A BETON ÉS A CÉLSZERÛEN ALKALMAZOTT BETONACÉL
|
|
- Győző Németh
- 6 évvel ezelőtt
- Látták:
Átírás
1 A BETON ÉS A CÉLSZERÛEN ALKALMAZOTT BETONACÉL KALISZKY SÁNDOR PROFESSZOR, A KÉPLÉKENYSÉGTAN TUDÓS MÛVELÔJE EMLÉKÉRE Prof. Dr. h.c. mult. Polónyi István Kulcsszavak: a vasbetontervezés kritikája, a betonacél szerepe, célszerû mennyisége, elrendezése 1. BEVEZETÉS A beton, az opus cementitium a rómaiak gyakran használt építőanyaga volt. Mivel a betonnak a nyomószilárdsághoz képest kicsi a húzószilárdsága, olyan szerkezeteket építettek, amelyekben nem lépnek fel húzó igénybevételek: boltív, kupola (boltozat). Így például a 128-ban felavatott római Pantheont. A kupola átmérője 43 m. Időközben a betont elfelejtették. A XIX. század közepén a francia kertész, Joseph Monier a virág vedreit homokból cementtel és drótgyűrűvel készítette. Találmányát 1867-ben szabadalmaztatta. Az építőmesterek felfigyeltek erre a kompozit anyagra, és igyekeztek építményeikben felhasználni. Ehhez persze számítási módszereket kellett fejleszteni. Roger Bacon már a XIII. században megfogalmazta a természettudomány menetét: ismeret kísérlet (paraméterek szeparálása) elmélet/matematika. A vasbetontudósai nem követték ezt az útmutatást. Először rögzítették az elméletet és az ahhoz tartozó számítási menetet, a matematikát, és azután bizonygatták kísérletekkel, hogy ez használható. Ez a vasbetonelmélet lehetővé tette csodálatos építmények létesítését, ami az addigi elképzelést messze felülmúlta, Ezt a kompozit anyagot azonban nem használták ki optimálisan. Sokirányú tapasztalat, kritika készteti megfontolásra a mai mérnököt. Az elterjedt eljárásokkal tervezett szerkezetek gazdaságossága nem optimális, és a vasalás elhelyezése mindinkább felveti a betonacél-korrózió kockázatát. A teherbírási, használati követelmények további figyelembe vételével szükség van a tervezési-szerkesztési elvek reformjára. 2. A HAGYOMÁNYOS SZERKESZTÉ- SI ELVEK BÍRÁLATA A vasalás elrendezésére és számítására három teherhordási modell alakult ki: a boltozathatás, a függőszerkezet és a rácsos tartó. A statikus tervezés az idők során az erők egyensúlyából levezetett rácsos tartó minta alatt állt. Így hát a vasbetontervezésben is a rácsos tartó-analógiát választották a teherviselés modelljének. Ennek megfelelően vasalást építettek be a betonba, ha kellett, ha nem. A kutatók sok kísérlettel igyekeztek ennek a vasalási analógiának a számítását tökéletesíteni. Más lehetőség nem jött számításba. Ha egyes kutatók kísérleteket végeztek más irányban, azokat a gyakorlatban nem vették figyelembe. Így a beton tulajdonságait nem használták ki megfelelően. Az előírások alkotóinak a gazdaságosság idegen fogalom volt, súlypontjukban a teherbírás igazolása kapott helyet. A vasalást kosarak formájában alakították ki. Ezek hosszvasakból és kengyelekből állnak. Egy ideig még voltak 45 -os felhajlítások, de most úgy látszik, kimennek a divatból. Noha a feszítő kábeleket lehet ívesen vezetni, a nem feszített vasalásnál ez nem oldható meg, már csak azért sem, mert ezt nem tudjuk számolni. A nyírás okoz problémát, mert a fizikai folyamatot nem tudjuk tisztán követni. E téren kísérletekből levezetett képlettel segédkezünk. Közben kiderült, hogy a kengyelek károsak is lehetnek. Hajlításra igénybe vett elemeknél a kengyelek merőlegesen állnak a húzófeszültségekre, zavarják a beton struktúráját, és repedést idéznek elő. Az itt behatoló nedvesség a kengyelek rozsdásodását okozza. Mivel ez térfogat-növekedéssel jár, e hatás repeszti a betont. Az előírások erre a betonfedés vastagításával reagáltak, ami persze nem csökkenti a repedés valószínűségét. Az a kérdés, hogy a kengyel szükséges-e, ha a fővasalást oly módon vezetjük, hogy a kengyelek fölöslegessé válnak. Ez nem vetődött fel. 3. A VASALÁSI ELVEK REFORMJAI Kísérletek bizonyítják, hogy kéttámaszú tartóknál az ív és a függőszerkezet-analógia szerint vezetett fővasalásnál a kengyelek elhagyhatók. Optimálisan vezetett vasalásnál a haránterő húzókomponensét a vasalás, a nyomókomponensét a beton veszi fel csúszó igénybevétel nélkül. Az ív és függő szerkezet analógia számításba vételével nem kell kengyel (1. ábra) (Polónyi, 1983, Balázs, 2010, Patzkowsky, 1990). Fontos ismeret, amiről eddig nem volt szó: a vasalás vezetése irányítja a feszültség menetét. Tehát először meg kell határozni a vasalás helyzetét, és aztán meg kell győződni arról, hogy a várt használatnál nem lép fel húzófeszültség, amit a beton nem tud felvenni. Ha vannak ilyen helyek, akkor a vasalás vezetését kell korrigálni, esetleg adalék vasat hozzátenni. Jó vasalás-elrendezésnél elegendő a keresztmetszetek méretezése a mértékadó nyomatékok helyén. Akkor gazdaságos a vasalás, ha a mértékadó teher alatt a törési repedések az összes kritikus helyen egyszerre lépnek fel (Kazinczy Gábor nyomában). Kísérletsorozattal megállapítandó, melyik karcsúságig érvényes az ív- és a függőszerkezet-analógia és hol lép föl a szendvicshatás. Épp úgy tisztázandó, mi az optimális kombinációja az ív és a függő szerkezetnek. Ne vezessük úgy a fővasalást, hogy abból húzó feszültségek lépnek fel más helyen, amit adalékvasalással pl. kengyellel kell felvenni. Az elasztikus elmélet a vasbetontartót homogén izotróp /4 VASBETONÉPÍTÉS
2 1. ábra: A vasalás vezetése az ív és függôszerkezet analógiája szerint (Polónyi, 1983) anyagból készültnek gondolja, és az igénybevételeket az egyes keresztmetszetekben számolja. Ebből számítja a hajlításra szükséges betonacél keresztmetszetet. Ez a keresztmetszetszemlélet. Az itt vázolt koncepció a tartószerkezetet vagy tartószerkezetrészt inhomogén szerkezetnek tekinti, amely nyomásra (beton) és húzásra (acélbetét) igénybe vett elemekből áll. A méretezést az így számított erőkre végezzük. Ez a tartószerkezet elmélet (Kaliszky, 1983). A keresztmetszet-szemléletnél az igénybevétel független a vasalás vezetésétől. A vasalás helyzete rögzítve van. A tartószerkezet-szemléletnél a mérnök az acélbetét vezetésével különféle teherviselést tud beállítani, és azáltal tudja a szerkezetet optimálni, statikailag határozott tartóknál is (Kaliszky, 1983). A többtámaszú tartókat, a kereteket és a lemezeket a törési elmélet szerint kell méretezni, ahol is a vasalás elrendezése a képlékeny csuklók kialakulására hat, és ezáltal a számított metszeterőkre is. Ezt az EUROCODE bizonyos határok között megengedi, de ezt ritkán veszik igénybe. A kengyel nélküli vasalásnál a betonacélokat a zsaluzathoz rögzítjük (2. ábra gerenda, 3. ábra: fal, oszlop) (Bönninger, 2015). Az építőmérnökök ortogonális síkokban gondolkodnak, ebből következik, hogy az oszlop-alaptest négyzetes, noha rotációs alakzat, aminek egy csonka kúp gyűrűvasalással felel meg (4. ábra) (Polónyi, 1983, Kaliszky, 1983, Bollinger, 1985 Balázs, 2010). Ehhez fele annyi vasra van szükség, mint az előírásban ajánlott ortogonális vasalásnál. A betonacél-gyűrű a peremen van. Egy szűkebb gyűrű az alaptest korábbi átszúródását idézi elő: Az erő a kisebb gyűrűre támaszkodik, ami pedig nincs felkötve (5. ábra). Itt látható, hogy több vassal a teherviselés csökkenthető. Ez a gyűrűvasalás még bizonyos külpontosságnál is alkalmazható (Styn, 1991, Polónyi, 2003, Balázs, 2010). Furcsa, hogy mi a metszeterőket az elasztikus elmélet alapján számoljuk, de a keresztmetszeteket a törési elmélettel méretezzük (Kaliszky, 1983). Következetes lenne az egész méretezést a törési valószínűségre alapozni (Kazinczy Gábor) és nem egy fiktív állapotra vonatkoztatni (Polónyi, 2016). A FEM-programok elemei rugalmasak. Tehát itt is az irányadó, amit számolni tudunk. Felejtsük el a szerkezeti vasalást és a minimális vasalást. Ezeknek egyetlen indoklása, hogy a szerkezet a vasbeton 2. ábra: A betonacélok rögzítése a zsaluzathoz gerendáknál (Bönninger, 2015) zsaluzat felülete müanyagsapka fölhúzott vasalás Quick szálasbeton-távbiztosító V ASBETONÉPÍTÉS 2017/ alsó vasalás Quick vasalás-támasz müanyag tok rögzítés a fazsaluzat furatában Quick támasztó rúd 67
3 3. ábra: A betonacél rögzítése falaknál és oszlopoknál (Bönninger, 2015). 1 zsaluzat felülete 2 müanyagsapka 3 fölhúzott vasalás 4 Quick szálasbeton-távbiztosító 5 alsó vasalás 6 Quick vasalás-támasz 7 müanyag tok rögzítés a fazsaluzat furatában 8 Quick támasztó rúd 9 vasalás 10 Quick szálasbeton-távbiztosító Montage-Bipo szeghüvellyel 11 Quick támaszrúd szálasbeton kockával 12 vasalástartó, rögzítés a fazsaluzat furatában megnevezést nyerhesse el. Ez a vasalás fölösleges költség, és az elemek használhatóságát rövidíti. Lemezek szükséges betonacél mennyisége függ a vasalás elrendezésétől (6. ábra) (Gersik, 1991, Polónyi 2003). Kísérletek mutatják, hogy az ortogonális vasalás a leggazdaságtalanabb. A négyzet alaprajzú lemezek sarkában a torziós vasalás teljesen fölösleges. A lemez a továbbított törési elmélet szerint akkor van minimális vasmennyiséggel vasalva, ha a törési felületnek egyenletesen elhelyezett repedései vannak. Az alaplemezben a zsugorodási vasalás káros (Polónyi, 2007). A zsugorodás okozta feszültséget nem vasalással, kell felvenni, hanem a zsugorodást betontechnológiai módszerrel kell leküzdeni: zsugorodásmentes cement, alacsony hidratációs hő, lassú lehűlés, dilatációs hézagok, amelyeket duzzadó cementtel töltenek ki. A zsugorodási vasalás káros, mert a mégis fellépő repedések rozsdásodást idéznek elő, ami a betont is tönkreteszi. A beton lehetővé tesz görbe felület, héj, kialakítását, amelyekben csak nyomófeszültségek lépnek fel. Ezek felületek pozitív (sinklasztos) Gaussi görbületűek. Ilyenek Heinz Isler hártyahéjai (bubble shells) (7. ábra), amelyeket csak a peremen és a támaszerő bevezetésénél kellett volna vasalni, és a Keramion (Kerámia Múzeum Frechen/Köln) (8. ára), ahol a felület geometriája úgy van meghatározva, hogy a feszített peremgyűrűvel ellátott héjszerkezetben domináns terhelésnél a feszültség minden pontban és minden irányban azonos (hártyahéj). Ezeket a felületeket vasalatlanul hagyni annak idején elképzelhetetlen volt. Vasbetétet csak ott építsünk be, ahol húzófeszültség lép fel. Ez vonatkozik a falakra és az oszlopokra is. A TU Dresden Otto-Mohr-Laboratóriumában végzett összehasonlító kísérlet 25x25 cm keresztmetszetű, 250 cm magas oszlop (C20/25, BSt500S) vasalatlanul és minimális vasalással mutatta, hogy a minimális vasalás 10%-kal növelte a teherbírást, de megduplázta az oszlop árát (Polónyi, 2016). Tehát ha szükség van a nagyobb teherbírásra, akkor meg kell növelni a keresztmetszeti területet vagy/és a beton szilárdságát. A nyomóerő felvétele vassal négyszer drágább, mint betonnal /4 VASBETONÉPÍTÉS
4 7. ábra: Bubble shell: Deitinger Süd Rasstätte. 1968, Heinz Isler (fotó: Genzel) 4. ábra: Kör alaptest gyûrû vasalása (Bollinger, 1985) 8. ábra: Hártyahéj: Keramion Frechen/Köln 1970, Neufert/Polónyi (fotó: Polónyi) 5. ábra: Adalék gyûrû káros hatása (Bollinger, 1985) 4. HASZNÁLATI HATÁRÁLLAPOTOK Az oszlopokkal végzett kísérletek azt mutatják, hogy a vasalt oszlop a törőteher felléptekor még egyben marad, de a vasalatlan elem darabokra esik. A hidraulikus eszközzel végzett laboratóriumi kísérletnél a töréskor a terhelés megszűnik, a természetben még megmarad. Tehát a törést azonosnak kell értékelni. További kísérletek szükségesek a karcsúsági határ megállapítására, és a külpontosan terhelt oszlopok egyoldalú vasalására. Felejtsük el a nyomott vasat! A teherbírási határállapoton kívül megvizsgálandók a szerkezet használati határállapotai (alakváltozás, repedéskorlátozás), ezen kívül dinamikus hatás, rezgés, tartósság (fáradás), stabilitás, amelyek a rugalmasságtan körébe tartoznak. E követelmények kielégítésén a fővasalás elrendezése nem változtat. A minimális méretek, a karcsúsági előírások, a deformáció korlátozása általában elegendők a használati határállapotok betartására (Polónyi, 2016). Ügyeljünk arra, hogy az épületgépészeti elemek bebetonozása ne tegye tönkre a tervezett teherviselést (9. ábra) (Polónyi, 2007). 6. ábra: A vasalás elrendezésének hatása négyzetes lemezeknél (Gersik, 1991) 9. ábra: A födémlemezbe elhelyezett kábelek (Polonyi, 2007) (fotó: Brandmaier) V ASBETONÉPÍTÉS 2017/4 69
5 5. MEGÁLLAPÍTASOK A tervezési-építési tapasztalat és több kísérleti kutatás nyomán felvetődik a klasszikus vasbetonelmélet alapján álló eljárások reformja. Logikus elvi megfontolások a beton anyagú szerkezetekben alkalmazott vasbetétek mennyiségének csökkentése, a csupán a vasbeton fogalmát szolgáló minimális vasalás mellőzése. Ez értelemszerűen együtt jár a fővasbetétek elrendezésének reformjával. A ma érvényes előírások túl sok vasalást követelnek. - Ezek megdrágítják építményeinket. - Fölöslegesen terhelik a légkört CO 2 -vel. - Növelik a rozsdásodási veszélyt, csökkentik a szerkezet tartósságát. - A vaskosarak megnehezítik az újrafelhasználást. Mi ott is vasbetont alkalmazunk, ahol a vasalatlan beton is elegendő. Tehát tervezzük építményeinket betonból, és ahol szükséges, tegyünk bele betonacélt. Ezt nevezhetjük acélbetétes betonnak. 6. HIVATKOZÁSOK Balázs, Gy. (2010), Beton és vasbeton VII. Az új vasbeton-koncepció. Akadémiai Kiadó, Budapest. pp Bollinger, K. (1985), Zu Tragverhalten und Bewehrung von rotations- Symmetrisch beanspruchten Stahlbetonplatten, Dissertation an der Universität Dortmund, Fachbereich Bauwesen Bönninger, T. (2015), Zuschrift zu: Zuviel Stahl im Stahlbeton, Beton- und Stahlbetonbau 110 (2015) Heft 12, S Gersik, M. (1991), Tragverhalten quadratischer, allseitig frei drehbar und verschieblich gelagerter Stahlbeton Platten in Abhängigkeit von der Bewehrungsführung, Dissertation an der Universität Dortmund Fachbereich Bauwesen Kaliszky, S. (1983), Die neue Stahlbeton-Konzeption und die Plastizitätstheorie, Die Bautechnik Vol. 60 pp Patzkowsky, K. (1990), Bewehren von Stahlbetonbalken mit ausgeklingten Auflagern Dissertation an der Universität Dortmund, Fachbereich Bauwesen Polónyi, S. (1983), Ansätze in der Konzeption des Stahlbetons, Die Bautechnik Vol. 60 (1983), pp Polónyi, S. (2003), Die neue Stahlbetonkonzeption in Polónyi und Walochnik, Architektur und Tragwerk, Ernst & Sohn pp Polónyi, S. (2016), Az épületstatika tudományos alapja, Mérnök Újság, XXIII. 12, dec. p. 13. Polónyi, S. (2007), Der armierte Beton im Geschossbau, Beton- und Stahlbetonbau. Heft 3, pp Styn, E. (1991), Unterschiedlich gelagerte Kreisplatten mit Ringbewehrung, Dissertation an der Universität Dortmund Fachbereich Bauwesen Polónyi István, Prof. Dr. h.c. mult. (1930 Gyula), Budapesti Műszaki Egyetem épitőmérnöki Kar diákja, Épitőmérnöki iroda Kölnben, tanszékvezető tanár a Tartószerkezetek Tanszéken, Modellstatika Intézet igazgatója, Műszaki Egyetem Berlin, tanszékvezető tanár Tartószerkezetek tanszéke Dortmundi Egyetem (az építési Fakultás alapitó tagja). Diszdoktori címeket kapott: Kasseli Egyetem (1985), Budapesti Műszaki Egyetem (1990), Berlini Műszaki Egyetem (1999). A Német Művészeti Akadémia tagja. A Magyar Tudományos Akadémia külső tagja. Számos kitüntetést kapott. THE CONCRETE AND THE EXPEDIENTLY APPLIED REINFORC- ING STEEL István Polónyi The paper recalls briefly the history of plain and reinforced concrete (R.C.), including the first steps of design and sizing of R.C. in the 19 th century. The first design methods were based on the conjecture of building masters. Experimental works at the early 20 th century were also ruled by the anticipations of specialists dealing with R.C. The result for flexural members was the reinforcing system based on the truss model applying longitudinal bars (eventually with bentups) and stirrups. A basket form was developed. Nowadays it can be stated that stirrups cause cracks along them and consequently lead to steel corrosion. The Author advises a reinforcing system consisting of parabolic, bars (by chance plus strait bars. These are fixed to the formwork. Shear force should be resisted the concrete. Stirrups are recommended in extreme cases only. Economical use of steel is generally advised. The role of concrete should be increased. Superfluous steel, e.g. compression bars are to be avoided. Bars should not be applied only for the sake of calling the concrete structure reinforced. For calculation, analysis according to the theory of plasticity and general application of probability theory is advised. Examples for steel spearing for columns, foundation elements, walls and shells are presented /4 VASBETONÉPÍTÉS
2017/4. fib. XIX. évfolyam, 4. szám. Ára: 1275 Ft
VASBETONÉPÍTÉS A fib MAGYAR TAGOZAT LAPJA CONCRETE STRUCTURES Ára: 1275 Ft JOURNAL OF THE HUNGARIAN GROUP OF fib Prof. Dr. h.c. mult. Polónyi István A BETON ÉS A CÉLSZERûEN ALKALMAZOTT BETONACÉL Kaliszky
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János VASBETON SZERKEZETEK TERVEZÉSE 2 Szabvány A tartószerkezetek tervezése jelenleg Magyarországon és az EU államaiban az Euronorm szabványsorozat alapján
Korai vasbeton építmények tartószerkezeti biztonságának megítélése
Korai vasbeton építmények tartószerkezeti biztonságának megítélése Dr. Orbán Zoltán, Dormány András, Juhász Tamás Pécsi Tudományegyetem Műszaki és Informatikai Kar Építőmérnök Tanszék A megbízhatóság értelmezése
Vasbeton tartók méretezése hajlításra
Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból
54 582 03 1000 00 00 Magasépítő technikus Magasépítő technikus
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
Tartószerkezetek I. Használhatósági határállapotok
Tartószerkezetek I. Használhatósági határállapotok Szép János A tartószerkezeti méretezés alapjai Tartószerkezetekkel szemben támasztott követelmények: A hatásokkal (terhekkel) szembeni ellenállóképesség
1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!
1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható
Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására
Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására FÓDI ANITA Témavezető: Dr. Bódi István Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki kar Hidak és Szerkezetek
Használhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei
Tartószerkezetek I. (Vasbeton szilárdságtan)
Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.
Központosan nyomott vasbeton oszlop méretezése:
Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott oszlopok ellenőrzése: A beton által felvehető nyomóerő: N cd = A ctot f cd Az acélbetétek által felvehető nyomóerő: N sd = A s f yd -
Tartószerkezetek modellezése
Tartószerkezetek modellezése 16.,18. elıadás Repedések falazott falakban 1 Tartalom A falazott szerkezetek méretezési módja A falazat viselkedése, repedései Repedések falazott szerkezetekben Falazatok
Tartószerkezetek II. Használhatósági határállapotok május 07.
Tartószerkezetek II. Használhatósági határállapotok 2010. május 07. Használhatósági határállapotok Használhatósági (használati) határállapotok: a normálfeszültségek korlátozása a repedezettség ellenırzése
Dr. Szabó Bertalan. Hajlított, nyírt öszvértartók tervezése az Eurocode-dal összhangban
Dr. Szabó Bertalan Hajlított, nyírt öszvértartók tervezése az Eurocode-dal összhangban Dr. Szabó Bertalan, 2017 Hungarian edition TERC Kft., 2017 ISBN 978 615 5445 49 1 Kiadja a TERC Kereskedelmi és Szolgáltató
A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek
Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes
VASBETON SZERKEZETEK Tervezés az Eurocode alapján
VASBETON SZERKEZETEK Tervezés az Eurocode alapján A rácsostartó modell az Eurocode-ban. Szerkezeti részletek kialakítása, méretezése: Keretsarkok, erőbevezetések, belső csomópontok, rövidkonzol. Visnovitz
EC4 számítási alapok,
Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4
Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan, MOGA C;t;lin. Kolozsvári M=szaki Egyetem
Többtámaszú öszvértartók elemzése képlékeny tartományban az EUROCODE 4 szerint Plastic Analysis of the Composite Continuous Girders According to EUROCODE 4 Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan,
A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA
A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:
IX. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár
IX. Reinforced Concrete Structures Vasbetonszerkezetek - Vasbeton keresztmetszet nyírási teherbírása - Dr. Kovács Imre PhD tanszékvezető főiskolai tanár E-mail: dr.kovacs.imre@gmail.com Mobil: 06-30-743-68-65
ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN
ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,
Építészeti tartószerkezetek II.
Építészeti tartószerkezetek II. Vasbeton szerkezetek Dr. Szép János Egyetemi docens 2019. 05. 03. Vasbeton szerkezetek I. rész o Előadás: Vasbeton lemezek o Gyakorlat: Súlyelemzés, modellfelvétel (AxisVM)
Építőmérnöki alapismeretek
Építőmérnöki alapismeretek Szerkezetépítés 3.ea. Dr. Vértes Katalin Dr. Koris Kálmán BME Hidak és Szerkezetek Tanszék Építmények méretezésének alapjai Az építmények megvalósításának folyamata igény megjelenése
BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE 2 SZERINT VASÚTI HIDÁSZ TALÁLKOZÓ 2009 KECSKEMÉT
BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE 2 SZERINT VASÚTI HIDÁSZ TALÁLKOZÓ 2009 KECSKEMÉT Farkas György Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke Az Eurocode-ok története
Magasépítési öszvérfödémek numerikus szimuláció alapú méretezése
BME Hidak és Szerkezetek Tanszéke Magasépítési öszvérfödémek numerikus szimuláció alapú méretezése Seres Noémi DEVSOG Témavezetı: Dr. Dunai László Bevezetés Az elıadás témája öszvérfödémek együttdolgoztató
Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.
Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2016.11.11. Tartalom Öszvér oszlopok szerkezeti
Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus
Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás
TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.
statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek
Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék
ACÉLSZERKEZETEK I. - 6. Előadás Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: radnaylaszlo@gmail.com Acélszerkezeti kapcsolatok Kapcsolat: az a hely,
CONSTEEL 8 ÚJDONSÁGOK
CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek
A beton kúszása és ernyedése
A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág
A tartószerkezeti méretezés módszereinek történeti fejlődése
Szakmérnök képzés 2012 Terhek és hatások 1. ELŐADÁS A tartószerkezeti méretezés módszereinek történeti fejlődése Dr. Visnovitz György Szilárdságtani és Tartószerkezeti Tanszék 2012. március 1. Szakmérnök
A tartószerkezeti méretezés módszereinek történeti fejlődése
Szakmérnök képzés 2014 Terhek és hatások 1. ELŐADÁS A tartószerkezeti méretezés módszereinek történeti fejlődése Dr. Visnovitz György Szilárdságtani és Tartószerkezeti Tanszék 2014. február 27. Szakmérnök
NSZ/NT beton és hídépítési alkalmazása
NSZ/NT beton és hídépítési alkalmazása Farkas Gy.-Huszár Zs.-Kovács T.-Szalai K. R forgalmi terhelésű utak - megnövekedett forgalmi terhelés - fokozott tartóssági igény - fenntartási idő és költségek csökkentése
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
A REPEDÉSTÁGASSÁG KÖZELÍTŐ ELLENŐRZÉSÉNEK PONTOSÍTÁSA AZ EUROCODE FIGYELEMBEVÉTELÉVEL Visnovitz György Kollár László Budapesti Műszaki és Gazdaságtudományi Egyetem Szilárdságtani és Tartószerkezeti Tanszék
Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint
Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?
SÍKALAPOK TERVEZÉSE. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
SÍKALAPOK TERVEZÉSE SÍKALAPOK TERVEZÉSE síkalap mélyalap mélyített síkalap Síkalap, ha: - megfelelő teherbírású és vastagságú talajréteg van a felszín közelében; - a térszín közeli talajréteg teherbírása
Mérnöki faszerkezetek korszerű statikai méretezése
Mérnöki faszerkezetek korszerű statikai méretezése okl. faip. mérnök - szerkezettervező Előadásvázlat Bevezetés, a statikai tervezés alapjai, eszközei Az EuroCode szabványok rendszere Bemutató számítás
- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági
1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi
Gyakorlat 03 Keresztmetszetek II.
Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1. Bevezetés Falazott szerkezetek Tartalom Megnevezések, fal típusok Anyagok Mechanikai jellemzők 1 Falazott szerkezetek alkalmazási területei: 20. század: alacsony és középmagas épületek kb. 100 évvel
STATIKAI SZAKVÉLEMÉNY
SZERKEZET és FORMA MÉRNÖKI IRODA Kft. 6725 SZEGED, GALAMB UTCA 11/b. Tel.:20/9235061 mail:szerfor@gmail.com STATIKAI SZAKVÉLEMÉNY a Szeged 6720, Szőkefalvi Nagy Béla u. 4/b. sz. alatti SZTE ÁOK Dialízis
Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ
Öszvérszerkezetek 3. előadás Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ készítette: 2016.10.28. Tartalom Öszvér gerendák kifordulása
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Nyomott oszlopok számítása EC2 szerint (mintapéldák)
zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).
- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági
1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi
Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.
Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2012.10.27. Tartalom Öszvér oszlopok szerkezeti
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
Schöck Isokorb D típus
Schöck Isokorb típus Schöck Isokorb típus Többtámaszú födémmezőknél alkalmazható. Pozítív és negatív nyomatékot és nyíróerőt képes felvenni. 89 Elemek elhelyezése Beépítési részletek típus 1 -CV50 típus
Gyakorlat 04 Keresztmetszetek III.
Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)
II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)
II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A
7. előad. szló 2012.
7. előad adás Kis LászlL szló 2012. Előadás vázlat Lemez hidak, bordás hidak Lemez hidak Lemezhidak fogalma, osztályozása, Lemezhíd típusok bemutatása, Lemezhidak számítása, vasalása. Bordás hidak Bordás
TÓPARK BERUHÁZÁS ÖSZVÉRSZERKEZETŰ FELÜLJÁRÓ TERVEZÉSE AZ M1 AUTÓPÁLYA FELETT TÓPARK PROJECT COMPOSIT OVERPASS ABOVE THE M1 MOTORWAY
Hunyadi László statikus tervező Pál Gábor igazgató Speciálterv Kft. TÓPARK BERUHÁZÁS ÖSZVÉRSZERKEZETŰ FELÜLJÁRÓ TERVEZÉSE AZ M1 AUTÓPÁLYA FELETT TÓPARK PROJECT COMPOSIT OVERPASS ABOVE THE M1 MOTORWAY A
VASBETON ÉPÍTMÉNYEK SZERKEZETI OSZTÁLYA ÉS BETONFEDÉS
Betontechnológiai Szakirányú Továbbképzés MINŐSÉGBIZTOSÍTÁS VASBETON ÉPÍTMÉNYEK SZERKEZETI OSZTÁLYA ÉS BETONFEDÉS SZERKEZETI OSZTÁLYOK Nem kiemelt Minőségellenőrzés szintje Kiemelt Szerkezet alakja Szerkezet
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Vasalt falak: 4. Vasalt falazott szerkezetek méretezési mószerei Vasalt falak 1. Vasalás fekvőhézagban vagy falazott üregben horonyban, falazóelem lyukban. 1 2 1 Vasalt falak: Vasalás fekvőhézagban vagy
Acélszerkezetek. 3. előadás 2012.02.24.
Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel
A vasbetonszerkezet tervezésének jelene és jövője
MMK Szakmai továbbképzés A Tartószerkezeti Tagozat részére A vasbetonszerkezet tervezésének jelene és jövője Hajlítás, külpontos nyomás, nyírásvizsgálatok Dr. Bódi István, egyetemi docens Dr. Koris Kálmán,
Schöck Isokorb QP, QP-VV
Schöck Isokorb, -VV Schöck Isokorb típus (Nyíróerő esetén) Megtámasztott erkélyek feszültségcsúcsaihoz, pozitív nyíróerők felvételére. Schöck Isokorb -VV típus (Nyíróerő esetén) Megtámasztott erkélyek
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás
DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések
BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs
Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig
SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS
454 Iváncsa, Arany János utca Hrsz: 16/8 Iváncsa Faluház felújítás 454 Iváncsa, Arany János utca Hrsz.: 16/8 Építtető: Iváncsa Község Önkormányzata Iváncsa, Fő utca 61/b. Fedélszék ellenőrző számítása
VASALÁSI SEGÉDLET (ábragyűjtemény)
V VASALÁSI SEGÉDLET (ábragyűjtemény) Ez a segédlet az alábbi tankönyv szerves része: Dr. habil JANKÓ LÁSZLÓ VASBETONSZERKEZETEK I.-II. BUDAPEST 2009 V/1 V V.1. VASALÁSI ALAPISMERETEK V/2 Az íves vezetésű
Dr. Fenyvesi Olivér Dr. Görög Péter Megyeri Tamás. Budapest, 2015.
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR ÉPÍTŐANYAGOK ÉS MAGASÉPÍTÉS TANSZÉK GEOTECHNIKA ÉS MÉRNÖKGEOLÓGIA TANSZÉK Készítette: Konzulensek: Csanády Dániel Dr. Lublóy Éva Dr. Fenyvesi
Schöck Isokorb Q, Q-VV
Schöck Isokorb, -VV Schöck Isokorb típus Alátámasztott erkélyekhez alkalmas. Pozitív nyíróerők felvételére. Schöck Isokorb -VV típus Alátámasztott erkélyekhez alkalmas. Pozitív és negatív nyíróerők felvételére.
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának. meghatározása és vasalási tervének elkészítése
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának Kiindulási adatok: meghatározása és vasalási tervének elkészítése Geometriai adatok: l = 5,0 m l k = 1,80 m v=0,3
El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő
El hormigón estructural y el transcurso del tiempo Structural concrete and time A szerkezeti beton és az idő fib Szimpózium La Plata, Argentina, 2005. Szeptember 28.-30. 1 El hormigón estructural y el
Schöck Isokorb T D típus
Folyamatos födémmezőkhöz. Pozitív és negatív nyomaték és nyíróerők felvételére. I Schöck Isokorb vasbeton szerkezetekhez/hu/2019.1/augusztus 79 Elemek elhelyezése Beépítési részletek DL típus DL típus
Tartószerkezetek előadás
Tartószerkezetek 1. 11. előadás Acélszerkezeti kapcsolatok kialakítása és méretezése Csavarozott kapcsolatok Építőmérnöki BSc hallgatók számára Bukovics Ádám egy. adjunktus Szerkezetépítési és Geotechnikai
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez
Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának. meghatározása és vasalási tervének elkészítése
TERVEZÉSI FELADAT (mintapélda) Kéttámaszú, konzolos tartó nyomatéki és nyírási vasalásának Kiindulási adatok: meghatározása és vasalási tervének elkészítése Geometriai adatok: l = 5,0 m l k = 1,80 m v=0,3
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
K - K. 6. fejezet: Vasbeton gerenda vizsgálata Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása.
6. fejezet: Vasbeton gerenda vizsgálata 6.1. Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása. pd=15 kn/m K - K 6φ5 K Anyagok : φ V [kn] VSd.red VSd 6φ16 Beton:
2011.11.08. 7. előadás Falszerkezetek
2011.11.08. 7. előadás Falszerkezetek Falazott szerkezetek: MSZ EN 1996 (Eurocode 6) 1-1. rész: Az épületekre vonatkozó általános szabályok. Falazott szerkezetek vasalással és vasalás nélkül 1-2. rész:
Miért kell megerősítést végezni?
Megerősítések okai Megerősítések okai Szerkezetek megerősítése szálerősítésű polimerekkel SZERKEZETEK MEGERŐSÍTÉSÉNEK OKAI Prof. Balázs L. György Miért kell megerősítést végezni? 1/75 4/75 3/75 Megerősítések
Acél, Fa és falazott szerkezetek tartóssága és élettartama
BUDAPESTI MÜSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építészmérnöki Kar - Acél, Fa és falazott szerkezetek tartóssága és élettartama Dr. Sipos András Árpád A TARTÓSSÁG TERVEZÉSE Az EC szerint a statikus tervező
III. Reinforced Concrete Structures I. / Vasbetonszerkezetek I. Dr. Kovács Imre PhD tanszékvezető főiskolai tanár
III. Reinforced Concrete Structures I. Vasbetonszerkezetek I. - A betonacél és a feszítőbetét fizikai és mechanikai tulajdonságai, korróziós folyamatok - Dr. Kovács Imre PhD tanszékvezető főiskolai tanár
TARTÓ(SZERKEZETE)K. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) TERVEZÉSE II.
TARTÓ(SZERKEZETE)K TERVEZÉSE II. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) Dr. Szép János Egyetemi docens 2018. 10. 15. Az előadás tartalma Szerkezetek teherbírásának
támfalak (gravity walls)
Támfalak támfalak (gravity walls) Kő, beton vagy vasbeton anyagú, síkalapon nyugvó, előre vagy hátra nyúló talpszélesítéssel, merevítő bordákkal vagy azok nélkül készülő falak. A megtámasztásban meghatározó
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Tartószerkezet rekonstrukciós szakmérnök képzés Feszített és előregyártott vasbeton szerkezetek 1. előadás Előregyártott vasbeton szerkezetek kapcsolatai Dr. Sipos András Árpád 2012. november 17. Vázlat
Boltozott vasúti hidak élettartamának meghosszabbítása Rail System típusú vasbeton teherelosztó szerkezet
Hatvani Jenő Boltozott vasúti hidak élettartamának meghosszabbítása Rail System típusú vasbeton teherelosztó szerkezet Fejér Megyei Mérnöki Kamara 2018. november 09. Az előadás témái Bemutatom a tégla-
Schöck Isokorb T K típus
(Konzol) Konzolosan kinyúló erkélyekhez. Negatív nyomaték és pozitív nyíróerők felvételére. A VV1 nyíróerő terhelhetőségi osztályú Schöck Isokorb KL típus negatív nyomatékot, valamint pozitív és negatív
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Juhász Károly Péter Ipari padlók tervezési, szerkezeti kialakítási kérdései. Egyes szerkezeti megoldások jellemzői. 1) Szálerősítésű betonok 2) Ipari padlók méretezése 2018. szakmérnöki Ipari padlók méretezése
Tipikus fa kapcsolatok
Tipikus fa kapcsolatok Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék 1 Gerenda fal kapcsolatok Gerenda feltámaszkodás 1 Vízszintes és (lefelé vagy fölfelé irányuló) függőleges terhek
FERNEZELYI SÁNDOR EGYETEMI TANÁR
MAGASÉPÍTÉSI ACÉLSZERKEZETEK 1. AZ ACÉLÉPÍTÉS FERNEZELYI SÁNDOR EGYETEMI TANÁR A vas felhasználásának felfedezése kultúrtörténeti korszakváltást jelentett. - - Kőkorszak - Bronzkorszak - Vaskorszak - A
CONSTEEL 7 ÚJDONSÁGOK
CONSTEEL 7 ÚJDONSÁGOK Verzió 7.0 2012.11.19 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új makró keresztmetszeti típusok... 2 1.2 Támaszok terhek egyszerű külpontos pozícionálása...
Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.
10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését
Teherfelvétel. Húzott rudak számítása. 2. gyakorlat
Teherfelvétel. Húzott rudak számítása 2. gyakorlat Az Eurocode 1. részei: (Terhek és hatások) Sűrűségek, önsúly és az épületek hasznos terhei (MSZ EN 1991-1-1) Tűznek kitett tartószerkezeteket érő hatások
Cölöpcsoport elmozdulásai és méretezése
18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,
SZEMMEL. Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. 12. 16. 1
A FÖLDRENGF LDRENGÉSRŐL L MÉRNM RNÖK SZEMMEL 4. rész: r szabályok, példp ldák Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. 12. 16. 1 Szabályok A földrengésre méretezett szerkezetek
A vizsgafeladat ismertetése: Beton-, vasbetonszerkezetek készítésének részletes technológiai előírásai és szempontjai
A vizsgafeladat ismertetése: Beton-, vasbetonszerkezetek készítésének részletes technológiai előírásai és szempontjai A tételhez segédeszköz nem használható. A feladatsor első részében található 1 25-ig
Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ
Öszvérszerkezetek 3. előadás Öszvér gerendák kifordulása. Használhatósági határállapotok; nyírt kapcsolatok méretezése 1. mintapélda gerenda HHÁ készítette: 2018.11.08. Tartalom Öszvér gerendák kifordulása
FÖDÉMEK II. HAGYOMÁNYOS FÖDÉMEK, GERENDÁS FÖDÉMEK, TERVEZÉSI SZERKESZTÉSI ELVEK
Dr. Czeglédi Ottó FÖDÉMEK II. HAGYOMÁNYOS FÖDÉMEK, GERENDÁS FÖDÉMEK, TERVEZÉSI SZERKESZTÉSI ELVEK SZAKMÉRNÖKI ÉPSZ 1. EA/CO FÖDÉMEK II. 1 Födémek fejlődése, története (sík födémek) Hagyományos födémek:
Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás
tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés
Feszítőbetét erőátadódási hossza acélszál erősítésű betonban
Feszítőbetét erőátadódási hossza acélszál erősítésű betonban Dr. Kovács Imre PhD tanszékvezető főiskolai docens Mély- és Szerkezetépítési Tanszék 1 A feszítés elve K Teher K s s 2 A feszítés elve K Teher
SZÁMÍTÁS TŰZTEHERRE BAKONYTHERM
SZÁMÍTÁS TŰZTEHERRE BAKONYTHERM 10-es, BAKONYTHERM 12-es nyílásáthidalókra MEGRENDELŐ: Pápateszéri Téglaipari Kft. 8556 Pápateszér, Téglagyári út. A SZÁMÍTÁST KÉSZÍTETTE: Mérnök-Mátrix Bt. 9022 Győr, Árpád
Betonpadlók a betontechnológus elképzelése és az új MSZ 4798 : 2014 betonszabvány lehetőségei szerint
Betonpadlók a betontechnológus elképzelése és az új MSZ 4798 : 2014 betonszabvány lehetőségei szerint Hódmezővásárhely 2014. november 6. Kovács József BTC Kft. Speciális betonok: Piaci igények alacsonyabb