X. OPTIKA 1. Fizika mérnököknek számolási gyakorlat (MEGOLDÁSOK) / I. félév

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "X. OPTIKA 1. Fizika mérnököknek számolási gyakorlat (MEGOLDÁSOK) / I. félév"

Átírás

1 / I. félév X. OPTIKA. Fény visszaverődése és törése síkfelületen X./. Készítsünk egy vázlatot: (nem célszerű mérethelyes ábrát készíteni) Az ABO, CDO és az EFO háromszögek hasonlóak, ezért a megfelelő oldalak aránya megegyezik: AB 0 + x =, innen x = CD + x 9 a másik két háromszöget felhasználva megkapjuk a teljes árnyék EF átmérőjét: CD + x 5 = =, EF x 6 6 így EF = cm = 0, cm. 5 A teljes árnyékot körülveszi egy gyűrű alakú félárnyék, ennek a külső szélét a GH átmérőjű kör határolja: 00 Itt az ABO, CDO és a GFO háromszögek hasonlóságát használjuk fel: y =, GH = 8, cm. X./0. Tételezzük fel, hogy az akvárium falának vastagsága elhanyagolható a többi méret mellett, és készítsünk rajzot, amelyen a delfin szeméből kiinduló fénysugár a megfigyelő két szemébe érkezik: A tárgyakat a szemünkbe jutó fény meghosszabbításában látjuk. Ezen az ábrán az akvárium falánál törik meg a fény, ezért a szemünkbe jutó fény kékkel rajzolt meghosszabbításában látjuk a delfin szemét. A számolásnál felhasználjuk, hogy az ember szemeinek távolsága a feladatban szereplő méretekhez képest kicsi, ezért a szögek is kicsik, sin α tgα. x sin α x x tg α tg sin, tg, tg és d D α α = nvíz β= α = = =,, sinβ D d tgβ x d tgβ sinβ D D D m ebből nvíz, innen d = = m = 075, m. d n víz A delfin szemét tehát az akvárium fala mögött 75 cm távolságban látjuk.

2 / I. félév X./5. A fény akkor nem jut át a számolás egyszerűsítése végett egyenesnek gondolt fényvezetőn, ha három törés után kilép a köpenyből. A jelöléseket használjuk az ábra szerint: Írjuk fel a törés törvényét egymás után a három törésre: sin α n sin γ n sin δ n0 =, =, =.. sinβ n sin δ n sin ε n 0 Akkor nem lép ki fény a köpenyen keresztül, ha δ eléri a teljes visszaverődés határszögét, vagy annál nagyobb. A n határszögnél ε = 90, sin δ h = 0, a második törést leíró egyenletből a δ h -hoz tartozó γ min -t számíthatjuk ki, a n feladat feltétele szerint a γ szög ennél nem lehet kisebb. Mivel a β és γ egy derékszögű háromszög két hegyes szöge, β = 90 γ, így β max = 90 γ min. Ezeket felhasználva a következőt kapjuk: sin αmax n n n n n =, sin α max = sinβ max = 0 sin ( 90 γ min ) = cos γ min = sin γ min = sinβ n n n n n max n n n n n n n n 0 0 = sin δ h = = = = n, n0 n n0 n n n0 n n0 sin α = n. max Ha n =,, akkor bármely beesési szög esetén áthalad a fényvezetőn a fény. X.6. Ha a prizmában a fénysugár útja merőleges a prizma törőszögének szögfelezőjére, a fénysugár szimmetrikusan halad a prizmában. Jelölje α és β a beesési és törési szögeket, φ a prizma törőszögét, valamint δ a nyaláb eltérítési szögét (mely jelen esetben a legkisebb eltérítési szög, ezért ezentúl δ min. -nel jelöljük). Geometriai megfontolásokból β = ϕ és min. + δ min. = ( α β ), ez utóbbiból α = δ ϕ. Írjuk fel a Snellius Descartes-törvényt a prizma lapján végbemenő törésre (a megadott n törésmutató a prizma anyagának a prizmát körülvevő közegre vonatkoztatott relatív törésmutatója): δ min. + ϕ sin sinα n = = ϕ, amelyből a legkisebb eltérítés szöge δ sin β ϕ min. = arcsin n sin ϕ. A legkisebb sin eltérítés szöge a két különböző törőszögű prizmára vonatkozóan: 5 60 δ 5 = arcsin,59 sin 5 = 6,08 és δ 60 = arcsin,59 sin 60 = 8,8.

3 / I. félév X./7. Az előző feladatból tudjuk, hogy a zöld fénysugárra az eltérítés szöge δ = δ60 = 8,8 lesz, és a háromszínű fénynyaláb δ + 60 ϕ 8,8 60 α = = + = 9, -os szög alatt érkezik a prizma első törőfelületére. A prizmában haladó fénysugár útja a kék sugárra nem a szimmetrikus sugármenetet követi, az eltérítés szögének kiszámításához az alábbi jelöléseket vezetjük be. Az ábra alapján felírható, hogy δ = α β + ε γ és ϕ = β + γ, amelyekből δ = α + ε ϕ. Írjuk fel ( ) ( ) a Snellius Descartes-törvényt az első törőfelületen bekövetkező törésre: sinα n = sin β, amelyből sinα sin 9, β = arcsin = arcsin = 9, 76. n, 50 A ϕ = β + γ összefüggésből γ = ϕ β = 60 9,76 = 0, adódik. Most a második törőfelületre írjuk fel a sinε Snellius Descartes-törvényt: n = sin γ, ebből ε = arcsin ( n ) ( ) sin γ = arcsin,50 sin 0, = 50, 0. Ezt az ábra alatt található összefüggésbe visszahelyettesítve: δ = α + ε ϕ = 9, + 50, 0 60 = 9,8. A vörös színű fénysugárra a fenti gondolatmenetet követve β = 0,, γ = 9,89 és ε = 8,98, ezekből δ = 8,0. A három eltérítési szögből a kilépő fénysugaraknak a középső, zöld színű nyalábbal bezárt szögük φ kék zöld = δ δ = 9,8 8,8 = 0,98 és φ vörös zöld = δ δ = 8,0 8,8 = 0,.

4 / I. félév XI. OPTIKA. Gömbtükrök és gömbi vékony lencsék XI./. f = 0 cm, t = 60 cm A tüköregyenletet használjuk fel: t f = +, =, k = = 0cm f t k k f t t f k 0 cm N = = =. t 60 cm XI./. A borotválkozó tükör használatánál egyenes állású képet nézünk, ez azt jelenti, hogy a kép látszólagos. Nagyított képet csak homorú tükörrel tudunk előállítani. Készítsünk erről egy vázlatot: d = 5 cm, N = Az ábra szerint: d = k + t k A nagyításból: N = =, k = t t Vagyis: d = t, t = d /, k = d /. XI./5. Helyettesítsünk a tüköregyenletbe: 6 = +, = = =, f t k f d d d d d 50 f = = cm. r = 0 cm, k = 60 cm A fókusztávolság f = r/ = 0cm. Használjuk fel a tüköregyenletet a tárgytávolság kiszámítására: ( cm) k f 60 0 cm 00 = +, =, t = = = cm = 5 cm. A nagyítás: f t k t f k k f 60 cm 0 cm 80 k 60 cm N = = =. t 5 cm XI./7. A domború tükör látszólagos, egyenes állású képet hoz létre, a tükör mögött. Az r = 0 cm görbületi sugár miatt f = 5 cm és k = cm.

5 / I. félév Számítsuk ki a tárgytávolságot: ( cm) ( 5cm) cm ( cm) k f 0 = +, =, t = = = cm = 0 cm. f t k t f k k f 5 XI./9. f = 0 cm, K = 0 cm, K =,5 cm, t = k és t = k. A nagyítás miatt: K k, K k t K K k t = = =. Innen = =, T = K K = cm 5, T = 5 cm. T t T t k T T t k Továbbá k t K 5 cm = = =, k = t. T 0 cm f A tüköregyenletből: = + = + =, innen t = = 0 cm, k = 60 cm. f t k t t t XI./. A képszerkesztésnél kihasználtuk, hogy az optikai tengellyel párhuzamos sugár mindhárom tárgyhelyzethez felhasználható! XI./. t = 60 m, T = 5 m, K = mm. Az adatokból kiszámíthatjuk a képtávolságot: A lencseegyenletet felhasználva: megbecsülhető, hogy az XI./5. 60 m k K K 0 m =, k = t = 60 m = 8 0 m = 8 mm. t T T 5 m,, f m f = t + k = m + m = , m 8 m. Ez abból a tényből is elhanyagolható az 80 m mellett. f = /D = / m = 5 cm, N = (látszólagos a kép). Szerkesztéssel is megoldhatjuk a feladatot. Rajzoljuk le a lencsét, és mellé a tárgyat. Az önkényesen kijelölt tárgytávolság háromszorosára (ugyanarra az oldalra) rajzoljuk a háromszoros méretű egyenes állású képet. Felhasználva, hogy a képpontban a valóságos sugarak meghosszabbításai metszik egymást, megrajzolhatjuk a tárgy- és képpontok felhasználásával a pirossal berajzolt nevezetes sugarakat, melyek az optikai tengelyből kimetszik a fókuszpontokat. 5

6 / I. félév Számítással pontosabb értékeket kapunk: k = t, = =, t = f = 6, 7 cm, k = 50 cm. f t t t XI./7. Az első lencséről úgy haladnak tovább a sugarak, hogy egy ponton, a fókuszponton átmennek. Vagyis a következő lencsére érkező sugarakat úgy tekinthetjük, mintha azok egyetlen pontból (az első lencse fókuszából indulnának). Egy pontból kiinduló sugarakat egy gyűjtőlencse akkor tesz párhuzamossá, ha a pontszerű forrás egybe esik a második lencse fókuszpontjával. Akkor lesz az elrendezés megfelelő, ha a két lencse egymás felőli fókuszpontja egybeesik. XI./9. f = 50 cm, r = 80 cm, n =,5 = ( n ) +, =, f r r f ( n ) r r ( ) r f ( n ) ( ) f n 50cm 0, 5 80cm r = = = 9, 68 cm. r 80cm 50cm 0, 5 XI./. f = 5 cm, d = 0 cm, t = (0 ) cm = 8 cm. 6

7 / I. félév Az első ábrán az a kép látható, amely úgy keletkezik, hogy a fénysugarak nem érintik a síktükröt: t f 8cm 5cm k = = =, 76 cm. Ez látszólagos kép, ernyőn nem fogható fel, nagysága K = k T = 7, T. t f 8cm 5cm t Az alsó ábrán, a fénysugarak először a síktükörre esnek, ott visszaverődnek (keletkezik egy látszólagos kép a tükör mögött K ), majd a visszaverődő sugarak úgy haladnak, mintha a K valóságos forrásuk lenne, ezután áthaladnak a lencsén, és létrehozzák a K valódi, ernyőn felfogható képet k távolságban: t f A K kép lencsétől való távolsága t = cm+ 0 cm = 5 cm., a képtávolság k = = 8, 5 cm. A harmadik kép t f nagysága K = k T = 09, T. t XII. OPTIKA. XII./. α p α p 90 β Ha a beesési szög egyenlő a polarizáció szögével, akkor a visszavert fény lineárisan poláros lesz (Brewster törvénye), a polarizáció, azaz az elektromos térerősség merőleges lesz a beesési síkra, és a visszavert és a megtört fénysugár egymásra merőleges ebben az esetben: a polarizáció szöge: sin α p = 0 nés α p +β= 90 felhasználásával, sinβ α p = 56,. XII./. A víz esetén a polarizáció szögre: tgα p = n összefüggésből: αp= 5,. XII./5. (a) Brewster-szög esetében a párhuzamos összetevő teljes egészében megtörik, így visszavert fénynyaláb egyáltalán nem lesz. (b) A fény egy része visszaverődik, a másik része megtörik. Mind a visszavert, mind a megtört fénysugár a beesési síkra merőlegesen polarizált lesz. XII./6. A polarizátoron a természetes fényből a polarizátor rezgésirányával párhuzamos elektromos térerősségkomponens jut át. Ez az összes lehetséges, azonos valószínűséggel előforduló térerősség adott irányra eső vetülete. Belátható, hogy a természetes fényből, a polarizátoron áthaladó fény intenzitása felére csökken. Ha a két szűrő szögét ϕ jelöli: I 0 I =I 0 / I =I 0 /8 I 8 0 I = Icos ϕ, cos ϕ= = =, cos ϕ=, ϕ= 0. A I polarizációs szűrők egymással 0 -os szöget zárnak be. 7

8 / I. félév XIII. A DEFORMÁLHATÓ TESEK FIZIKÁJA I. Szilárd testek rugalmassága XIII./. Ha egy függőleges helyzetű huzalra egy súlyt függesztünk, akkor a huzal úgy fog viselkedni, mint egy rugó. Fejezzük ki a rugóállandót a huzal méreteivel és az anyagának Young modulusával! A megnyúlásra vonatkozó Eq összefüggésből fejezzük ki az erőt: F = l, és hasonlítsuk össze a rugóra vonatkozó erőtörvénnyel, amely l Eq szokásos alakja: F = D l. Ebből látszik, hogy D =. l XIII./. l = 0,05 mm XIII./. A négy függesztő drótban ébredő többleterő összesen egyenlő a nehézségi erővel, ezért egy-egy drót megnyúlása: F mh mg l = l = l = l = 0, mm. Eq Eq Ed π XIII./. A szövegben a réz kompressziómodulusza adott, amely a kopresszibilitás reciproka, azaz p =,9 0 9 Pa XIII./5. d =,6 mm XIII./0. Jelöljük a keresett nyomás értékét p-vel, a gázoszlopok hosszát h i -vel, és mindkét gázrészre írjuk fel a Boyle-Mariotte törvényt: p h A= p h A,és p h A= p h A. XIII./. p p Innen: = és =. p 5 p Függőleges helyzetben a nyomásokra igaz az, hogy p = p +ρ h g ebből adódóan p =,97 0 Pa. Hg Hg, kg 5 0 m 0 κ= 7, 0 Tegyük fel, hogy a levegő normálállapotú a felszínen: ρ =, 9, p =,0 0 Pa. A barometrikus ρ0 gh 0 e p 0 magasságformula segítségével: ρ= ρ, ahonnan h = 5,55 km. m N 8

9 / I. félév XIV. A DEFORMÁLHATÓ TESEK FIZIKÁJA II. Folyadékok és gázok sztatikája XIV./. A munkahenger egyensúlyának az a feltétele, hogy a túlnyomásból származó erő egyenlő legyen a megemelendő max munka tárgy súlyával: max munka, p q mg p q m = g,07 t. XIV./. A test nyugalomban van, ezért a rá ható erők eredője nulla. A rugóban ébredő erő, a felhajtóerő felfelé mutat, míg a nehézségi erő lefelé mutató erő: Frugó + Ffelh. mg = 0, ahol Frugó + Ffelh. = m ρ víz g. Innen mρvíz g ρ= = 096 kg. mg F m rugó XIV./. Feltételezzük, hogy emberünk mindvégig jól egyensúlyoz, ezért a jég teljes egészében be tud merülni a vízbe úgy, hogy emberünk álló helyzetben marad és még a cipője sem merül a vízbe. Ennek feltétele: mg+haρ g haρ g, innen A = 6, 67 m. XIV./. A nyomások: p külső jég víz 5 pbelső =,80 0 kpa, =,0 0 kpa. Az erő a két felületre ható erő eredője: F = A( p p ) =,0 kn, ahol XIV./5. p * + h ρ g = p* + h ρ g = p, ahol Innen 0 Felületi feszültség és kapillaritás eredő belső külső 5 ρ A = 0, m. p 0 =, 0 0 Pa és p* a cső belsejében maradt levegő nyomása. ρ h =. ρ h XIV./. Ki kell számítani az új csepp sugarát: V = V, r = r. Ebből a felületi energia csökkenése: 7 E = α A= α(r π r π ) =,9 0 J. XIV./. α α A kapillárisban a folyadékoszlop emelkedése: h =, innen a sugár: r = =, 8 0 m = 0,8mm. ρ rg ρhg XV. A DEFORMÁLHATÓ TESEK FIZIKÁJA III. Folyadékok és gázok áramlása: a kontinuitási egyenlet, a Bernoulli-féle egyenlet és alkalmazásai XV./. A kontinuitási egyenlet szerint a Av = állandó, ezért Av = Av, vagyis A =6 cm. XV./. A zsilipre ható nyomás a vízszinttől mért távolsággal lineárisan nő. Osszuk fel a zsilipet azonos magasságú sávokra, az ezekre ható erő változását az ábrán láthatjuk. Természetesen ha a sávok számát növeljük, akkor ez a lépcsős függvény egyre jobban megközelíti a lineáris függvényt: Fmin + Fmax h 0 +ρgh( hd ) h ρgh( hd ) Feredő = = = = 759 N, h h ahol d a zsilip szélessége. Az erő támadáspontja a csatorna fenekétől számítva a vízmagasság harmadoló pontjában, vízszintes irányban a fele távolságban van. (Itt számolás helyett próbáljunk analógiát keresni. Tekintsünk egy derékszögű háromszög keresztmetszetű, homogén anyagú hasábot, és vizsgáljuk meg hol található annak a tömegközéppontja, ott lesz a nehézségi erő támadáspontja.) A kiáramlás sebességénél használjuk fel a Bernoulli-egyenletet, válasszuk az áramlási csövet úgy, hogy a felső vége a víz színén, az alsó vége a zsilip alatti nyílás legyen: 9

10 / I. félév * * h h m p0 + ρgh= p0 + ρv + ρ g, innen v = g h =, 77. Vagyis a kiáramlás sebessége egyenlő azzal s a sebességgel, amellyel h magasságból szabadeséssel érkezne a folyadék. * m= V ρ = dh v t ρ. Az ennek megfelelő A zsilip alatt t idő alatt kiáramló folyadék tömege: ( ) * impulzusváltozás: I = m v = ( dh v t) ρ v. Ez csak akkor lehetséges, ha a többi, a zsilipet nyomó víz I * F = = dh v ρ = 7 N erővel hat a kiáramló vízre, azaz ennyivel csökkenni fog a zsilipre ható erő, és ekkor a t zsilipre 08 N erő fog hatni. Réteges áramlások. A Poiseuille és a Stokes-féle törvény XV./5. A golyó lefelé fog mozogni, és amikor eléri az állandósult sebességét, akkor pedig felfelé fog mozogni, mozgására felírhatjuk, hogy mg+ F = F. Átalakítások után: v g ( ρ ρf ) ( ρf ρ ), vb r g r = = 9η 9η v v g b ρ ρf ρf ρ ell, r ( ) = = 5,5. r ( ) felh. mg = Fell,+ Ffelh,. A buborék g, innen a sebességek nagyságának hányadosa: XV./6. Az előző feladat megoldásában láttuk, hogy a gömb alakúnak feltételezett részecske állandósult sebessége ( ) ρ szén ρlevegő ρszén r g r g cm vszén = = 5, 0. A m magasságot így kb. 0 s alatt teszi meg. s 9η 9η XV./7. A csövön egységnyi idő alatt kifolyó folyadék mennyisége (Hagen Poiseuille törvénye szerint) I ~ p r. l A nyomáskülönbségről feltehetjük, hogy állandó (számottevően nem csökken a bödönben a méz magassága), így a töltéshez szükséges idők arányát a cső geometriai adatai határozzák meg: ( r ) t r l l 8 = = = =. t l l r r 0

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István

OPTIKA. Ma sok mindenre fény derül! /Geometriai optika alapjai/ Dr. Seres István Ma sok mindenre fény derül! / alapjai/ Dr. Seres István Legkisebb idő Fermat elve A fény a legrövidebb idejű pályán mozog. I. következmény: A fény a homogén közegben egyenes vonalban terjed t s c minimális,

Részletesebben

5.1. ábra. Ábra a 36A-2 feladathoz

5.1. ábra. Ábra a 36A-2 feladathoz 5. Gyakorlat 36A-2 Ahogyan a 5. ábrán látható, egy fénysugár 5 o beesési szöggel esik síktükörre és a 3 m távolságban levő skálára verődik vissza. Milyen messzire mozdul el a fényfolt, ha a tükröt 2 o

Részletesebben

Történeti áttekintés

Történeti áttekintés A fény Történeti áttekintés Arkhimédész tükrök segítségével gyújtotta fel a római hajókat. A fény hullámtermészetét Cristian Huygens holland fizikus alapozta meg a 17. században. A fénysebességet először

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.

2. OPTIKA. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül. 2. OPTIKA Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat

Részletesebben

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István

OPTIKA. Vékony lencsék, gömbtükrök. Dr. Seres István OPTIKA Vékony lencsék, gömbtükrök Dr. Seres István Geometriai optika 3. Vékony lencsék Kettős gömbelület (vékonylencse) énytörése R 1 és R 2 sugarú gömbelületek között n relatív törésmutatójú közeg o 2

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához A lencsék fogalma, fajtái Az optikai lencsék a legegyszerűbb fénytörésen alapuló leképezési eszközök. Fajtái: a domború és a homorú lencse. optikai középpont optikai

Részletesebben

Optika gyakorlat 5. Gyakorló feladatok

Optika gyakorlat 5. Gyakorló feladatok Optika gyakorlat 5. Gyakorló feladatok. példa: Leképezés - Fruzsika játszik Fruzsika több nagy darab ívelt üveget tart maga elé. Határozd meg, hogy milyen típusú objektívek (gyűjtő/szóró) ezek, és milyen

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával

A fény útjába kerülő akadályok és rések mérete. Sokkal nagyobb. összemérhető. A fény hullámhoszánál. A fény hullámhoszával Optika Fénytan A fény útjába kerülő akadályok és rések mérete Sokkal nagyobb összemérhető A fény hullámhoszánál. A fény hullámhoszával Elektromágneses spektrum Az elektromágneses hullámokat a keltés módja,

Részletesebben

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István

OPTIKA. Gömbtükrök képalkotása, leképezési hibák. Dr. Seres István OPTIKA Gömbtükrök képalkotása, Dr. Seres István Tükrök http://www.mozaik.info.hu/mozaweb/feny/fy_ft11.htm Seres István 2 http://fft.szie.hu Gömbtükrök Domború tükör képalkotása Jellegzetes sugármenetek

Részletesebben

d) A gömbtükör csak domború tükröző felület lehet.

d) A gömbtükör csak domború tükröző felület lehet. Optika tesztek 1. Melyik állítás nem helyes? a) A Hold másodlagos fényforrás. b) A foszforeszkáló jel másodlagos fényforrás. c) A gyertya lángja elsődleges fényforrás. d) A szentjánosbogár megfelelő potrohszelvénye

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25.

A geometriai optika. Fizika május 25. Rezgések és hullámok. Fizika 11. (Rezgések és hullámok) A geometriai optika május 25. A geometriai optika Fizika 11. Rezgések és hullámok 2019. május 25. Fizika 11. (Rezgések és hullámok) A geometriai optika 2019. május 25. 1 / 22 Tartalomjegyzék 1 A fénysebesség meghatározása Olaf Römer

Részletesebben

Geometriai Optika (sugároptika)

Geometriai Optika (sugároptika) Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás

25. Képalkotás. f = 20 cm. 30 cm x =? Képalkotás 25. Képalkotás 1. Ha egy gyujtolencse fókusztávolsága f és a tárgy távolsága a lencsétol t, akkor t és f viszonyától függ, hogy milyen kép keletkezik. Jellemezd a keletkezo képet a) t > 2 f, b) f < t

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

GEOMETRIAI OPTIKA I.

GEOMETRIAI OPTIKA I. Elméleti háttér GEOMETRIAI OPTIKA I. Törésmutató meghatározása a törési törvény alapján Snellius-Descartes törvény Az új közeg határához érkező fény egy része behatol az új közegbe, és eközben általában

Részletesebben

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István

OPTIKA. Vékony lencsék képalkotása. Dr. Seres István OPTIKA Vékony lencsék képalkotása Dr. Seres István Vékonylencse fókusztávolsága D 1 f (n 1) 1 R 1 1 R 2 Ha f > 0, gyűjtőlencse R > 0, ha domború felület R < 0, ha homorú felület n a relatív törésmutató

Részletesebben

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján

Optikai alapmérések. Mivel több mérésről van szó, egyesével írom le és értékelem ki őket. 1. Törésmutató meghatározása a törési törvény alapján Optikai alapmérések Mérést végezte: Enyingi Vera Atala Mérőtárs neve: Fábián Gábor (7. mérőpár) Mérés időpontja: 2010. október 15. (12:00-14:00) Jegyzőkönyv leadásának időpontja: 2010. október 22. A mérés

Részletesebben

24. Fénytörés. Alapfeladatok

24. Fénytörés. Alapfeladatok 24. Fénytörés Snellius - Descartes-törvény 1. Alapfeladatok Üvegbe érkezo 760 nm hullámhosszú fénysugár beesési szöge 60 o, törési szöge 30 o. Mekkora a hullámhossza az üvegben? 2. Valamely fény hullámhossza

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése.

A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. A kísérlet célkitűzései: A fénytani lencsék megismerése, tulajdonságainak kísérleti vizsgálata és felhasználási lehetőségeinek áttekintése. Eszközszükséglet: Optika I. tanulói készlet főzőpohár, üvegkád,

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú

Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Jegyzeteim 1. lap Fotó elmélet 2015. október 9. 14:42 Lencse típusok Sík domború 2x Homorúan domború Síkhomorú 2x homorú domb. Homorú Kardinális elemek A lencse képalkotását meghatározó geometriai elemek,

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül.

3. OPTIKA I. A tér egy pontján akárhány fénysugár áthaladhat egymás zavarása nélkül. 3. OPTIKA I. Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert vagy ők maguk fénysugarakat bocsátanak ki (fényforrások), vagy a fényforrások megvilágítják őket. A tárgyakat

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Egy háromszög egyik oldala 10 cm hosszú, s a rajta fekvő két szög 50 és 70. Számítsd ki a hiányzó szöget és oldalakat! Legyen a = 10 cm; β = 50 és γ = 70. A két szög ismeretében a harmadik

Részletesebben

MateFIZIKA: Szélsőértékelvek a fizikában

MateFIZIKA: Szélsőértékelvek a fizikában MateFIZIKA: Szélsőértékelvek a fizikában Tasnádi Tamás 1 2015. április 10.,17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Energiaminimum-elv a mechanikában (ápr. 10.) Okos szappanhártyák (ápr. 10.) Legrövidebb

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen

Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Optika gyakorlat 1. Fermat-elv, fénytörés, reflexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Fény, mint elektromágneses hullám, geometriai optika

Fény, mint elektromágneses hullám, geometriai optika Fény, mint elektromágneses hullám, geometriai optika Az elektromágneses hullámok egyik fajtája a szemünk által látható fény. Látható fény (400 nm 800 nm) (vörös ibolyakék) A látható fehér fény a különböző

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható.

A diákok végezzenek optikai méréseket, amelyek alapján a tárgytávolság, a képtávolság és a fókusztávolság közötti összefüggés igazolható. Az optikai paddal végzett megfigyelések és mérések célkitűzése: A tanulók ismerjék meg a domború lencsét és tanulmányozzák képalkotását, lássanak példát valódi képre, szerezzenek tapasztalatot arról, mely

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály 1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres

Részletesebben

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot?

FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? FÉNYTAN A FÉNY TULAJDONSÁGAI 1. Sorold fel milyen hatásait ismered a napfénynek! 2. Hogyan tisztelték és minek nevezték az ókori egyiptomiak a Napot? 3. Mit nevezünk fényforrásnak? 4. Mi a legjelentősebb

Részletesebben

X. OPTIKA. Fény visszaverődése és törése síkfelületen. * X./15. Egy fényvezető véglapjai síkfelületek. A fényvezető

X. OPTIKA. Fény visszaverődése és törése síkfelületen. * X./15. Egy fényvezető véglapjai síkfelületek. A fényvezető X. OPTIKA Fény visszaverődése és törése síkfelületen X./1. Egy pontszerű fényforrástól 1 m távolságra van a fekete papírból készített 1 cm átmérőjű fényrekesz (lyuk). A rekesz mögött 50 cm-re van az ernyő.

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk.

Megoldás: feladat adataival végeredménynek 0,46 cm-t kapunk. 37 B-5 Fénynyaláb sík üveglapra 40 -os szöget bezáró irányból érkezik. Az üveg 1,5 cm vastag és törésmutatója. Az üveglap másik oldalán megjelenő fénynyaláb párhuzamos a beeső fénynyalábbal, de oldalirányban

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

Geometriai optika. Alapfogalmak. Alaptörvények

Geometriai optika. Alapfogalmak. Alaptörvények Alapfogalmak A geometriai optika a fénysugár fogalmára épül, mely homogén közegben egyenes vonalban terjed, két közeg határán visszaverődik és/vagy megtörik. Alapfogalmak: 1. Fényforrás: az a test, amely

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Kidolgozott minta feladatok optikából

Kidolgozott minta feladatok optikából Kidolgozott minta feladatok optikából 1. Egy asztalon elhelyezünk két síktükröt egymásra és az asztalra is merőleges helyzetben. Az egyik tükörre az asztal lapjával párhuzamosan lézerfényt bocsátunk úgy,

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

A gradiens törésmutatójú közeg I.

A gradiens törésmutatójú közeg I. 10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek

Részletesebben

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v

c v A sebesség vákumbanihoz képesti csökkenését egy viszonyszámmal, a törémutatóval fejezzük ki. c v Optikai alapogalmak A ény tulajdonságai A ény elektromágneses rezgés. Kettős, hullám-, illetve részecsketermészete van, ezért bizonyos jelenségeket hullámtani, másokat pedig kvantummechanikai tárgyalással

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Javítási útmutató Fizika felmérő 2018

Javítási útmutató Fizika felmérő 2018 Javítási útmutató Fizika felmérő 208 A tesztkérdésre csak 2 vagy 0 pont adható. Ha a fehér négyzetben megadott választ a hallgató áthúzza és mellette egyértelműen megadja a módosított (jó) válaszát a 2

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai 016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző.

OPTIKA-FÉNYTAN. A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. OPTIKA-FÉNYTAN A fény elektromágneses hullám, amely homogén közegben egyenes vonalban terjed, terjedési sebessége a közeg anyagi minőségére jellemző. A fény sebessége: vákuumban közelítőleg: c km 300000

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő

2. Miért hunyorognak a csillagok? Melyik az egyetlen helyes válasz? a. A Föld légkörének változó törésmutatója miatt Hideg-meleg levegő 1. Milyen képet látunk a karácsonyfán lévı üveggömbökben? a. Egyenes állású, kicsinyített képet. mert c. Egyenes állású, nagyított képet. domborótükör d. Fordított állású, nagyított képet. b. Fordított

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK TÜKRÖK JELLEMZŐI, LENCSEHIBÁK. Optikai eszközök tükrök: sík gömb

B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK TÜKRÖK JELLEMZŐI, LENCSEHIBÁK. Optikai eszközök tükrök: sík gömb B5. OPTIKAI ESZKÖZÖK, TÜKRÖK, LENCSÉK KÉPALKOTÁSA, OBJEKTÍVEK JELLEMZŐI, LENCSEHIBÁK Optikai eszközök tükrök: sík gömb lencsék: gyűjtő szóró plánparalell (síkpárhuzamos) üveglemez prizma diszperziós (felbontja

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I.

Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. Értékelési útmutató az emelt szint írásbeli feladatsorhoz I. 1. C. B 3. B 4. C 5. B 6. A 7. D 8. D 9. A 10. C 11. C 1. A 13. C 14. B 15. B 16. B 17. D 18. B 19. C 0. B I. RÉSZ Összesen 0 pont 1 1. téma

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III. Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA Javítási-értékelési útmutató. feladat. M = kg tömegű, L =, m hosszú, könnyen gördülő kiskocsi

Részletesebben

Az elektromágneses sugárzás kölcsönhatása az anyaggal

Az elektromágneses sugárzás kölcsönhatása az anyaggal Az elektromágneses sugárzás kölcsönhatása az anyaggal Radiometriai alapfogalmak Kisugárzott felületi teljesítmény Besugárzott felületi teljesítmény A fény kölcsönhatása az anyaggal 1. M ΔP W ΔA m 2 E be

Részletesebben

Bevezető fizika (VBK) zh2 tesztkérdések

Bevezető fizika (VBK) zh2 tesztkérdések Mi a nyomás mértékegysége? NY) kg m 2 /s 2 TY) kg m 2 /s GY) kg/(m s 2 ) LY) kg/(m 2 s 2 ) Mi a fajhő mértékegysége? NY) kg m 2 /(K s 2 ) GY) J/K TY) kg m/(k s 2 ) LY) m 2 /(K s 2 ) Mi a lineáris hőtágulási

Részletesebben

Ugrásszerűen változó törésmutató, optikai szálak

Ugrásszerűen változó törésmutató, optikai szálak 9. Előadás Ugrásszerűen változó törésmutató, optikai szálak Ugrásszerűen változó törésmutatójú közeget két, vagy több objektum szoros egymáshoz illesztésével és azokhoz különböző anyag vagy törésmutató

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Optikai eszközök modellezése. 1. feladat Egyszerű nagyító (lupe)

Optikai eszközök modellezése. 1. feladat Egyszerű nagyító (lupe) A kísérlet célkitűzései: Az optikai tanulói készlet segítségével tanulmányozható az egyszerű optikai eszközök felépítése, képalkotása. Eszközszükséglet: Optika I. tanulói készlet Balesetvédelmi figyelmeztetés

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

Optika az orvoslásban

Optika az orvoslásban Optika az orvoslásban Makra Péter Orvosi Fizikai és Orvosi Informatikai Intézet 2018. november 19. Makra Péter (SZTE DMI) Optika az orvoslásban 2018. november 19. 1 99 Tartalom 1 Bevezetés 2 Visszaverődés

Részletesebben

Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor

Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Optika gyakorlat 7. Fresnel együtthatók, Interferencia: vékonyréteg, Fabry-Perot rezonátor Fresnel együtthatók A síkhullámfüggvény komplex alakja: ahol a komplex amplitudó: E E 0 exp i(ωt k r+φ) E 0 exp

Részletesebben

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje.

FELÜLETI FESZÜLTSÉG. Jelenség: A folyadék szabad felszíne másképp viselkedik, mint a folyadék belseje. Jelenség: A folyadék szabad felszíne másképp iselkedik, mint a folyadék belseje. A felületen leő molekulákra a saját részecskéik onzása csak alulról hat, a felülettel érintkező leegő molekulái által kifejtett

Részletesebben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben