A DISZKRÉT MACSKA LEKÉPEZÉS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A DISZKRÉT MACSKA LEKÉPEZÉS"

Átírás

1 A DISZKRÉT MACSKA LEKÉPEZÉS 1. Bevezetés Legyen 1 1 A =. (1) 1 2 Ha x a 0, 1] 0, 1] egységnégyzet egy eleme, akkor az x Ax mod 1 (2) leképezés az egységnégyzet egy automorfizmusát definiálja, lásd az 1. ábrát. V. Arnold orosz matematikus után Arnold-féle macska leképezésnek szokás nevezni, mivel Arnold egy macska képével szemléltette a leképezés hatását. 1. ábra. Az egységnégyzet képe az A-val szorzás alatt egy paralellogramma, amit a modulo művelet visszadarabol az egységnégyzetbe. De hogyan is tette ezt? A következő eljárás a kézenfekvő: tekintsünk egy N N pixel méretű képet, és alkalmazzuk az (2) leképezést minden pixelre. A pixeleket koordinátáit legkényelmesebb egész számokban megadni, így a következő leképezést alkalmazzuk: y Ay y Z N Z N, (3) ahol Z N a modulo N maradékosztályok halmazát jelöli. k = 0 k = 1 k = 4 k = 6 2. ábra. Macskából káoszba (N = 400). 1

2 2 Bár úgy gondolnánk, hogy a (3) leképezés alaposan megkeveri a képünk pontjait, számítógépes kísérletezés után meglepő jelenségeket tapasztalhatunk. A legszembeötlőbb, hogy a kezdeti képünk előbb-utóbb újra megjelenik. A visszatérés előtt is láthatunk szabályos képeket: megjelenhet az eredeti képünk több szellemképe vagy klaszeterkbe rendeződött ábrát láthatunk. Sőt, e kettő jelenség speciális eseteként előfordulhat, hogy a visszatérési idő felénél fejtetőn látjuk az eredeti képünket! k = 60 k = ábra. Baloldalt: szellemképek, jobboldalt: klaszterek (N = 400). A következő fejezetekben először áttekintjük a visszatérési időre ismert eredményeket, majd ismertetjük a szellemkép és a klaszteresedés pontos definícióját. Végül fűzünk pár megjegyzést ahhoz, hogy mi történik a visszatérési idő felénél (amennyiben a visszatérési idő páros). k = 0 k = 60 k = ábra. Fejtetőre fordulás félperiódusnál (N = 241). 2. Visszatérés Vajon miért tér vissza az eredeti képünk? Tegyük fel, hogy a kép minden pixele csak fekete vagy fehér lehet (az érvelést természetesen több színre is könnyű általánosítani). Ekkor összesen 2 N N különböző kép lehetséges. Kiindulva a kezdeti képünkből mindig új és új képek fognak megjelenni, mivel a (3) leképezés invertálható. Tehát legfeljebb 2 N N iteráció után vissza kell kapnunk az eredeti képet. Viszont számítógépes kísérletezés után nyilvánvaló, hogy közel sem kell ennyit várni. A visszatérési idő vizsgálatához a következő észrevételre van szükség: legyen u n az n- edik Fibonacci szám, azaz u 0 = 0, u 1 = 1 és u n = u n 1 + u n 2, n > 1. Ekkor láthatjuk,

3 3 hogy ha akkor Mivel F 2 = A, kapjuk hogy F n = A n = F = 0 1, 1 1 un 1 u n, u n u n+1 u2n 1 u 2n. u 2n u 2n+1 Visszatérési idő alatt azt a legkisebb n számot értjük, melyre A n I, ahol I az 1 ] egységmátrix. Azaz a legkisebb olyan n számot keressük, melyre u 2n 1 1 u 2n 0 Tehát a visszatérési idő egyenlő a Fibonacci számok modulo N periódusának felével. Ezt a periódust szokás Pisano-periódusnak is nevezni. Sajnos zárt formula nem ismert rá, de az ismereteink jó összefoglalását adja D. D. Wall cikke 9]. Azonban léteznek eredmények a visszatérési időre, melyek egyszerű számelméleti eszközökkel ám helyenként rendkívűl aprólékos munkával bizonyíthatók. A legjelentősebb F. J. Dyson és H. Falk következő eredménye: 1. Tétel (Dyson-Falk, 4]). Jelöljük m N -el az N méretű kép visszatérési idejét. Ekkor Egyenlőség pontosan akkor teljesül, ha Minden más esetben m N 3N. N = 2 5 γ. m N 2N teljesül. Itt egyenlőség pontosan akkor van, ha Minden további esetben N = 5 γ vagy N = 6 5 γ. m N 12 7 N. Az egyszerű számelméleti eredmények tekintetében Dyson és Falk G. H. Hardy és E. M. Wright könyvére 6] támaszkodnak. Ugyanebben a cikkben Dyson és Falk megadja m N pontos értékét, ha N Fibonaccivagy Lucas-szám. A k-adik Lucas-számot a következőképpen definiáljuk: v 0 = 2, v 1 = 1, v k = v k 1 + v k 2, k > 1. Egy általánosabb, de kevésbé explicit képletet ad a visszatérési időre G. Gaspari:

4 4 2. Tétel (Gaspari, 5]). Legyen N prímtényezős felbontása N = p α p α k k, ahol p j prím és α j N minden j = 1,..., k esetében. Ekkor m N = LKKT{m α,..., m p 1 1 p α k }, ahol LKKT a legkisebb közös többszöröst jelenti. A tétel Fibonacci-számok periódusára vonatkozó megfogalmazása már szerepelt D. D. Wall jóval korábbi cikkében 9]. Szerepeljen itt a Gaspari által bemutatott bizonyítás, mivel nagyon egyszerű. Bizonyítás. Kezdjük a bizonyítást egy észrevétellel: azt állítjuk, hogy ha K osztja N-et, akkor m K osztja m N -et. Mivel és K osztja N-et, ezért A m N I A m N I mod K is teljesül. Mivel m K a legkisebb kitevő, amire a fenti kongruencia teljesül, m K kisebb (vagy egyenlő) mint m N. Tegyük fel, hogy m N = qm K + r, ahol 0 < r < m K. Ekkor A qm K+r I mod K, A qmk A r I mod K, I A r I mod K, A r I mod K. De m K volt a legkisebb ilyen kitevő, és r < m K, tehát ellentmondásra jutottunk. Térjünk rá a tétel bizonyítására! Tetszőleges j {1,..., k} esetében p α j j osztja N- et, tehát az előző észrevételünk miatt m α p j osztja m N -et. Tegyük fel, hogy M közös j többszöröse az összes m α p j számnak. Ekkor j Mivel p α j j A M I mod p α j j. számok prímhatványok, következik, hogy A M I mod p α p α k k. (A M I elemei oszthatóak az összes prímhatvánnyal, akkor a szorzatukkal is). Tehát A M I. Viszont ez azt jelenti, hogy m N osztja M-et. Mivel m N a legkisebb egész szám, amire a fenti kongruencia teljesül, következik, hogy m N a legkisebb közös többszöröse az m α p j j számoknak. Tehát elég prímhatványokra tudni a visszatérési időt, ebből már tetszőleges számra kiszámítható. De ez is egy nagyon komplikált feladat. Gaspari cikkének a függelékében m = 1,..., 195 periódusokra kigyűjtötte az összes p prímet, melyre m p = m ez nyújthat némi segítséget. 3. A visszatérést megelőző jelenségek A klaszterekre és szellemképekre vonatkozó észrevételek E. Behrends cikkéből 2] származnak. k

5 3.1. Klaszterek. A jelenség megértéséhez először tekintsük a teljes Z 2 rácsot. Legyen x = (x 1, x 2 ) és y = (y 1, y 2 ) két lineárisan független, egész koordinátájú vektor. Ekkor L = {ax + by a, b Z} egy rácsot határoz meg. Fontos elemi tény, hogy Z 2 \L elemszáma éppen det(x, y) = x 1 y 2 x 2 y 1 (bizonyításért lásd például a 3] vagy 7] hivatkozást). Tegyük fel, hogy van egy mintánk a Z 2 rácson, az egyszerűség kedvéért egy l l méretű fekete négyzet, míg minden más rácspont fehér. Legyen B egy invertálható 2 2 méretű mátrix, valamint 1 0 x = B 1 valamint y = B Amennyiben egy p 0 rácspont és p 0 + x is a fekete négyzetünkben vannak, ezek képe 1 egymás melletti fekete pont lesz az B-vel szorzás után, mivel Bx = Ugyanez igaz 0] p 0 +y-ra is. Majd ezen pontok képe mellett lesz p 0 +x+x, p 0 +x+y, p 0 +y +x stb. képe. Tehát ha a fekete négyzet egy p 0 pontjából felrajzolom az x és y által generált rácsot, veszem a metszetét a fekete négyzetemmel, egy klaszter ősképét kapom. Minél kisebbek x és y elemei, annál több pontból fog állni egy klaszter, tehát annál látványosabb a jelenség! 5 B By p 0 y x Bp 0 Bx 5. ábra. A fekete négyzet és metszete a p 0 -ból indított x, y által generált ráccsal (piros pontok), valamint a B által eredményezett klaszter. A karikázott pontok különböző klaszterbe kerülnek és kijelölik az összes klasztert. Amennyiben p 1 nincs benne a p 0 -ból indított rácsban, egy másik klaszterbe fog kerülni az B-vel szorzás után. Tehát a Z 2 \L elemszámára vonatkozó megjegyzésünk miatt a klaszterek száma így x 1 y 2 x 2 y 1 (amennyiben x és y elemei nem túl nagyok l-hez képest). Teljesen hasonló dolog történik, ha Z 2 helyett csak a Z 2 N N N rácsot tekintjük. Definiáljuk a következő műveletet: ha a N alatt az a szám {0,..., N 1} halmazba eső reprezentását értjük, akkor legyen a az a N és N a N számok közül a kisebb abszolút értékű. Ha a -műveletet vektorra vagy mátrixra alkalmazzuk, akkor elemenként értjük. Innentől gondoljunk B-re mint A egy hatványára. Legyen x, y Z 2 N olyan, hogy 1 0 Bx = valamint By =. 0] 1]

6 6 Jegyezzük ] meg, hogy x és y éppen B modulo N inverzének oszlopai, tehát ha B = b11 b 12, akkor b 21 b 22 b22 b12 x = valamint y =. b 21 b 11 Nyilván akkor látványos a jelenség, ha l nem túl kicsi N-hez képest. Ha x és y elemei viszont N-hez képest elég kicsik (azaz x és y elemei kis abszolútértékűek), megismételhető a korábbi érvelésünk, csak most a négyzet metszetét az L = {p 0 + ax + by 0 p 0,i + ax i + by i N 1, i = 1, 2} ráccsal vegyük, így kapjuk egy klaszter ősképét. A leglényegesebb észrevételeket az alábbi állítás összegzi. 1. Állítás (Behrends, 2]). Ha b 11, b 12, b 21 és b 22 kicsi, akkor klaszterek alakulnak ki B-vel szorzás hatására, méghozzá b 11b 22 b 12b 21 darab. Mivel A determinánsa 1, ezért ha B = A k, akkor a determinánsa szintén 1. Így b 11b 22 b 12b 21 értéke mindig ±1 modulo N. Mi a magyarázat arra, hogy a klaszterek mintha egy szabályos rácsban helyezkednének el? Válasszunk úgy p 0,... p r pontokat a fekete négyzetből, hogy közel vannak egymáshoz és mind különböző klaszterekbe mennek. Ezek képe adja a klaszterek közepét. Tehát a közepek képe b11 b21 p i,1 + p b i,2 21 b 22 lesz. Mivel a b ij számok kicsik, a középpontok képei ugyanazt a mintázatot fogják adni, mint a ] ] p i,1 b 11 b 21 + p i,2 b 21 b 22 mintázat, azaz B oszlopvektorai adják meg az irányokat, amelyekbe berendeződnek a klaszterek. k = ábra. Klaszterek (N = 400).

7 Tekintsünk most egy példát! A 6. ábrán emlékeztetünk arra a példára, amit már a bevezetésben láttunk. Ebben az esetben B = A 136 = tehát B = Tehát összesen = 401 klaszter van, és ezek a és 11 által meghatározott rács mentén helyezkednek el vektorok Szellemképek. Tegyük fel, hogy találhatunk olyan x, y Z 2 n lineárisan független vektorokat, melyekre Bx = x és By = y. (4) Ekkor az előző fejezetben látottakhoz hasonlóan vegyük az ábránk (legyen az négyzet vagy macska) metszetét egy p 0 pontból indított, x, y által generált ráccsal. Ha x és y elemei kellően kicsik, akkor az ábra metszete az említett ráccsal egy durvább verzió (vagy szellemkép), ami (4) alapján csupán eltolódik a B-vel való szorzás hatására. B y By p 0 x Bp 0 Bx 7. ábra. Egy szellemkép születése. Szintén az előző fejezetben alkalmazott érvelések alapján a szellemek száma x 1y2 x 2y1 és x, y adják meg az irányokat, melyek mentén a szellemképek sorakoznak. Behrends szellemképnek nevezi a torzított szellemképeket is, tehát amikor Bx = x teljesül, ahol x nem különbözik nagyon x-től. Lássunk egy példát! Tekintsük a 8. ábrán látható helyzetet, tehát legyen N = 400. Ekkor A 60 = Ekkor 2 x = 1] 3 valamint y = 1] jó választás, azaz A 60 x = x és A 60 y = y. Így = 5 szellemképet kapunk. Mi a helyzet a 61-edik iterációban? Ekkor 3 2 A 61 x = Ax = = x 4] valamint A 61 y = Ay = = y 1]. Tehát még mindig 5 szellem-macska lesz (mivel = 5), de ezeket eltorzítja a lineáris transzformáció, ami x, y-t x, y -be viszi.

8 8 k = 60 k = ábra. Baloldalt: szellemképek, jobboldalt: torzított szellemképek (N = 400) A periódus felénél. Tegyük fel, hogy az m N visszatérési idő páros. Így értelmes a kérdés, hogy mi történik az ábránkkal félidőnél, azaz m N /2 iteráció után. A bevezetésben láttuk, hogy előfurdulhat hogy félidőnél fejtetőn jelenik meg az ábránk. Mit is jelent ez? A fejtetőre fordulás tulajdonképpen az origóra vett középpontos tükrözés modulo N, azaz ilyenkor A m N /2 I teljesül. A következő állításban megfogalmazunk egy feltételt N-re, mely esetében garantáltan fejtetőre fordulást látunk a visszatérési idő felénél. 2. Állítás. Tegyük fel hogy N = p k vagy 2p k, ahol p > 2 prímszám, k N. Tegyük fel továbbá hogy N olyan, hogy m N páros. Ekkor szükségképpen A m N /2 I. Jegyezzük meg, hogy Dyson és Falk tétele alapján N = 5 k vagy N = 2 5 k esetében teljesülnek a tétel feltételei, és további példákat is lehetne még sorolni. Jó példa látható a 4. ábrán is, ahol N = 241 (ami prím), m N = 120 a 60. iterációnál pedig fejtetőn látjuk a macskát. Bizonyítás. Vegyük észre, hogy Mivel (A m N /2 ) 1 A mn (A m N /2 ) 1 = A m N m N /2 = A m N /2 A m N /2 b11 b 12 b 21 b 22 a következőknek kell teljesülnie: b 11 b 22 (A m N /2 ) 1 b 12 b 12 b 21 b 21 b22 b 12 b 21 b 11., Emlékezzünk, hogy b 12 = b 21 valamint b 11 + b 12 = b 22 mivel egymást követő Fibonacciszámok. Így valójában b 12 b Tehát A m N /2 egy diagonális

9 mátrix, megegyező átlóelemekkel: Mivel (A m N /2 ) 2 = A m N A m N /2 I, így b b 11. b (5) Mik lehetnek ennek a kongruenciának a megoldásai? A b 11 1 esetet kizárjuk, mivel m N /2 még nem a visszatérési idő. További triviális megoldás a b 11 1, ekkor A m N /2 I. Azt állítjuk, hogy a tételben felsorolt N-ekre nincs is más megoldás. Ha N = p k páratlan prím hatvány, akkor pedig nincs is más megoldás, ugyanis b mod p k, b mod p k, (b )(b 11 1) 0 mod p k. Ekkor vagy b 11 1 mod p k, vagy pedig b = n p l és b 11 1 = m p k l. De mivel b és b 11 1 legnagyobb közös osztója legfeljebb 2, ez nem történhet meg! Ha N = 2p k és LNKO(b , b 11 1) = 2, akkor b mod 2p k, (b )(b 11 1) 0 mod 2p k, b b mod p k. De ekkor már b 11+1 és b 11 1 relatív prímek, tehát b 11+1 többszöröse p k -nak így b mod 2p k. Jegyezzük meg, hogy (majdnem) pontosan akkor teljesül a tételünk, ha létezik primitív gyök modulo N, mert ekkor az x 2 1 kongruencia összes megoldása ±1. Primitív gyök pontosan N = 2, 4, p k és 2p k esetében létezik. A 2 és 4 esetet azért zártuk ki, mert ebben a két esetben a visszatérési idő 3, azaz nem páros. k = 0 k = 20 k = ábra. Klaszterek félperiódusnál (N = 231). Vizsgáljuk meg még azt az esetet, amikor m N páros, de további információnk nincsen. Ekkor a fenti bizonyítás alapján A m N /2 b11 0, 0 b 11

10 10 továbbá b Ilyen esetben is nyilván tapasztalhatunk fejtetőre fordulást, de más is történhet. Vegyük észre, hogy az b11 0 x = és y = 0 b 11 vektorokra teljesül, hogy 1 Bx 0] és 0 By 1] Tehát amennyiben b 11 kicsi, klasztereket fogunk látni, méghozzá (b 11) 2 darabot egy merőleges rácson. Nézzünk meg egy példát! Legyen N = 231 = Ekkor a 2. tétel alapján m 231 = LKKT{m 3, m 7, m 11 }. A 5] cikk függeléke alapján m 3 = 4, m 7 = 8 valamint m 11 = 5. Így kapjuk, hogy m 231 = 40 tehát páros. Kiszámítható, hogy 34 0 A 20 mod Így a 20. iterációban 34 2 = 1156 klasztert kapunk egy merőleges rácsban, mint ahogy az a 9. ábrán is látszik.

11 Hivatkozások 1] VI Arnold and A Avez. Ergodic problems of classical mechanics, WA Ben-jamin. New York, ] Ehrhard Behrends. The ghosts of the cat. Ergodic Theory and Dynamical Systems, 18(2): , ] John William Scott Cassels. An introduction to the geometry of numbers. Springer Science & Business Media, ] Freeman J Dyson and Harold Falk. Period of a discrete cat mapping. The American Mathematical Monthly, 99(7): , ] Gregory Gaspari. The Arnold cat map on prime lattices. Physica D: Nonlinear Phenomena, 73(4): , ] Godfrey Harold Hardy and Edward Maitland Wright. An introduction to the theory of numbers. Oxford University Press, ] Carl Ludwig Siegel. Lectures on the Geometry of Numbers. Springer Science & Business Media, ] Fredrik Svanström. Properties of a generalized Arnold s discrete cat map, ] DD Wall. Fibonacci series modulo m. The American Mathematical Monthly, 67(6): ,

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Waldhauser Tamás december 1.

Waldhauser Tamás december 1. Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet! 1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

illetve a n 3 illetve a 2n 5

illetve a n 3 illetve a 2n 5 BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Klasszikus algebra előadás. Waldhauser Tamás április 28. Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,

Részletesebben

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet: Gábor Miklós HHF0CX 5.7-16. Vegyük úgy, hogy a feleségek akkor vannak a helyükön, ha a saját férjeikkel táncolnak. Ekkor már látszik, hogy azon esetek száma, amikor senki sem táncol a saját férjével, megegyezik

Részletesebben

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...

RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,... RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2

Részletesebben

Szakács Lili Kata megoldása

Szakács Lili Kata megoldása 1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla

Lineáris leképezések (előadásvázlat, szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Lineáris leképezések (előadásvázlat, 2012. szeptember 28.) Maróti Miklós, Kátai-Urbán Kamilla Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: homogén lineáris egyenletrendszer és

Részletesebben

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hadamard-mátrixok Előadó: Hajnal Péter február 23. Szimmetrikus kombinatorikus struktúrák MSc hallgatók számára Hadamard-mátrixok Előadó: Hajnal Péter 2012. február 23. 1. Hadamard-mátrixok Ezen az előadáson látásra a blokkrendszerektől független kombinatorikus

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

SzA XIII. gyakorlat, december. 3/5.

SzA XIII. gyakorlat, december. 3/5. SzA XIII. gyakorlat, 2013. december. 3/5. Drótos Márton 3 + 2 = 1 drotos@cs.bme.hu 1. Határozzuk meg az Euklidészi algoritmussal lnko(504, 372)-t! Határozzuk meg lkkt(504, 372)-t! Hány osztója van 504-nek?

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Határozzuk meg a p valós paraméter értékétől függően a következő mátrix rangját: p 3 1 2 2

Részletesebben

1. Bázistranszformáció

1. Bázistranszformáció 1. Bázistranszformáció Transzformáció mátrixa új bázisban A bázistranszformáció képlete (Freud, 5.8.1. Tétel) Legyenek b és d bázisok V -ben, ] v V és A Hom(V). Jelölje S = [[d 1 ] b,...,[d n ] b T n n

Részletesebben

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.

Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma. Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.

Részletesebben

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek 3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:

Részletesebben

Kongruenciák. Waldhauser Tamás

Kongruenciák. Waldhauser Tamás Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika II., 8. előadás. Vektorterek 1 Diszkrét matematika II., 8. előadás Vektorterek Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2007.??? Vektorterek Legyen T egy test (pl. R, Q, F p ). Definíció.

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A parciális törtekre bontás?

A parciális törtekre bontás? Miért működik A parciális törtekre bontás? Borbély Gábor 212 június 7 Tartalomjegyzék 1 Lineáris algebra formalizmus 2 2 A feladat kitűzése 3 3 A LER felépítése 5 4 A bizonyítás 6 1 Lineáris algebra formalizmus

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások

Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások Numerikus módszerek I. zárthelyi dolgozat (2017/18. I., A. csoport) Megoldások 1. Feladat. (6p) Jelöljön. egy tetszőleges vektornormát, ill. a hozzá tartozó indukált mátrixnormát! Igazoljuk, hogy ha A

Részletesebben

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary) Acta Acad. Paed. Agriensis, Sectio Mathematicae 9 (00) 07 4 PARTÍCIÓK PÁRATLAN SZÁMOKKAL Orosz Gyuláné (Eger, Hungary) Kiss Péter professzor emlékére Abstract. In this article, we characterize the odd-summing

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Lineáris algebra. =0 iє{1,,n}

Lineáris algebra. =0 iє{1,,n} Matek A2 (Lineáris algebra) Felhasználtam a Szilágyi Brigittás órai jegyzeteket, néhol a Thomas féle Kalkulus III könyvet. A hibákért felelosséget nem vállalok. Hiányosságok vannak(1. órai lin algebrai

Részletesebben

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom

Részletesebben

1. A maradékos osztás

1. A maradékos osztás 1. A maradékos osztás Egész számok osztása Példa 223 = 7 31+6. Visszaszorzunk Kivonunk 223 : 7 = 31 21 13 7 6 Állítás (számelméletből) Minden a,b Z esetén, ahol b 0, létezik olyan q,r Z, hogy a = bq +

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Minden egész szám osztója önmagának, azaz a a minden egész a-ra.

Minden egész szám osztója önmagának, azaz a a minden egész a-ra. 1. Számelmélet Definíció: Az a egész szám osztója a egész számnak, ha létezik olyan c egész szám, melyre = ac. Ezt a következőképpen jelöljük: a Tulajdonságok: Minden egész szám osztója önmagának, azaz

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek

Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

1. zárthelyi,

1. zárthelyi, 1. zárthelyi, 2009.10.20. 1. Írjuk fel a tér P = (0,2,4) és Q = (6, 2,2) pontjait összekötő szakasz felezőmerőleges síkjának egyenletét. 2. Tekintsük az x + 2y + 3z = 14, a 2x + 6y + 10z = 24 és a 4x+2y

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5 D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév Kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév Kezdők I II. kategória II. forduló Kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy kört

Részletesebben

Elemi matematika szakkör

Elemi matematika szakkör Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az

Részletesebben

1. Transzformációk mátrixa

1. Transzformációk mátrixa 1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)

Részletesebben

SZÁMELMÉLETI FELADATOK

SZÁMELMÉLETI FELADATOK SZÁMELMÉLETI FELADATOK 1. Az 1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4 számokat a pitagoreusok háromszög számoknak nevezték, mert az összeadandóknak megfelelő számú pont szabályos háromszög alakban

Részletesebben

HALMAZOK TULAJDONSÁGAI,

HALMAZOK TULAJDONSÁGAI, Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja

VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag. Mátrix rangja VIK A2 Matematika - BOSCH, Hatvan, 3. Gyakorlati anyag 2019. március 21. Mátrix rangja 1. Számítsuk ki az alábbi mátrixok rangját! (d) 1 1 2 2 4 5 1 1 1 1 1 1 1 1 2 1 2 1 1 0 1 1 2 1 0 1 1 1 1 2 3 1 3

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a Számítsuk ki a 2i + 3j + 6k kvaternió inverzét. b Köbgyöktelenítsük a nevezőt az alábbi törtben: 1 3 3. Megoldás: a Egy q = a + bi + cj

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

1. ábra ábra

1. ábra ábra A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,

Részletesebben

Fermat karácsonyi tétele

Fermat karácsonyi tétele Budapest, 2015. december 17. A karácsonyi tétel Tétel. Minden 4k + 1 alakú p prímszámhoz léteznek a, b egészek, amelyekkel p = a 2 + b 2. Az állítás nem igaz egyetlen 4k + 3 alakú prímre sem. Fermat 1640.

Részletesebben

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2. Vektorok. Melyek egyenlőek az alábbi vektorok közül? (a) (, 2, 0), (b) az (, 0, ) pontból a (2, 2, ) pontba mutató vektor, (c) ( 2,, ) ( 2,, 2), (d) [ 2 0 ], (e) 2. 0 2. Írjuk fel az x + y + 2z = 0 és

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Tartalom. Algebrai és transzcendens számok

Tartalom. Algebrai és transzcendens számok Nevezetes számelméleti problémák Tartalom 6. Nevezetes számelméleti problémák Számok felbontása hatványok összegére Prímszámok Algebrai és transzcendens számok 6.1. Definíció. Az (x, y, z) N 3 számhármast

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 4. előadás Eulerséta: Olyan séta, mely a gráf minden élét pontosan egyszer tartalmazza. Tétel: egy összefüggő gráf. Ha minden

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, Leontyev-modell 9. Előadás Megyesi László: Lineáris algebra, 75. 84. oldal. Gondolkodnivalók Mátrix rangja 1. Gondolkodnivaló Tegyük fel, hogy egy elemi bázistranszformáció kezdetekor a sor- és oszlopindexek sorban helyezkednek

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben