Sok részecskéből álló rendszerek leírása II. rész Fény abszorpció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Sok részecskéből álló rendszerek leírása II. rész Fény abszorpció"

Átírás

1 Boltzma eloszlás So részecséből álló redszere leírása II. rész Féy abszorpció ε ε, N megülöböztethető, függetle részecse Termius egyesúlyba (zárt redszerbe), T= hőmérsélete ε egy részecse lehetséges eergiáa az ε eergiával bíró részecsé száma E = ε N = Ludwig Eduard Boltzma , osztrá fizius A Boltzma eloszlás függvéyformáa Fidy udit egyetemi taár 215, October 29 ε i, i = ε ε e T = e Δ ε T Boltzma fator ε 1, 1 ε,, Az eergia-szite bármely (,) ombiációára igaz Más ellegű példá a Boltzma eloszlásra 3. Kémiai reació reaciósebességée függése a hőmérsélettől Reació : A B A AB és BA reaciósebessége aráyosa azo reagese számával, amelye eergiáa eléri az ativációs gát agyságát. AB BA K = = cost e = cost e BA AB = e ε barrier ε A T ε barrier ε B T ε A ε B T A hőmérséletet változtatva és mérve a reaciósebességeet, az adatoból az ativációs eergia meghatározható Arrheius féle ábrázolás ε A ε B log K = log e 1 T Redezett redszerebe (ristályoba) a részecsé özötti ölcsöhatás megváltoztata az eletro állapotoat 4. Barometrius magasságformula A levegő sűrűsége az atmoszférába a tegerszittől mért magassággal (h) csöe: ρ( h) = e ρ() mgh T m a levegő részecséie átlagos tömege g gravitációs gyorsulás

2 A részecsé ölcsöhatása iszélesíti az atomi eergiasziteet Pl. Kristályba N ölcsöható azoos atom (~1 23 ) egy atomi ívó N ívóra hasad folytoos eergia o Izolált 11 Na atom eletroállapotai Eergia o tuladoságai és a Boltzma eloszlás eletromos tuladoságo optiai tuladoságo üres betöltött eergia 1s 2 2s 2 2p 6 3s 1 A1 A2 B A felhasadás legobba a ülső ívóat ériti átlapoláso is lehete A csoport ayagai A2 család: Δε T E gap 1eV Üres : ics eletro, amely eergiát vehete fel az eletromos térből Eletromos vezetés feltétele : eletro populáció E + Δε eergiával E vegyérté Kicsi a tiltott szélessége termiusa populálható T= K E g (ev) vegyérté = e = e 33 = vegyérté Δε = e T Tiltott szélessége T(szobahőmérsélet)=.23 ev Si Ge N vegyérté ! /cm 3 A1 család: pl. gyémát: Δε= 5.4 ev vez vegy Δε >> T 5.4 = e.23 = e 235 = > termiusa em populálható szigetelő Nics VIS foto elyelés átlátszóa ~ 2.5 ev Vezetési Egap Vegyérté e tipusú vezetés (eletro vezetés) σ p tipusú vezetés (eletro lyu vezetés: + töltés vezet) Egy geresztéssel ét töltéshordozó geerálódi E gap e 2T

3 A2 család: σ = Gyegé függ T től E gap cost e 2T Optiai alalmazáso: foto iduált vezetés féyérzéelő alalmazáso hf VIS > E gap Tiszta (itrisic) félvezető Egyesúlyba: a töltése eltése és reombiációa azoos valószíűségű p(reombiáció)~ 2, p(eltés)~ Boltzma fator Falagos vezetőépesség ő a hőmérsélettel thermoresistor: hőmérő E gap icsi VIS foto (~ 2 ev) elyelés em átlátszóa B csoport ó vezető e.g. 1 és 2 vegyértéű féme Na, Mg, Cu.. (töltés)/m 3 Falagos elleállás (Ohmxm) Cu Eletro vezetés lehetséges a részlegese betöltött ba eletro vezetés optiai (VIS) fotooat elyeli átlátszatla Si 9x1 28 1x1 16 2x1 8 3x13 T=293 K Részlegese betöltött vegyérté eletrooal σ 1 T Falagos vezetőépesség csöe a hőmérsélettel Vezetési félvezető Speciális A2 család Szeyezéses félvezető 4 vegyértéű Ge rács szeyezése 5 vegyértéű As atomoal Dopig: ige is meyiségű másodi ompoes (dopat/szeyező) beültetése egy félvezető ristályrácsába (gazdarács). N gazdarács N szeyez ő 6 1 A szeyező atomo egymástól izolálta a gazdarácsba Gyegé ötött ötödi eletro öye gereszthető tipusú vezetés Az ötlet: a másodi ompoes csöetheti a gazda félvezető tiltott szélességét, és ezzel megövelhető a termiusa geresztett töltéshordozó száma. Két ombiáció 4 vegyértéű gazdarácsba 5 vegyértéű szeyező 4 vegyértéű gazdarácsba 3 vegyértéű szeyező gazdarácso: Ge, Si szeyező: 5 vegy. : P, As, Bi 3 vegy. : B, Al, Ga, I tipusú p tipusú vegyérté A door ívó csa az izolált szeyezőö létezi. Vezetéshez az eletrooat geresztei ell a ba, de ehhez ige is eergiát ell csa fedezi.

4 4 vegyértéű Ge ristályba 3 vegyértéű Ga szeyező Szeyezéses félvezető összefoglalás Egy Ge ötési eletroa ics partere a Ga részéről öye fogad máshoa Ge eletrooat p tipusú vezetés Gap~1 ev.5.1 ev vegyérté Az aceptor ívó csa a szeyező létezi, de az eletro lyua szabado mozoghata a vegyérté ba és p tipusú szeyezéses félvezető ombiációával az eletromos áramörö alapegységei alaítható i : dióda (egyeiráyító) és trazisztor (áramerősítő) + Trazisztor Dióda (yitott) ϕ oll > ϕ bázis + p + p esey Light Emittig Diode LED dióda: trazisztor: erősítő egyeiráyító feszültségre apcsolva számítógépe memória eleme: bistabil multivibrátor féyforrás LED átalaító : féyt feszültséggé : CCD Szeyezés ige is területe ialaíthat egy egységet miroszópius méretű áramörö miroeletroia eletromos feszültség töltésvádorlás p átmeet határrétegébe eletro lyu reombiáció Féyemisszió (E gap =hf)

5 1956 Fiziai Nobel dí a trazisztor feltalálásáért oh Bardee, William Shocley ad Walter Brattai at Bell Labs, Fiziai Nobel dí a é LED megvalósításáért Isamu Aasai, Shui Naamura, Hiroshi Amao, oh Bardee II.Nobel 1972 Szupravezetés elmélete Walter Brattai Redívűló ísérleti fizius Ké féyt emittáló LED Eletromágeses sugárzáso Optia: féyel apcsolatos elesége Frevecia Hz Ú feezet: vissza a féy témaörhöz.. Féy és ayag ölcsöhatása Mirohullámo Rötge sugárzás Gamma sugárzás Rádió hullámo Ultraibolya Ifravörös Hullámhossz, m hosszabb hullámhossza: hullám leírás Rövidebb hullámhossza: foto-ép

6 Féy ayaggal ölcsöhatásba Kétféle leírás haszálatos hullám ép foto ép E foto = hf E = E B = B max max si ( 2π t + 2π x + Φ) T λ si ( 2π t + 2π x + Φ) T λ Amplitudó B Lieárisa poláros féy A féy itezitás gyegülése ayagi ölcsöhatásba Leírás foto-épbe < féysugár ayag A féy sugárzás paraméterei: hullámhossz λ frevecia f=1/t fázis φ itezitás (aráyos az amplitudó égyzetével) az E és B vetoro iráya a féy teredési iráya ( c vetor) Ayagi ölcsöhatás féy sugárzás paraméterei megváltoza A övetezőbe: féy itezitás csöeését oozó ölcsöhatáso és a hatás vatitatív leírása hf hf hf U T U T hullámcsomag t t hf < = ΔP W 2 ΔA m E N hf P = Δ = Δt Δt fotoo N száma csöet az ayag felhaszálta elyelte ABSZORBEÁLTA Féy és ayag ölcsöhatása Foto-ép ayag Egy eletro aor tud felhaszáli egy E foto eergiát ha va olya megegedett eergiaállapot, ahova ez az eergia felvétel átviszi. atomo/moleulá belül foto geresztés szabad eletro állapotoba foto ioizáció hf hf hf hf Sémá féy abszorpcióval törtéő geresztésre 1 foto 1 eletro A féyfoto az ayagba az eletroal hat ölcsö Mire tuda haszáli a ötött eletro a féy foto eergiáát? E foto = ev? Megegedett, hogy a ötött eletro eergiát vegye fel? Izolált atomo és moleulá gáz fázisba oldatba moleulaomplexbe ágyazva E foto = hf = Δε pálya Csa specifius fotoeergiá yelőde el Kristályos szilárd ayago Vezetési Vegyérté E foto = hf Δε gap Féme: ics eergia gap, mide foto elyelődi

7 Pályaeergiá Eletro pálya-eergiá a Cu atomba (29 eletro) Féyfoto : hf icsi Külső eletropályá özötti átmeet Δε pálya eergia ülöbség ő a maghoz özeledve A féy abszorpció feomeológius leírása (A sugárzás itezitásáa gyegülése abszorpció öveteztébe) Godolat-ísérlet: egyszerű elredezés Felületre merőlegese beeső sugáryaláb Abszorbes: homogé sűrűség és ayagi miőség x < 9 o Növelü az abszorbes x rétegvastagságát Milye függvéyt apu a mérésből? = ΔP W 2 ΔA m E ΔN hf P = Δ = Δt Δt x hf eergiáú fotoo száma A mérés eredméye, ha x tige is Δx rétegeét övelü Egy elemi lépésbe: Δ = μ Δx = e μx μ: lieáris abszorpciós együttható az abszorpció oát, léyegét tartalmazza Az abszorpció révé beövetező sugáritezitás gyegülés expoeciális törvéye Az itezitás csöeése egyeese aráyos az elemi réteget érő itezitással és az elemi réteg vastagságával μ függ: a sugárzás miőségétől (fotoeergiától, részecsesugárzás ietius eergiáától) az ayagi miőségtől (az ayagba levő ölcsöhatási lehetőségetől) az x rétegvastagságba ele levő ölcsöható moleulá meyiségétől (sűrűség) -Δ μx ( 1 1 ) Δx = 1 μ = ( 1 1 ) e = Δx lépéseét haladva x-ig: Δx et végtele icsire fiomítva Sugárzáso, amelye abszorpcióára érvéyes az expoeciális törvéy Féy (UV VIS IR) Rötgesugárzás γ sugárzás β sugárzás (x= 3 4 szer a felezési rétegvastagság(d) ig)

8 Az expoeciális abszorpció törvéy grafius ábrázolása Abszorpciós spetroszópia spetrofotometria o = e μ x o1 Abszorpciós spetrum : milye fotoeergiá yelőde el a moleulára ellemző o /2 o /e Felezési rétegvastagság D: az x érté, ahol = o /2 = 2 x D δ = 1 μ o2 μ = l 2 =.693 D D A x függvéy méréséből μ meghatározható lg λ = c f λ vagy hf = e μx lg = lg e μ x lg = ε c x Lambert Beer törvéy híg oldato ε : deadius moláris extició Abszorbacia vagy Optiai Dezitás (OD) vagy Extició műszerrel mérhető meyiség Abszorpciós spetrofotométer felépítése Spectrofotometria abszorpciós spetroszópia híg szíes oldatoo ocetráció meghatározás célából megvilágítás Gyegített itezitás mita Referecia (=oldószer) Keresedelmi forgalomba levő műszere oldato mérésére észüle lg λ Bázis: Beer Lambert törvéy μ( λ) = ε ( λ) c = e μx log = log e μ x = ε ( λ) c x Híg oldatoba az abszorbacia (vagy OD) adott hullámhosszo egyeese aráyos az oldat ocetrációával (x=1 cm) Pl. laboratóriumi mérésbe: a mita oldat, 1 cm 2 eresztmetszetű üvettába x = 1 cm Spetrofotométerrel mérhető Aráyossági téyező: moláris extició ( s együttható) Ismert ocetrációú oldattal meghatározható Lásd Gyaorlati egyzet

9 Köszööm a figyelmet!

2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire

2. Gázok 2.1. Ideális gáz. Első rész: előző előadás folytatása. Gázok. Fázisátalakulások. További példák a Boltzmann eloszlás következményeire Első rész: előző előadás folytatása Gázo Fázisátalauláso További példá a Boltzma eloszlás övetezméyeire. Gázo.1. Ideális gáz Ideális gáz állapot jellemzése ics ölcsöhatás E =0 szerezete redezetle Potszerűe

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budaesti Műszaki és Gazdaságtudomáyi Egyetem Elektroikus Eszközök Taszéke MIKROELEKTRONIKA, VIEEA306 Félvezető fizikai alaok htt://www.eet.bme.hu/~oe/miel/hu/03-felvez-fiz.tx htt://www.eet.bme.hu Budaesti

Részletesebben

Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.

Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van. Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

A fény tulajdonságai

A fény tulajdonságai Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó

Részletesebben

Miért érdekes? Magsugárzások. Az atom felépítése. Az atommag felépítése. Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet

Miért érdekes? Magsugárzások. Az atom felépítése. Az atommag felépítése. Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Miért érdekes? Magsugárzások Dr Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika) - teráia (sugárteráia)

Részletesebben

Sok részecskéből álló rendszerek leírása

Sok részecskéből álló rendszerek leírása So észecséből álló edszee leíása Pof. Fdy Judt 2014 otóbe 15 észecse: atom, atomcsopot moleula maomoleula so: 6x10 23 Egyszeű példa Egyszeű példa V, p, T Levegő egy szobába. Hogya telesít a gáz észecsé

Részletesebben

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic

E (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses

Részletesebben

SZIGETELŐK, FÉLVEZETŐK, VEZETŐK

SZIGETELŐK, FÉLVEZETŐK, VEZETŐK SZIGETELŐK, FÉLVEZETŐK, VEZETŐK ITRISIC (TISZTA) FÉLVEZETŐK E EXTRÉM AGY TISZTASÁG (kb: 10 10 Si, v. Ge, 1 szennyező atom) HIBÁTLA KRISTÁLYSZERKEZET abszolút nulla hőmérsékleten T = 0K = elektron kevés

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

FOLYADÉKKRISTÁLY-TELEVÍZIÓK Éber Nándor

FOLYADÉKKRISTÁLY-TELEVÍZIÓK Éber Nándor FLYADÉKKRISTÁLY-TLVÍZIÓK Éber Nádor A 21. SZÁZAD KÉPRNYÔI MTA SZFKI, Budapest A szerezetü és tulajdoságai alapjá a folyadéo és a szilárd ayago özött sajátos átmeetet épezô folyadéristályo felfedezésü (1888)

Részletesebben

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD

A csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- 5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI- FÉLE RELATIVITÁSI ELV m, m,,m r, r,,r r, r,, r 6 db oordáta és sebességompoes 5.. Dama Mozgásegyelete: m r = F F, ahol F jelöl a

Részletesebben

VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév)

VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév) 1 VILLAMOS ENERGETIKA Vizsgaérdése (BSc. 2011. tavaszi félév) 1. Isertesse a villaoseergia-hálózat feladatr szeriti felosztását a jellegzetes feszültségsziteet és az azohoz tartozó átvihető teljesítéye

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet): . Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

24. Kombinatorika, a valószínűségszámítás elemei

24. Kombinatorika, a valószínűségszámítás elemei 4. Kombiatoria, a valószíűségszámítás elemei Kombiatoria A véges halmazoal foglalozó tudomáyterület. Idő hiáyába csa a evezetes összeszámolásoal foglalozu. a) Sorbaállításo (ermutáció) alafeladat: ülöböző

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Kvantummechanika II. 8. előadás

Kvantummechanika II. 8. előadás Kvatummehaika II. KVANTUMMCHANIKA NINCS KIRÁLYI ÚT! 8. előadás Aiómák A. A Shrödiger-egyelet B. r, t dv aak a valószíűségét adja, hogy a potszerű elektro az helyvektor dv köryezetébe megtalálható. C. Az

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Kvantum Hall-effektus óra

Kvantum Hall-effektus óra Kvatum Hall-effetus -3. óra Irodalom: S. Datta: Electroic Trasport i Mesoscopic Systems, Cambridge Uiv. Press, (997) J. Bird: Electro Trasport I Naosturctures http://www.eas.asu.edu/~bird/images/teachig.htm

Részletesebben

MITŐL LÉZER A LÉZER? Dr. Horváth Zoltán György MTA Wigner FK

MITŐL LÉZER A LÉZER? Dr. Horváth Zoltán György MTA Wigner FK MITŐL LÉZER A LÉZER? Dr. Horváth Zoltá György MTA Wiger FK 2018 NEM MIND LÉZER, AMI FÉNYLIK! Light Amplificatio by Stimulated Emissio of Radiatio MI A LÉZER? (a mai közfelfogásba) Mookromatikus Koheres

Részletesebben

Szabályozó szelepek (PN 16) VF 2-2 utú szelep, karima VF 3-3 járatú szelep, karima

Szabályozó szelepek (PN 16) VF 2-2 utú szelep, karima VF 3-3 járatú szelep, karima Szabályozó szelepe (PN 16) VF 2-2 utú szelep, arima VF 3-3 járatú szelep, arima eírás Jellemző: ágytömítéses ostrució Gyorscsatlaozó az AMV(E) 335, AMV(E) 435 -hez 2- és 3 Alalmazás everő és osztó azelepét

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1 A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

A csatornakódolás elve A hibatűrés záloga: a redundancia

A csatornakódolás elve A hibatűrés záloga: a redundancia Az Iformatia Elméleti Alapjai dr. Kutor László A csatoraódolás elve A hibatűrés záloga: a redudacia http://mobil.i.bmf.hu/tatargya/iea.html Felhaszálóév: iea Jelszó: IEA07 BMF NIK dr. Kutor László IEA

Részletesebben

Az elektromágneses sugárzás kölcsönhatása az anyaggal

Az elektromágneses sugárzás kölcsönhatása az anyaggal Az lktromágnss sugárzás kölcsönhatása az anyaggal A fény kölcsönhatása az anyaggal visszavrődés A fény kölcsönhatása az anyaggal 2. törés szórás lnylődés Elnylődés 1 2 3 4 Δ Az intzitás gyngülésénk törvény

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

Sok részecskéből álló rendszerek leírása

Sok részecskéből álló rendszerek leírása So észecséből álló edszee leíása Fdy Judt egyetem taá 013 ovembe 7 észecse: atom, atomcsopot moleula maomoleula so: 6x10 3 gyszeű példa So észecse ölcsöhatásba V, p, T Levegő egy szobába. Hogya telesít

Részletesebben

Ú Ú Ü Ü ű ű ű É Ú É ű

Ú Ú Ü Ü ű ű ű É Ú É ű É Ó ű ű Ö Ú Ú Ü Ü ű ű ű É Ú É ű É ű ű ű Ü ű É ű Ű Ö ű ű ű Ú Ú É É Ó Ó Ú ű ű É Ú É Ü Ü Ú ű Ú Ó É Ü ű É ű ű ű Ö ű ű ű Ö Ö Ú ű Ü Ú Ö ű Ü ű Ü ű ű Ü Ö ű ű ű Ú Ü Ú Ó ű ű É É ű ű ű ű ű Ö ű ű ű ű ű ű ű Ö ű ű ű

Részletesebben

Ó Ó ú ú ú ú ú É ú

Ó Ó ú ú ú ú ú É ú É Ö É ű ú É Ó É ú ú ú Ó Ó ú ú ú ú ú É ú Ó Ó ú É ú É ú Ó Ö É Ó Ó ú É ú Ö Ó Ó ú ú É É É ú Ó Ó É ú ú ú ú ú ú ú ú ú ú É Ú É Ó Ó ú ú Ó Ó Ö Ö É É É ú É É ú ú É É Ó Ó É Ű ú É Ó Ó Ű Ú ú ú É Ú Ú É Ú Ó Ó Ó É É É

Részletesebben

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű

ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű ű Ö É ű É Ö ű ű ű ű ű ű ű ű ű Ö ű ű ű Ú ű ű ű Ö ű ű ű ű ű ű ű Ú Ú Ú Ü É É É É ű É Ú É ű É Ó Ö É É ű ű ű É ű Ö Ö ű Ö Ú ű ű ű Ú ű ű ű Ö ű ű ű É ű ű ű Ó Ü É É Ú Ú Ü Ü Ö Ó ű Ü Ü ű ű É Ó Ó ű ű Ü Ö Ó Ö Ü Ü ű

Részletesebben

Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú

Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú É Ó Ö É Ü ű ú Ü ÉÚ É ú ú ű ú Ó ú É ú É É É Ő ú ú ű Ó Ö É É ú Ü ú É ú Ó ú Ü Ü ú ű Ü Ö Ó ú ú ú ú É Ü ú ú Ü Ü Ó Ó É ú ú É É É É Ú Ü Ü ú Ü ú ú É Ő Ő ú É Ó Ó É Ő Ü Ó Ő ú Ó Ó É É ú Ü Ó Ó Ó É ú Ü Ú Ö Ü É ú Ó

Részletesebben

Ó Ó É ü É ü ü

Ó Ó É ü É ü ü É Ó É Ú ü ű ú ú ü ü ü Ó Ó É ü É ü ü Ó ü ü ü É ü ü Ó É É ü ü ü ü ü ü ü ü ü ü ü ü ü Ó Ó ü ü ü ü ü ü ü É ü ü É ü ü ü ü ü ü Ó ü ü ü ü ü ü ü ü É Ó ü ü É Ó Ó ü ü ü ü ü É ü ü ü É ü ü ü ü ü Ó Ó ú ü ü ü ü ü ü Ó

Részletesebben

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü

ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü Ö ü ö ő ú ö ü ű ö ö ö ö ő ő ö ő ü ö ö ő ö ö ü ú ö ü ő ő ö ú ő ü ü ü ű ű ű ő ű ű ű ö ő ú ö ő ő ő ő ő ő ő ű ő ő ő ő ü ü ő ü ü ő ú ü ő ő ü ü ü ő ú ü ő ü ü ő ő ü ü ő ő ú ő ú ő ü ü ő ü ő ú ü Ü ő ő ö ő ü ő ü

Részletesebben

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség

Részletesebben

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Számítástudományi Tanszék Eszterházy Károly Főiskola.

Számítástudományi Tanszék Eszterházy Károly Főiskola. Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés

Részletesebben

UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm

UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben

Részletesebben

-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.

-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek. Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Az anyagi rendszer fogalma, csoportosítása

Az anyagi rendszer fogalma, csoportosítása Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik

Részletesebben

Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék

Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék Biológiai makromolekulák Makromolekulák A makromolekulák agyszámba ismétlődő, kovales kötéssel összekapcsolt kis egységekből (molekulából) felépülő egységek. Típusok: Szitetikus polimerek Pl. poly(viyl

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Környezet diagnosztika fizikai módszerei-4; Lambert-Beer törvény; PTE FI-10; dr. Német Béla

Környezet diagnosztika fizikai módszerei-4; Lambert-Beer törvény; PTE FI-10; dr. Német Béla A szabad atomok fényelnyelése. Lambert-Beer törvény http://www.tankonyvtar.hu/kemia/atomabszorpcios-080904-8 http://hu.wikipedia.org/wiki/lambert Beer-törvény Története A törvényt Pierre Bouguer ismerte

Részletesebben

A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL I. A TÖKÉLETES GÁZ KÉMIAI POTENCIÁLJA

A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL A KÉMIAI POTENCIÁL I. A TÖKÉLETES GÁZ KÉMIAI POTENCIÁLJA kémiai oteciál fogalma és számítása egy- és többkomoesű redszerekbe. I. tökéletes gázok kémiai oteciálja II. reális gázok kémiai oteciálja. Fugacitás. III. Folyadékok kémiai oteciálja. IV. kémiai oteciál

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

Hőmérsékleti sugárzás

Hőmérsékleti sugárzás Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális

Részletesebben

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK Mőbiusz Nemzetözi Meghívásos Matematia Versey Maó, 0. március 6. MEGOLDÁSOK 5 700. Egy gép 5 óra alatt = 000 alatt 000 csavart. 000 csavart észít, így = gép észít el 5 óra 000. 5 + 6 = = 5 + 5 6 5 6 6.

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

Geometriai optika. Fénytani alapfogalmak, a fény egyenes vonalú terjedése

Geometriai optika. Fénytani alapfogalmak, a fény egyenes vonalú terjedése Az optka felosztása Geometra optka Fzka optka (hullámoptka) Kvatumoptka Geometra optka Féyta alapfogalmak, a féy egyees voalú terjedése Féyta alapfogalmak féyforrás féyyaláb féysugár F D F r O y x Potszerű

Részletesebben

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok

Orvosi biofizika II. Orvosi Biofizika II. Az X-sugár. Röntgen- sugárzás Előállítás, tulajdonságok Orvosi biofizika II Orvosi Biofizika II Röntgensugárzás előállítása és tulajdonságai Röntgendiagnosztikai alapok Az elektromosság orvosi alkalmazásai Termodinamika - egyensúly, változás, főtételek Diffúzió,

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés _. Bevezetés iesztési red, iterpoáió, eemtípuso Végeseem-módszer Mehaiai eadato matematiai modejei Poteiáis eergia áadóértéűségée tétee: Lieárisa rugamas test geometriaiag ehetséges emozduás-aavátozás

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

A kristályszerkezet hibái (rácshibák)

A kristályszerkezet hibái (rácshibák) PR/B10/05DJVV0503BT00124BF0117 A kristályszerkezet hibái (rácshibák) Darabot Sádor (Kolozsvár, Romáia), Jeei Istvá (Stockholm, Svédország), Vicze Jáos (Budapest), Vicze-Tiszay Gabriella (Budapest) Kristályhibáak

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2.

Intervallum Paraméteres Hipotézisek Nemparaméteres. Statisztika december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Statisztika Hipotézisvizsgálat Székely Balázs 2010. december 2. Itervallum Paraméteres Hipotézisek Nemparaméteres Előadás vázlat 1 Itervallumbecslések

Részletesebben

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS

ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS ÖSSZEFÜGGÉSVIZSGÁLAT, PARAMÉTERBECSLÉS Összefüggésvizsgálat, paraméterbecslés A kísérletek sorá a redszer állapotát ellemző paraméterek kapcsolatát vizsgáluk. A yert adatok alapá felállítuk a redszer matematikai

Részletesebben

Vizsgatételek főiskolai szintű villamosmérnök szakos levelező hallgatók számára Fizika II. GEFIT122L

Vizsgatételek főiskolai szintű villamosmérnök szakos levelező hallgatók számára Fizika II. GEFIT122L izsgatételek főiskolai szitű villamosmérök szakos levelező hallgatók számára Fizika II. GFIT1L 1. Kiematikai alapfogalmak. pálya, a sebesség és a gyorsulás defiíciója. Mozgás leírása derékszögű koordiáta-redszerbe.

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Ezt kell tudni a 2. ZH-n

Ezt kell tudni a 2. ZH-n Ezt ell tudni a. ZH-n Turányi Tamás ELTE Kémiai Intézet A sebességi együttható nyomásfüggése 1 Sebességi együttható nyomásfüggése 1. unimoleulás bomlás mintareació: H O bomlása H O + M = OH + M uni is

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Az elektron hullámtermészete. Készítette Kiss László

Az elektron hullámtermészete. Készítette Kiss László Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses

Részletesebben

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény

Részletesebben

OPTIKA. Vozáry Eszter November

OPTIKA. Vozáry Eszter November OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A.

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A. omplx lírás: ELTE I.izius 004/005 II.félév + cos ϕ R ϕ KISÉRLETI IZIK Eltrodinamia 3. (IV.9 -V.3.) Intrfrncia II. [ ]; sin ϕ Im [ ] * i cosϕ + i sinϕ ; cosϕ isinϕ * ; cos ϕ R [ ] f cos ( ω t + ϕ) ; f cos

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben