Matematikai módszerek alkalmazása a földtudományban. Bárdossy György, Fodor János
|
|
- Csongor Balog
- 10 évvel ezelőtt
- Látták:
Átírás
1 Matematikai módszerek alkalmazása a földtudományban Bárdossy György, Fodor János
2 Előszó Célunk több évtizedes tapasztalataink átadása és fel szeretnénk hívni a figyelmet új módszerek alkalmazásának lehetőségeire.
3 Az alkalmazások főcéljai 1. Megfigyelési és mérési adatok mennyiségi feldolgozása 2. Összefüggések felderítése és kiértékelése 3. Bizonytalanságok mennyiségi értékelése 4. Döntési kockázatok meghatározása
4 Főtapasztalatok Pontos definiciók fontossága (félreértések miatt) A számítástechnika fontossága (pl. SPSS statisztikai program-csomag) A kiütő értékek (outliers) megfelelő kezelése
5 A matematikai feldolgozás főtartományai 1.Skaláris (csak számok) 2.Térbeli ( X,Y,Z koordinátákkal) 3.Térbeli és időbeli (tér-koordinátákkal és időpontokal)
6 Modellezés 1. Elvi modellektől (conceptual -) a helyi konkrét modellek felé halad földtani, geofizikai, meteorológiai, hidrológiai, geodéziai stb. modellek Tulajdonság modellek, grafikus (pl. szelvények), folyamat -, genetikai A modellek validálása (hibák kiküszöbölése)
7 Modellezés (folytatás) 2. Geomatematikai modellek (numerikus-, analitikus módszerek, differnenciál egyenletek) 3. A modellek együttes földtudományi értékelése
8 Bizonytalanságok Kolmogorov három axiómájából az additivitási a földtudományban többnyire nem teljesül! (átmenetek és átfedések miatt) Bárdossy Gy., Fodror J. (2004): Evaluation of Uncertainties and Risks in Geology. (Springer)
9 Bizonytalanságok fő okai a földtudományban 1. Véletlenszerűség (randomness) Aleatory uncertainty. Térbeli és időbeli változékonyság (sztochasztikus módszerekkel többnyire meghatározható, de nem csökkenthető) 2. Emberi hibaforrások. Epistemic uncertainty. hiányos ismeretek, hiányos nem-reprezentatív mintavétel, kutatási hibák, mérési hibák, hibás kiértékelés stb. (nem-sztochasztikus módszerekkel csökkenthető)
10 Számtípusok bizonytalanság szerint 1. Biztos számok 2. Bizonytalan számok - valószínűségek, valószínűségi sávok - ordinális számok - intervallumok - fuzzy számok - hibrid számok
11 Determinisztikus módszerek Egyetlen eredmény ( best guess ) A bizonytalanságokat nem közli. Gyors, egyszerű, de csak közelítő megbízhatóságú
12 Sztochasztikus módszerek (a valószínűség elmélet alapján) Frekventista módszerek -egyváltozós - (átlagok, szórások, gyakoriságok, ferdeség, robusztus módszerek), eloszlás típusok, box-plotok összehasonlítása - kétváltozós korreláció számítások és diagramok (scatterplots) -sokváltozós- (klaszter elemzés, parciális és multi-korreláció, faktor elemzés, főkomponens elemzés, diszkriminancia elemzés)
13 Valószínűségi módszerek folytatása Bayes-elv alkalmazása(feltevés a kimenetel valósznűségére) - előzetes és utólagos valószínűségek meghatározása - a Bayes tétel alkalmazása - maximum likelihood függvények alkalmazása - szekvenciális diagramok készítése a változások kimutatására
14 Valószínűségi módszerek folytatása Geostatisztikai módszerek(matheron) izotróp és iránymenti szemi-variogramok meghatározása, variogram modelek, variogram felületek, fuzzy variogramok átlagos és lokális hatástávolságok szerepe krígelés, krígelési szórás, fuzzy krigelés hibaforrások: nem-lineáris összefüggések gyakoribbak Magasabb rendű sztochasztikus szimulációk (Dimitrakopoulos 2010 ) nem lineáris összefüggésekre
15 Valószínűségi módszerek folytatása Térbeli adatsorok elemzése - Markov láncok (főleg üledékes összletekben) -Szekvenciális térbeli szimulációk (üledékes összletekben) -Bootstrap módszerek (kevés adat esetén növeli a pontosságot)
16 Valószínűségi módszerek folytatása Monte Carlo szimuláció Előnyök: - egyszerű számítógépes alkalmazás - könnyen érthető eredmények Hátrányok:-a változók eloszlásának pontos ismerete szükséges - nem veszi kellően figyelembe a kis gyakoriságokat (Latinhypercube mintavétel fontossága) -a korrelációs kapcsolatokat figyelembe kell venni (jelentős hibaforrás lehet)
17 Bizonytalanság elemzés módszerei Entrópia meghatározása (egyetlen számmal) Összetett bizonytalanságok számítása Hibaterjedés törvényszerűségeinek figyelembe vétele Visszaszámlálás módszerei Nem valószínűségi módszerek
18 Kaotikus rendszerek elemzése Nem lineáris, dinamikus, hiper szenzitiv rendszerek, főleg meteorológiai jelenségeknél Lorenz-attraktorok szerepe
19 Az intervallum analizis Biztos számok helyett intervallumok (Moore 1979) Előnyök: - Könnyű számíthatóság - Az eredmények könnyen értelmezhetők - Minden bizonytalanság fajtára alkalmazható Hátrányok: - Az intervallumok gyors kiszélesedése - Hibaterjedés erős hatása
20 Bizonytalanság-elemzőnem-valószínűségi módszerek 1. Dempster-Shafer elmélet (1967) (feltételezés és plauzibilitás függvények alkalmazása, az ismeret mértéke, Dempster kombinációs szabálya) 2. Lehetőség elmélet (possibility theory) ( Dubois, Prade 1988 ) (a lehetőség és szükségszerűség függvényei, a valószínűség- elmélet kiterjesztése) 3. Bizonytalansági sávok elemzése (Ferson 2002) ( a valószínűség elmélet és az intervallum elemzés együttese)
21 A bizonytalan halmazok elmélete Fuzzy set theory (L.Zadeh 1978) Előnyök: - Szemi-kvantitatív és kvalitatív adatok értékelését teszi lehetővé -Tagságfüggvényekkel leírhatók a bizonytalanságok és a halmazok átfedései - Fuzzy aritmetika könnyen alkalmazható - Fuzzy logika módszerei (Mamdani -, Takagi-Sugeno módszerei földtudományi folyamatokra jól alkalmazhatók Hátrányok: - Nem veszi figyelembe a korrelációk hatását - Sok változó esetén túlzottan megnő a bizonytalanság
22 További módszerek Neurális hálózatok (Hebb 1949) Neuro-fuzzy hálózatok(fullér 2000) Alakzat felmérőés leírómódszerek (kernelek, copulák, számítógépes alakzat felismerő rendszerek)
23 Geometriai jellegűmódszerek 1. Fraktálok (ismétlődőalak azonosság) pl. töréses tektonikai értékelésre jól használhatók 2. Nem-lineáris térképezés (non-linear mapping) térbeli tulajdonságok összehasonlítására 3. Matrix operációk 4. Konvolúció, dekonvolúció (több változóegyüttes értékelésére) 5. Hálózat (grid) alapú módszerek 6. Orientációelemzés (tektonikai jelenségek étékelésére)
24 Idősorok elemzése Amplitudó, periódus, hullámhossz, fázisszög Fourier elemzés, periodogramok Stacionárius idősorok, ergodikus és nemergodikus folyamatok Filterek és simítók A természetben kevés folyamat tisztán periódusos!
25 Térben irányított tulajdonságok elemzése 1. Trend- felület elemzés 2. Vektor mező elemzés (egységvektorok) 3. Sztereogramok, pólus eloszlás diagramok
26 Főalkalmazási lehetőségek 1. Nyersanyagkutatás, ásványvagyon számítás (szilárd és szénhidrogén -) kutatási optimum meghatározása 2. Geofizikai kutatások (a kiértékelés inverz módszerei integrál egyenletek és linearizálással) Dobróka M., Fancsik T., Steiner F. 3. Bányászat, bányaföldtan (mennyiség/minőség diagramok, optimális depletion-rate meghatározása) 4. Természeti veszélyforrások előre jelzése (vulkáni kitörések, földrengések, cunamik, földcsuszamlások stb.)
27 Folytatás 4. Környezetvédelem (pl. talajvíz szennyezések) 5. Hulladék elhelyezés (közületi, toxikus, radioaktív) 6. Geotechnikai feladatok (mélyépítés, alagutak stb.) 7. Meteorológia és klimatikus alkalmazások 8. Hidrológia (vízkészletek felmérése, árvizek előrejelzése)
28 Kockázat elemzés elvi sémája 1. Döntés cselekvésről 2. Lehetséges kimenetelek meghatározása 3. A kimentelek valószínűségének kiszámítása 4. A kimenetelek következményeinek meghatározása: tipus és nagyság
29 Kockázat elemzés problémái Kimenetelek valószínűsége bizonytalan Következményeknagysága is bizonytalan (kiütőés szélső értékek figyelembe vétele gyakran elmaradt) Érzékenység elemzés (sensitivity analysis) fontossága Biztonság- elemzések (radioaktív hulladék elhelyezéshez) (safety assessments),hagyományos módszerek: worst case analysis, új megközelítések: fuzzy és hibrid módszerek Mindezek eddig főleg csak szakértői becsléssel készültek! Nem elégséges: pl. Mexikói öböl kőolaj katasztrófája!
30 4. A matematikai alkalmazások optimális sorrendje 1. Reprezentativ mintavétel 2. Modell alkotás és ellenőrzés (cross validation) 3. Számítógépes adatbázisok kialakítása ( relational databases ) 4. Az alkalmazandómatematikai módszerek kiválasztása
31 Folytatás 4. A mérettartomány hatás értékelése scaling factor, (térbeli: globális-, regionális-, lokális-, mikro-, nanoidőbeli: másodperc,perc,óra, nap, év, millió év) 5. Az eredmények bizonytalanságának kiszámítása (főként nem-valószínűségi módszerek) 6. Döntések esetében kockázat elemzés 7. Jelentés készítés ( a szakértői vélemény expert s opinion értékelése)átláthatóság, alternatív lehetőségek bemutatása
32 Következtetések Sikeres alkalmazásokhoz földtudományi szakemberek és matematikusok együttműködése szükséges A szakértői vélemény egymagában többnyire nem nyujt elégséges biztonságot (pl. Mexikói-öböl kőolaj katasztrófa) Célszerűtöbb módszert alkalmazni, mert többnyire kiegészítik egymást. Valós eredmények alapja a megbízható földtudományi modell alkotás
Bárdossy Fodor Matematikai módszerek alkalmazása
MATEMATIKAI MÓDSZEREK ALKALMAZÁSA A FÖLDTUDOMÁNYOKBAN Bárdossy György az MTA rendes tagja bar4750@iif.hu Fodor János az MTA doktora, egy. tanár, Óbudai Egyetem fodor@uni-obuda.hu Bevezetés Mind bonyolultabbá
GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
A statisztikus klimatológia szerepe és lehetőségei a változó éghajlat kutatásában
A statisztikus klimatológia szerepe és lehetőségei a változó éghajlat kutatásában Szentimrey Tamás Országos Meteorológiai Szolgálat Vázlat A statisztikus klimatológia lényege - meteorológiai adatok, matematikai
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010
MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 KONFERENCIA ELŐADÁSAI Nyíregyháza, 2010. május 19. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága
3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:
Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
REGIONÁLIS KLÍMAMODELLEZÉS AZ OMSZ-NÁL. Magyar Tudományos Akadémia szeptember 15. 1
Regionális klímamodellezés az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS (horanyi.a@met.hu) Csima Gabriella, Szabó Péter, Szépszó Gabriella Országos Meteorológiai Szolgálat Numerikus Modellező
Akusztikai tervezés a geometriai akusztika módszereivel
Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika
ÁRAMKÖRÖK SZIMULÁCIÓJA
ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN
44. Meteorológiai Tudományos Napok Budapest, 2018. november 22 23. A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN Kis Anna 1,2, Pongrácz
Az előadás tartalma. Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai Endre Szűcs Péter Ciklusok felkutatása
Miskolci Egyetem Környezetgazdálkodási Intézet Geofizikai és Térinformatikai Intézet MTA-ME Műszaki Földtudományi Kutatócsoport Debrecen 110 év hosszúságú csapadékadatainak vizsgálata Ilyés Csaba Turai
Exponenciális kisimítás. Üzleti tervezés statisztikai alapjai
Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
A légkördinamikai modellek klimatológiai adatigénye Szentimrey Tamás
A légkördinamikai modellek klimatológiai adatigénye Szentimrey Tamás Országos Meteorológiai Szolgálat Az adatigény teljesítének alapvető eszköze: Statisztikai klimatológia! (dicsérni jöttem, nem temetni)
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
A könyv. meglétét. sgálat
Benyó Balázs Benyó Zoltán Paláncz Béla Szilágyi László Ferenci Tamás Műszaki és biológiai rendszerek elmélete A könyv interdiszciplináris jellegű, műszaki és biológiai rendszerek működésének modellezésére
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
A jövő éghajlatának kutatása
Múzeumok Éjszakája 2018.06.23. A jövő éghajlatának kutatása Zsebeházi Gabriella Klímamodellező Csoport Hogyan lehet előrejelezni a következő évtizedek csapadékváltozását, miközben a következő heti is bizonytalan?
STATISZTIKAI PROBLÉMÁK A
STATISZTIKAI PROBLÉMÁK A HULLÁMTÉR REPRODUKCIÓ TERÜLETÉN 2012. május 3., Budapest Firtha Gergely PhD hallgató, Akusztikai Laboratórium BME Híradástechnikai Tanszék firtha@hit.bme.hu Tartalom A hangtér
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DR. GIMESI LÁSZLÓ Bevezetés Pécsett és környékén végzett bányászati tevékenység felszámolása kapcsán szükségessé vált az e tevékenység során keletkezett meddők, zagytározók,
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál
A numerikus előrejelző modellek fejlesztése és alkalmazása az Országos Meteorológiai Szolgálatnál HORÁNYI ANDRÁS Országos Meteorológiai Szolgálat 1 TARTALOM A numerikus modellezés alapjai Kategorikus és
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés
A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András
Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Geoinformatikai rendszerek
Geoinformatikai rendszerek Térinfomatika Földrajzi információs rendszerek (F.I.R. G.I.S.) Térinformatika 1. a térinformatika a térbeli információk elméletével és feldolgozásuk gyakorlati kérdéseivel foglalkozó
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34
Ensemble előrejelzések: elméleti és gyakorlati háttér HÁGEL Edit Országos Meteorológiai Szolgálat Numerikus Modellező és Éghajlat-dinamikai Osztály 34. Meteorológiai Tudományos Napok Az előadás vázlata
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
Korszerű, számítógépes modelleken alapuló vízkészlet-gazdálkodási döntéstámogató rendszer fejlesztése a Sió vízgyűjtőjére
MTA VEAB Biológiai Szakbizottság, Vízgazdálkodási Munkabizottsága Előadóülés, 2015. február 10., Győr Korszerű, számítógépes modelleken alapuló vízkészlet-gazdálkodási döntéstámogató rendszer fejlesztése
VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között
VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között Dr. Buzás Kálmán címzetes egyetemi tanár BME, Vízi Közmű és Környezetmérnöki
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Az új mértékadó árvízszintek meghatározásának módszertani összegzése
Az új mértékadó árvízszintek meghatározásának módszertani összegzése Szabó János A. HYDROInform Mottó: "The purpose of computation is insight, not numbers" A számítás célja a betekintés, nem számok Richard
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása
Nagyfelbontású magassági szélklimatológiai információk dinamikai elıállítása Szépszó Gabriella Országos Meteorológiai Szolgálat Éghajlati Osztály, Klímamodellezı Csoport Együttmőködési lehetıségek a hidrodinamikai
STATISZTIKA. Mit nevezünk idősornak? Az idősorok elemzésének módszertana. Az idősorelemzés célja. Determinisztikus idősorelemzés
Mit nevezünk idősornak? STATISZTIKA 10. Előadás Idősorok analízise Egyenlő időközökben végzett megfigyelések A sorrend kötött, y 1, y 2 y t y N N= időpontok száma Minden időponthoz egy adat, reprodukálhatatlanság
DÖNTÉSTÁMOGATÓ TERÜLETI MODELLEZÉS A GYAKORLATBAN
DÖNTÉSTÁMOGATÓ TERÜLETI MODELLEZÉS A GYAKORLATBAN http://www.interreg-danube.eu/approved-projects/attractive-danube 26.09.2018 A projekt a Duna Transznacionális Programból, az Európai RegionálisFejlesztési
Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)
Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.
Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek
Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek
TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz
2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:
Kvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
Az INTRO projekt. Troposzféra modellek integritásvizsgálata. Rédey szeminárium Ambrus Bence
Az INTRO projekt Troposzféra modellek integritásvizsgálata Rédey szeminárium Ambrus Bence A projekt leírása Célkitűzés: troposzféra modellek maradék hibáinak modellezése, a modellek integritásának vizsgálata
Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH
Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén
A napsugárzás mérések szerepe a napenergia előrejelzésében
A napsugárzás mérések szerepe a napenergia előrejelzésében Nagy Zoltán 1, Dobos Attila 2, Rácz Csaba 2 1 Országos Meteorológiai Szolgálat 2 Debreceni Egyetem Agrártudományi Központ Könnyű, vagy nehéz feladat
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Loss Distribution Approach
Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói
A klímaváltozás árvízi lefolyásra gyakorolt hatásának integrált modellalapú elemzése a Felső-Tisza vízgyűjtőjére
40. Meteorológiai Tudományos Napok 2014. november 20-21. A klímaváltozás árvízi lefolyásra gyakorolt hatásának integrált modellalapú elemzése a Felső-Tisza vízgyűjtőjére SZABÓ János Adolf (1) - RÉTI Gábor
Alkalmazott matematikus mesterszak MINTATANTERV
Alkalmazott matematikus mesterszak MINTATANTERV Tartalom A MESTERSZAK SZERKEZETE... 1 A KÉPZÉSI PROGRAM ÁTTEKINTŐ SÉMÁJA... 1 NAPPALI TAGOZAT... 2 ESTI TAGOZAT... 6 0BA mesterszak szerkezete Alapozó ismeretek
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
A Bodrog-folyó vízkémiai adatainak elemzése egy- és kétváltozós statisztikai
A Bodrog-folyó vízkémiai adatainak elemzése egy- és kétváltozós statisztikai Készítette: Fodor András Gergő Környezettan Bsc 2010. Belső témavezető: Kovács József Külső témavezető: Tanos Péter módszerekkel
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
A LEVEGŐMINŐSÉG ELŐREJELZÉS MODELLEZÉSÉNEK HÁTTERE ÉS GYAKORLATA AZ ORSZÁGOS METEOROLÓGIAI SZOLGÁLATNÁL
A LEVEGŐMINŐSÉG ELŐREJELZÉS MODELLEZÉSÉNEK HÁTTERE ÉS GYAKORLATA AZ ORSZÁGOS METEOROLÓGIAI SZOLGÁLATNÁL Ferenczi Zita és Homolya Emese Levegőkörnyezet-elemző Osztály Országos Meteorológiai Szolgálat Tartalom
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Széladatok homogenizálása és korrekciója
Széladatok homogenizálása és korrekciója Péliné Németh Csilla 1 Prof. Dr. Bartholy Judit 2 Dr. Pongrácz Rita 2 Dr. Radics Kornélia 3 1 MH Geoinformációs Szolgálat pelinenemeth.csilla@mhtehi.gov.hu 2 Eötvös
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
Vizuális adatelemzés
Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics
Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
A hazai regionális klímamodellek eredményeinek együttes kiértékelése
A hazai regionális klímamodellek eredményeinek együttes kiértékelése Horányi András,, Csima Gabriella, Krüzselyi Ilona, Szabó Péter, Szépszó Gabriella Országos Meteorológiai Szolgálat Bartholy Judit, Pieczka
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Vizuális adatelemzés
Vizuális adatelemzés Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai SZABÓ János Adolf (1) Kravinszkaja Gabriella (2) Lucza Zoltán (3) (1) HYDROInform, Hidroinformatikai Kutató, Rendszerfejlesztő,
Bevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős