STATISZTIKA. rgykód. beosztás. Oktatók. Időbeoszt. Tematika. 1. előadás MTB Szeptember 15. November 28.
|
|
- Petra Bognárné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Tantárgyk rgykód STATISZTIKA 1. Előad adás Bevezetés, a statisztika szerepe, Mintavéez ezés, Adatbázisok MTB60057 Oktatók Előad adó: Dr. Huzsvai LászlL szló tanszékvezet kvezető Gyakorlatvezetők: k: Csipkés s Margit Soltész Angéla Huzsvai LászlL szló Balogh PéterP Időbeoszt beosztás Szeptember 15. November 28. új ismeretek átadása. December 8. December 19. gyakorlati jegy megszerzése. se. Tematika 1. Bevezetés, mintavé 2. Középértékek, mérési m skálák 3. Szóródási mutatók 4. Normális eloszlás, s, megbízhat zhatósági intervallumok 5. Hipotézis elmélet, let, t-prt próbák 6. Variancia-anal analízis, LSD 1
2 MTB60057 Köező irodalom Köező irodalom: Huzsvai L. (szerk.): STATISZTIKA Gazdaságelemz gelemzők részére (Excel és s R alkalmazások), Seneca Books, Debrecen, Ajánlott irodalom: Hunyadi L. Vita L.: Statisztika I. Aula Kiadó,, Budapest, o. Hunyadi L. Vita L.: Statisztika II. Aula Kiadó,, Budapest, o. Hunyadi L. Vita L.: Statisztikai képletek k és s táblt blázatok (oktatási segédlet), Aula Kiadó,, Budapest, o. Szűcs I.: Alkalmazott Statisztika Agroinform Kiadó,, Budapest, o. Kerékgy kgyártó Gy-né L. Balogh I. Sugár r A. Szarvas B.: Statisztikai módszerek m és s alkalmazásuk a gazdasági gi és társadalmi elemzésekben AULA Kiadó,, Budapest, o. Rappai G.: Üzleti statisztika Excellel. KSH, Köező irodalom Churcill és s a statisztika Csak abban a statisztikában hiszek, amit én n magam hamisítok tok NEM IGAZ Statisztikai programok 1. MS Excel? 2. LibreOffice Calc? 3. R Statistics 4. SPSS 5. SAS 6. MATLAB 7. MINITAB 8. stb 2
3 A statisztika fogalma 1. A statisztika a valóság g minőségi és mennyiségi informáci cióinak inak megfigyelésére, összegzésére, elemzésére és modellezésére irányul nyuló gyakorlati tevékenys kenység és s tudomány. 2. Gyakran hívjh vják k statisztikának a statisztikai tevékenys kenység g eredmények nyeként nt keletkező adatokat is. A statisztika nyelvezete 1. Kijelentéseit, egy adott intervallumra vonatkoztatva, valósz színűségi állítás formájában fogalmazza meg. Hatvan százal zalék k az esélye, valósz színűsége, hogy 20 és s 30 mm közötti csapadék k fog esni holnap. Alapfogalmak 1. Sokaság: A megfigyelési egységek, gek, egyedek összessége, amire a statisztikai megfigyelés s irányul. 2. Ismérv: A sokaság g egyedeinek tulajdonsága Mit mérek: m Milyen? Mennyi? (mért rtékegység) g) Hol? Mikor? Egyéb metaadatok 3. Paraméter 4. Minta Paraméter Az alapsokaság g jellemző értékeit paraméternek nevezzük k (görög betűvel jelölj ljük) µ σ Minta 1. Minta adataiból l az alapsokaság tulajdonságaira következtetk vetkeztetünk 2. A minta középértk rtékből l alapsokaság középértékére re következtetk vetkeztetünk 3. Megbízhat zhatósági intervallum x µ s σ A statisztika részterr szterületei 1. Leíró statisztika, exploratív v adaemzés Célja egy már m r rendelkezésre álló,, valóságra vonatkozó adathalmaz összefoglalása, sa, elemzése, informáci ciótömörítés. Statisztikai módszerek m alkalmazása, hogy megismerjük k a sokaság g legfontosabb statisztikai jellemzőit. 2. Matematikai statisztika 3
4 1. Leíró statisztika 1. Gyakoriságok 2. Centrális mutatók k (középért rtékek) kek): medián, módusz, m átlag 3. Kvantilis értékek 4. Szóródási mutatók: : terjedelem, szórás, s, relatív v szórás, s, stb. 2. Matematikai statisztika 1. Reprezentatív v mintavé alapján n a sokaság g jellemző paramétereinek becslése. se. 2. Minta alapján n az alapsokaságra vonatkozó feltéez ezések, hipotézisek igazolása. 3. Összefüggés s vizsgálatok sztochasztikus modellekkel 2.3 Összefüggés s vizsgálatok 1. Középérték összehasonlító tesztek, t-t próbák 2. Variancia-anal analízisek A statisztikai munka fázisai f Tapasztalatok gyűjt jtése, empirikus megfigyelések 2. A probléma verbális megfogalmazása, munkahipotézis feláll llítása 3. Modellválaszt lasztás s vagy alkotás Legtöbbsz bbször r valamilyen eloszlás s vagy Függvény 4. Az adatgyűjt jtés s megtervezése Minimális minta ill. elemszám m meghatároz rozása Mintavéi i technikák Kísérlettervezés A statisztikai munka fázisai f Adatgyűjt jtés Mintavé Kísérlet beáll llítása, mérésm 6. Adatbázis készk szítés Reláci ciós s adatbázisok 7. Elemzés Modellalkotás Az adatokból l a modell paramétereinek meghatároz rozása 8. A modell validálása (érvényessége) Az alkalmazhatósági feltéek ek megvizsgálása sa 9. Becslés s a modell segíts tségével Jelentések, riportok, kimutatások készk szítése se (statisztikai táblt blázatok) 10. Döntés Mi a modell? A modell összetett, bonyolult természeti képződmények, objektumok működésének m megismerésére re létrehozott l egyszerűsített helyettesítő. Modell formák: Mechanikus analógok, elektromos analógok, fizikai, kémiai, k matematikai modellek. 4
5 Mi a kísérlet? k Megfelelő elméleti leti megalapozás után n kialakított elgondolás, következtetés s helyes vagy helyen voltának mérésekkel m törtt rténő ellenőrz rzése. Mintavé,, mintavéi i technikák Mintavé fogalmai A mintavét t meg kell tervezni A sokaság g elemei: X 1, X 2 X N,, lehet véges és s végenv Mintaelemek: x 1, x 2 x n, mindig végesv Véletlen minta = a minta elemek véletlen v kiválaszt lasztásasa Kiválaszt lasztási si arány : n N Abból l adódik, dik, hogy nem a jes sokaságot figyeljük meg. A sokaság heterogén. Mintavéi i hiba Statisztikai adatgyűjt jtés Véletlen mintavé Kísérletek (ellenőrzött) Részleges adatfelvé Véletlen mintavé Reprezentatív megfigyelés Teljes körű (cenzus) Nem véletlen mintavé 1. Homogén n sokaság g esetén FAE: független f azonos eloszlású minta EV: egyszerű véletlen minta 2. Heterogén n sokaság g esetén R: rétegzett r mintavé Cs: : csoportos (egylépcs pcsős) s) mintavé TL: többlt bblépcsős s mintavé 5
6 Nem véletlenen v alapuló kiválaszt lasztás 1. Szisztematikus 2. Kvótás 3. Hólabda 4. Koncentrált 5. Önkényesnyes 6. Egyéb A kísérlet k tulajdonságai 1. Jó kísérlet Kezeléshat shatásoksok Véletlen hiba 2. Rossz kísérletk Kezeléshat shatásoksok Szisztematikus hiba Véletlen hiba Reprezentatív v minta tulajdonságai 1. Tükrözi az alapsokaság g jellemzőit (lehet általánosítani) 2. Csak a mintavéi i hibát t tartalmazza 3. Meghatározhat rozható a mintavéi i hiba nagysága ga NEM reprezentatív v minta tulajdonságai 1. Nem lehet belőle le általánosítani 2. A mintavéi i hiba mellett szisztematikus hibát t is tartalmaz 3. A levont következtetk vetkeztetések kizárólag a megfigyelt egyedekre vonatkoznak Véletlen mintavé,, szisztematikus hiba 1.Minden elem egymást stól l függetlenf ggetlenül és azonos valósz színűséggel kerül l a mintába (véletlen számok) 2.El Előnye: a belőle le származtatott statisztikai mutatók k csak a véletlen v eltérést mutatják k az alapsokaság mutatójához képestk 3.Szelekci Szelekció szisztematikus hiba 4.Reprezentativit Reprezentativitás Véletlen minta előáll llítása 1. Véletlen szám m generátor 2. Pszeudó véletlen szám m generátor 3. Rnd() függvf ggvény 4. Excel Vél() V függvf ggvénye 5. VÉL()*(b-a)+a 0 x < 1 6
7 Statisztikai becslés 1. Valamely paraméter ismeretlen (feltéezett) ezett) tényleges t értékének közelítő megadása egy statisztikai függvénnyel. Elvileg bármelyik b statisztikai függvf ggvény tekinthető becslésnek, snek, valójában csak azokat használjuk, amelyeknek megvannak a jó becslés legfontosabb tulajdonságai A jój becslés s kritériumai riumai 1. Torzítatlans tatlanság g (várhat rható érték) 2. Hatásoss sosság g (szórás) s) 3. Konzisztencia Torzítatlan becslés Olyan becslés, s, amelynek várhatv rható értéke az igazi paraméter. Sokszor veszünk mintát, t, a minták k várhatv rható értéke közelk zelít t a sokaság g valódi értékéhez. Hatásos becslés Hatásos az a becslés, s, amelynek a szórása sa a legkisebb, határért rtékben nulla. Véges sokaságok jes körűk adat felvéez ezése esetén n a számtani átlag szóra nulla. Konzisztens becslés Hatásos és s torzítatlan tatlan becslés Olyan becslés, s, amely a minta n elemszámának növekedésével vel (n( ) ) a paraméter igazi értékéhez konvergál l sztochasztikusan (erős konzisztencia esetén n 1 valósz színűséggel) n, paraméter igazi érték 7
8 Hatásos és s torzított tott becslés Nem hatásos és s torzítatlan tatlan becslés Nem hatásos és s torzított tott becslés Mi az adatbázis 1. Egy témakt makör r vagy cél c l körék csoportosuló informáci ció. 2. Jó tervezés s = hatékony adattárol rolás és kinyerés 3. Célorientált lt adatbázisok Adatbázis tervezés 1. Milyen informáci ciót t akarunk kinyerni? 2. Milyen elkülönülő tématerületeken kell tárolni az adatokat? 3. Hogyan kapcsolódnak ezek egymáshoz? 4. Az egyes területeken belül l milyen adatokat kell tárolni? t Mi az adat? 1. Minden informáci ció,, amit tárolni t kell. szám szöveg dátum hang kép, stb. 8
9 A mértm rtékegységek gek többszt bbszöröseisei Adatbázis felépítése 1. kilo- k mega- M giga- G tera- T peta- P Tábla (table( table) Ismérv, tulajdonság, változv ltozó,, Mező (field) Megfigyelési egység, g, szubjektum, Rekord (record) Oszlop = változv ltozó Sor = megfigyelési egység 6. exa- E SI (Systém International d Unités) Tábla A jój adatbázis (kritériumok) riumok) minden mezőnek egyedi neve van 2. a mezők k elemi informáci ciót tartalmazzanak ID Év Hely Tömeg Hosszúság A jój adatbázis (kritériumok) riumok) nem lehet két k t egyforma sora 4. a sorok és s oszlopok sorrendje tetszőleges A jój adatbázis (kritériumok) riumok) ne tartalmazzon származtatott, kiszámított adatot (redundancia) 6. egy mező megváltoztat ltoztatása nem hathat ki más m mezőkre ID Év Hely Tömeg Hosszúság ID Év Nettó ÁFA Bruttó 9
10 Rossz adatbázis A jój adatbázis (kritériumok) riumok) 4. ID 1 Kérdés Hol? Válasz1 Itt Válasz2 Ott Válasz3 Amott Válasz4 Emitt Helyes 2 7. minden szüks kséges adatot tartalmaz 8. van elsődleges kulcsa ID Év Hely Tömeg Hosszúság Gyakorlat adatbázisa Év Régió Árucikk Forgalom (kg/év) Ár (Ft/kg) Önköltség (Ft/kg) Terv_Forgalom (kg/év) 2000 Dél-Alföld Kenyér Dél-Alföld Paradicsom Dél-Alföld Csirkemell Dél-Alföld Sertéscomb Dél-Alföld Marhahús Dél-Alföld Trapista sajt Dél-Alföld Császár szalonna Dél-Alföld Szendvics sonka Dél-Alföld Őrölt kávé Dél-Alföld Kaliforniai paprika Dél-Alföld Banán Dél-Dunántúl Kenyér Dél-Dunántúl Paradicsom
STATISZTIKA. Oktatók. A legjobbaknak AV_KMNA221, AV_PNA222. /~huzsvai. Bevezetés, a statisztika szerepe
Tantárgyk rgykódok STATISZTIKA AV_KMNA221 AV_PNA222 1. Előad adás Bevezetés, a statisztika szerepe Oktatók Előad adó: Dr. Huzsvai LászlL szló tanszékvezet kvezető A legjobbaknak Gyakorlatvezetők: k: Dr.
RészletesebbenMintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás
STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x
RészletesebbenSTATISZTIKA I. Mintavétel fogalmai. Mintavételi hiba. Statisztikai adatgyűjtés Nem véletlenen alapuló kiválasztás
Mintavétel fogalmai STATISZTIKA I.. Előadás Mintavétel, mintavételi technikák, adatbázis A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x n, mindig
RészletesebbenSTATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe
Tantárgykódok STATISZTIKA I. GT_APSN018 GT_AKMN021 GT_ATVN020 1. Előadás Bevezetés, a statisztika szerepe Oktatók Előadó: Dr. habil. Huzsvai László tanszékvezető Gyakorlatvezetők: Dr. Balogh Péter Dr.
RészletesebbenSTATISZTIKA. ( x) 2. Eloszlásf. 9. gyakorlat. Konfidencia intervallumok. átlag. 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% (cm)
Normális eloszlás sűrűségfüggvénye STATISZTIKA 9. gyakorlat Konfidencia intervallumok f σ π ( µ ) σ ( ) = e /56 p 45% 4% 35% 3% 5% % 5% % 5% Normális eloszlás sűrűségfüggvénye % 46 47 48 49 5 5 5 53 54
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenA Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenBIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Részletesebbeny ij e ij BIOMETRIA let A variancia-anal telei Alapfogalmak 2. Alapfogalmak 1. ahol: 7. Előad Variancia-anal Lineáris modell ltozó bontását t jelenti.
Elmélet let BIOMETRIA 7. Előad adás Variancia-anal Lineáris modellek A magyarázat a függf ggő változó teljes heterogenitásának nak két k t részre r bontását t jelenti. A teljes heterogenitás s egyik része
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenSTATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Részletesebbeny ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenKutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
RészletesebbenKÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 24. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 24. Outline 1 A mintavételi hiba és konfidencia-intervallum 2 A mintaválasztás A mintaválasztás célja Alapfogalmak A mintaválasztás
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
RészletesebbenSTATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
RészletesebbenMatematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
RészletesebbenKabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
RészletesebbenBiometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
RészletesebbenSTATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
Részletesebbenés adatfeldolgozó rendszer
Közös s adatbázis és adatfeldolgozó rendszer 2009. május m 7. Édes Marianna KSH VállalkozV llalkozás-statisztikai statisztikai főosztály Vázlat Előzm zmények SBS adat-el előállítás Nemzeti száml mlák A
RészletesebbenStatisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
RészletesebbenLeíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
RészletesebbenStatisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenElemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
RészletesebbenMérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
RészletesebbenStatisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
RészletesebbenKonzulensek: Mikó Gyula. Budapest, ősz
Önálló laboratórium rium 2. M.Sc.. képzk pzés Mikrohullámú teljesítm tményerősítők linearizálása adaptív v módszerekkelm Készítette: Konzulensek: Sas Péter P István - YRWPU9 Dr. Sujbert László Mikó Gyula
RészletesebbenA leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
RészletesebbenStatisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenStatisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
RészletesebbenAZ ID JÁRÁS SZÁMÍTÓGÉPES EL REJELZÉSE. rejelzése. horanyi.a@met.hu) lat. Földtudományos forgatag. 2008. április 19.
Az z idjárási számítógépes elrejelz rejelzése HORÁNYI ANDRÁS S (horanyi.a@met.hu( horanyi.a@met.hu) Országos Meteorológiai Szolgálat lat Numerikus Modellez és Éghajlat-dinamikai Osztály (NMO) 1 MIÉRT FONTOS?
RészletesebbenValószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenModern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt
Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenKUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
RészletesebbenMi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Részletesebbenx, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
RészletesebbenOrvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás
RészletesebbenSTATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
RészletesebbenMÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
RészletesebbenMintavételi eljárások
Mintavételi eljárások Daróczi Gergely, PPKE BTK 2008. X.6. Óravázlat A mintavétel célja Alapfogalmak Alapsokaság, mintavételi keret, megfigyelési egység, mintavételi egység... Nem valószínűségi mintavételezési
RészletesebbenStatisztika 1. Tantárgyi útmutató
Módszertani Intézeti Tanszék Nappali tagozat Statisztika 1. Tantárgyi útmutató 2015/16 tanév II. félév 1/6 Tantárgy megnevezése: Statisztika 1. Tantárgy kódja: STAT1KAMEMM Tanterv szerinti óraszám: 2+2
RészletesebbenTöbb valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
RészletesebbenBiostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RészletesebbenStatisztikai alapfogalmak
Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze. Célja: - a sokaságot
RészletesebbenBevezető Mi a statisztika? Mérés Csoportosítás
Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető
RészletesebbenA maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
RészletesebbenA bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:
A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenBevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
RészletesebbenVALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
RészletesebbenA mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
RészletesebbenSTATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Részletesebbenaz Excel for Windows táblázatkezelő program segítségével
az Excel for Windows táblázatkezelő program segítségével 90 80 70 60 50 40 30 20 10 0 1. n.év 2. n.év 3. n.év 4. n.év Kelet Dél Észak Mi a diagram? A diagram segíts tségével a Microsoft Excel adatait grafikusan
RészletesebbenPopuláci. sek és monitoring. és s a vadgazdálkod. lkodásban. Statisztikai fogalmak si
Populáci cióbecslések sek és monitoring A becslés s szerepe az ökológiában és s a vadgazdálkod lkodásban. Statisztikai fogalmak és s próbák. Mintavételez telezés. A becslési si módszerek csoportosítása.
RészletesebbenKÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység
KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:
RészletesebbenTANTÁRGYI ÚTMUTATÓ. Statisztika 1.
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Statisztika 1. TÁVOKTATÁS Tanév 2014/2015 II. félév A KURZUS ALAPADATAI Tárgy megnevezése: Statisztika 1. Tanszék: Módszertani Tantárgyfelelős neve: Sándorné Dr. Kriszt
RészletesebbenStatisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
RészletesebbenKiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
RészletesebbenA valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
RészletesebbenStatisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
RészletesebbenMérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
RészletesebbenMéréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
RészletesebbenStatisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
RészletesebbenSzámítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
RészletesebbenSTATISZTIKA Mezőgazdászok részére
Huzsvai László STATISZTIKA Mezőgazdászok részére Debrecen 2011 SENECA BOOKS Szerkesztő: Huzsvai László Minden jog fenntartva. Jelen könyvet vagy annak részleteit a Kiadó engedélye nélkül bármilyen formában
RészletesebbenStatisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
RészletesebbenBevezető Adatok rendezése Adatok jellemzése Időbeli elemzés
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
Részletesebben