nagy Károly Matematikai Diáktalálkozó Komárom, 005 Azok a sodálatos érintőnégyszögek Összeállította: Kubatov Antal Kaposvár Matematika Oktatási Portál, http://matek.fazekas.hu/ / . Feladat. Egy négyszögbe
Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló - megoldások. 1 pont Ekkor
Okta tási Hivatal Országos Középiskolai Tanulmányi Verseny 0/0 Matematika I. kategória (SZAKKÖZÉPISKOLA). forduló - megoldások. Az valós számra teljesül a 3 sin sin cos sin egyenlőség. Milyen értékeket
1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-
Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges
2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
I/A. Az alkalmazottak adatai
A 2011. évi CCIV. törvény 3. melléklete alapján I. A felsőoktatási intézményekben nyilvántartott és kezelt személyes és különleges adatok I/A. Az alkalmazottak adatai a) név, nem, születési név, születési
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
Ptolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
11. osztály. 1. Oldja meg az egyenletrendszert a valós számok halmazán! (10 pont) Megoldás: A három egyenlet összege: 2 ( + yz + zx) = 22.
osztály Oldja meg az egyenletrendszert a valós számok halmazán! y + yz = 8 yz + z = 9 z + y = 5 (0 pont) Megoldás: A három egyenlet összege: ( + yz + z) = Ebből kivonva az egyenleteket: y =, yz = 6, z
Egybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Okttási Hivtl A 013/014 tnévi Országos Középiskoli Tnulmányi Verseny első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Jvítási-értékelési útmuttó 1 Oldj meg vlós számok hlmzán egyenletet! 3 5 16 0
Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II. forduló osztály
. feladat: Szupercsiga egy függőleges falon mászik felfelé. Első nap 4 cm-t tesz meg, éjszaka cm-t visszacsúszik. Második napon 9 cm-t tesz meg, éjszaka 4 cm-t csúszik vissza, harmadik napon 6 cm-t mászik,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.
5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:
Koordináta-geometria feladatgyűjtemény
Koordináta-geometria feladatgyűjtemény A feladatok megoldásai a dokumentum végén találhatók Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két csúcs
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
(a b)(c d)(e f) = (a b)[(c d) (e f)] = = (a b)[e(cdf) f(cde)] = (abe)(cdf) (abf)(cde)
2. házi feladat 1.feladat a b)c d)e f) = a b)[c d) e f)] = = a b)[ecdf) fcde)] = abe)cdf) abf)cde) 2.feladat a) Legyen a két adott pontunk helyzete A = 0, 0), B = 1, 0), továbbá legyen a távolságok aránya
Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont
Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú
ARCHIMEDES MATEMATIKA VERSENY
Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező
Vektorok. Vektoron irányított szakaszt értünk.
Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,
/01 1!"#$%&'!"#$%&'!"#$%&' () *+,-./ 01! :; CDE 6?289:; FGHIJKLMN O C ( PKL QRSTUV :;*W? CXY? Z[R \] ^ _ `a?o :;?boc^ *+ *+!"#
!"#$%&'!"#$%&' () *+,-./ 01! 234567289:; ?289:; @8ABCDE 6?289:; FGHIJKLMN O C ( PKL QRSTUV :;*W? CXY?Z[R \] ^ _ `a?o :;?boc^*+ *+!"#$%&'()* $%+, -./01 234+5 +,67* 894: ; "#
Tehetetlenségi nyomatékok
Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk
A kör. A kör egyenlete
A kör egyenlete A kör A kör egyenlete 8 a) x + y 6 b) x + y c) 6x + 6y d) x + y 9 8 a) x + y 6 + 9 b) x + y c) x + y a + b 8 a) (x - ) + (y - ) 9, rendezve x + y - 8x - y + b) x + y - 6x - 6y + c) x +
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:
I. Vektorok 1. Vektorok összege Általánosan: Az ábra alapján Adott: a(4; 1) és b(; 3) a + b (4 + ; 1 + 3) = (6; ) a(a 1 ; a ) és b(b 1 ; b ) a + b(a 1 + b 1 ; a + b ). Vektorok különbsége Általánosan:
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
1. Feladatlap - VEKTORALGEBRA. Műveletek vektorokkal. AD + BC = BD + AC. Igaz ez az összefüggés
1 Feladatlap - VEKTORALGEBRA Műveletek vektorokkal 1 Adott egy ABCD tetraéder Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC + DA + CD 2 Adott az ABCD tetraéder Igazoljuk,
tulajdonsága Pék Johanna és Szilasi Zoltán
A háromszögek Spieker-pontjának néhány érdekes tulajdonsága Pék Johanna és Szilasi Zoltán 0. Bevezetés A háromszögekkel kapcsolatban számos nevezetes pont és rengeteg izgalmas tulajdonság ismeretes; gondoljunk
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
Országos Középiskolai Tanulmányi Verseny 2009/2010 Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny / Matematika I. kategória (SZAKKÖZÉPISKOLA) 2. forduló feladatainak megoldása. Oldja meg a valós számok legbővebb részhalmazán a egyenlőtlenséget!
Matematika érettségi 2015 május 5
( ) A 6-tl vló oszthtóság feltétele, hogy szám oszthtó legyen -vel és -ml. 60 6 64 66 68 X {;8} X {;8} A minden tgdás: vn olyn A brn tgdás: nem brn Vn olyn szekrény, melyik nem brn (A) A D 49 b 4 ( 0)
5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?
. Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Differenciálgeometria feladatok
Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R
IV. Algebra. Algebrai átalakítások. Polinomok
Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol
45 különbözô egyenest kapunk, ha q! R\{-35}. b) $ =- 1& = 0, nem felel meg a feladat feltételeinek.
Az egyenes egyenletei 8 67 a), n( -) x - y b) x - y c) n( ) x+ y- d) n( -), x- y 7 67 a) y x b) n(b a), nl(a - b) ax - by 0 c) n( -) nl( ) 7 x + y 7 d) x - y e) x - 9y f) x + y g) x - h) - O, 77 n( ) nl(
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
1. feladat Bizonyítsuk be, hogy egy ABCD húrnégyszögben AC BD
1. feladat Bizonyítsuk be, hogy egy ABCD húrnégyszögben AC BD = DA AB + BC CD AB BC + CD DA. Első megoldás: A húrnégyszögnek az A, B, C, ill. D csúcsoknál levő szögét jelölje rendre α, β, γ, ill. δ, azab,
Megoldások 11. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 016. március 1115. Megoldások 11. osztály 1. feladat Egy háromszög három oldalának mér száma, a, b, c ebben a sorrendben egy mértani sorozat három egymást
metszéspontjának megjelölésével kaphatjuk. A felezéspont és a kétszeres szakasz bármelyik végpontja meghatározza a szerkesztendô szakaszt.
Síkgeometri Bevezetés síkgeometriáb Szkszok; sokszögek átlói A szksz kétszeresébôl z eredeti szkszt szkszfelezô merôleges és kétszeres szksz metszéspontjánk megjelölésével kphtjuk A felezéspont és kétszeres
GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a
GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:
15. Koordinátageometria
I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat
1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
& ODl9 BC; OAl9 [BCD] & OAl9 BC. A két állításból & BC9 [OAlDl] & BC9 AlDl. Hasonlóan
Tetréder 9 788 789 788 Legyenek gömb érintési pontji lpsíkokkl Al, Bl, Cl és Dl ODl9 [ABC] & & ODl9 BC; OAl9 [BCD] & OAl9 BC A két állításból & BC9 [OAlDl] & BC9 AlDl Hsonlón beláthtó, hogy AB9 ClDl, AC9
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
(4 pont) Második megoldás: Olyan számokkal próbálkozunk, amelyek minden jegye c: c( t ). (1 pont)
Országos Középiskolai Tanulmányi Verseny, 2005 2006-os tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a