Varga Tamás Matematikaverseny 7. osztályos feladatok megoldásai iskolai forduló 2010.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Varga Tamás Matematikaverseny 7. osztályos feladatok megoldásai iskolai forduló 2010."

Átírás

1 Varga Tamás Matematikaverseny 7. osztályos feladatok megoldásai iskolai forduló feladat Kata egy dobozban tárolja 0 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 1 nem fehér, 15 pedig nem fekete. a) Hány piros kockája van Katának? b) Legalább hány kockát kell kivenni a dobozból, hogy a kivettek között legyen 3 darab különbözı színő kocka? Megoldás: a) 3 zöld,... 8 fehér,... 5 fekete,... kocka 4 piros kockát ad Katinak.... b) 13 kockából, ha a 8 fehéret és az 5 feketét vettük, nincs három szín,... tehát 14 kockával kaphatunk háromféle színt....3 pont. feladat Az ABC egyenlı szárú háromszög BC alapjának C csúcsából induló szögfelezı az AB oldalt a D pontban metszi. Tudjuk, hogy BC = CD. Mekkora a CDA szög? Megoldás: A Jó ábra az egyenlı szögek (vagy oldalak) jelölésével... Ha ABC < = α, úgy AB = AC miatt BCD < = α... és BC = CD miatt BDC < = α.... D α α α α A BCD háromszögben tehát α + α + α = 180 o,... azaz α = 7 o,... B C vagyis CDA < = 108 o feladat A 0, számot úgy képezzük, hogy a tizedesvesszı után sorban leírjuk 1-gyel kezdve az egymást követı pozitív egész számok négyzetét.

2 Melyik számjegy áll a tizedesvesszıtıl jobbra a 11. helyen? Megoldás: Egyjegyő négyzetszámok 3 helyiértéket foglalnak el,... a kétjegyőek 4 -tıl 9 -ig 6 = 1 helyiértéket foglalnak el,... a háromjegyőek 10 -tıl 31 -ig 3 = 66 helyiértéket foglalnak el,... ezzel már 81 jegy a tizedesvesszı után adott.... A maradék negyven helyre 10 darab négyjegyő... kell kerüljön, azaz 3 tıl 41 -ig... így a 11. helyen az 1 áll feladat Egy téglalap oldalai 18 és 4 centiméteresek. Az egyik (párhuzamos) oldalpárját kétszer annyival változtattuk, mint a másik oldalpárt, és így egy négyzetet kaptunk. Mekkora a négyzet oldala? Megoldás: Ha 18 x = 4 x, akkor x = 6, a négyzet oldala 1 cm, ha 18 + x = 4 + x ha, akkor x = 6, a négyzet oldala 30 cm, 18 + x = 4 x, akkor x =, a négyzet oldala 0 cm, ha 18 + x = 4 x, akkor x =, a négyzet oldala cm. A 18 x = 4 + x, a 18 + x = 4 + x, a 18 x = 4 x és a 18 x = 4 + x negatív oldalt adnának! A négy megoldás bármelyike 4 pontot ér, a további három egyenként,

3 5. feladat Ali, Béla, Csaba és Dani egyike csintalankodott. Errıl így vallottak: Ali: Csaba volt; Béla: Nem én voltam; Csaba: Dani volt; Dani: Csaba nem mond igazat. Ki a csintalan, ha a négy állítás közül pontosan egy hamis? Megoldás: Ha Csaba igazat mond, akkor Dani állítása hamis, és vele együtt Alié is, ami már két hamis kijelentés lenne....4 pont Csaba tehát nem mond igazat,... így Dani állítása igaz,... de ezzel, a feltétel miatt, Béla és Ali is igazat állít,... tehát Csaba a csintalan és az ı állítása hamis.... Bármelyik feladat eredményének indoklás nélküli közlése ot ér. Több megoldásból csak egy (lehetıleg a jobbik) kaphat pontot. Az útmutatóban közöltektıl eltérı, de kifogástalan indoklású megoldások egyenértékőek a bemutatott megoldásokkal. Az elérhetı maximális pontszám 50 pont. Az I. kategóriába tartozó versenyzık akiknek a kötelezı matematika óraszáma legfeljebb heti 4 óra dolgozatainak továbbküldési ponthatára 0 pont. A II. kategóriába tartozó versenyzık akiknek a kötelezı matematika óraszáma több mint heti 4 óra dolgozatainak továbbküldési ponthatára 5 pont. A továbbküldés nem feltétlenül jelent továbbjutást. A továbbjutáshoz szükséges ponthatárt a versenybizottság állapítja meg. A ténylegesen továbbjutott tanulókat a megyei szervezık értesítik. Kérjük a kollégákat, hogy feltőnıen írják rá a versenydolgozatokra, a tanuló neve mellé a megfelelı kategóriát! Köszönjük a munkájukat! Székesfehérvár, 010. november A Versenybizottság

4 Varga Tamás Matematikaverseny megyei forduló osztály I. kategória Megoldások 1. feladat Egy áruházban a Boci csoki darabja 75 Ft. Ha az ugyanilyen csokit 6 darabos csomagban vesszük, akkor egy csomag ára 410 Ft. Hány csokit vehetünk 000 Ft-ért? (A legtöbb csokit szeretnénk venni és nem baj, ha marad pénzünk a 000 Ft-ból.) Megoldás: Mivel a 6-os csomag ára kevesebb, mint 6 75 = 450 Ft, ezért... annyi csomagot veszünk, amennyi a 000 Ft-ból kitelik, azaz 4 csomagot, 1640 Ft-ért....3 pont A maradék 360 Ft-ból vehetünk még 4 db csokit 4 75 = 300 Ft-ért,...3 pont és marad 60 Ft-unk..... feladat Egy üvegtábla cm széles és 4 cm hosszú téglalap. Ebbıl 6 cm széles és 8 cm hosszú téglalap alakú darabokat szeretnénk kivágni. Hány darabot lehet az üvegtáblából kivágni? Megoldás: Mivel 4 = és 6 8 = éppen 11-szer van meg a 58-ban,... ezért legfeljebb11 darabot vághatunk ki.... Ennyit ki is vághatunk, pl. az alábbi ábra szerint: pont ( Ha a versenyzı csak a fenti ábrát adja, az is 10 pont! )

5 3. feladat Hány olyan háromjegyő pozitív egész szám van, amelyben a számjegyek összege 3? Megoldás: A számjegyek között van legalább egy 8-nál nem kisebb.... Ha van 9-es és kettı is, akkor a 9, 9, 5 három jót : 995, 959, 599 ad.... Ha csak egy 9-es van, akkor a 9, 8, 6, vagy a 9, 7, 7 számjegyekbıl készíthetünk jó háromjegyőeket.... A 9, 8, 6 ból hat darab,... a 9, 7, 7 bıl három darab adódik.... Ha nincs 9-es jegy úgy 8-as kell legyen és legfeljebb kettı mert 3 7 < 3 < Így a 8, 8, 7 ad három jót,... míg egy 8-as már nem hoz jót.... Összesen tehát 15 jó háromjegyő van feladat Melyek azok az x egész számok, amelyekre az x + 36, a x és az 5x 6 egy háromszög oldalainak hossza? Megoldás: A háromszög egyenlıtlenségek miatt a) x + 36 < x + 5x 6,... azaz 7 < x... b) x < x x 6, azaz < x... c) 5x 6 < x x,... azaz x < Mindháromnak megfelel a 8-nál nem kisebb és a 0-nál nem nagyobb x egész... ( x є {8, 9, 10,... 18, 19, 0} )

6 5. feladat A hétfejő sárkány hét fejét megfelelı sorrendben egymás után levágva megmenekülhetünk. A fejek egyenkénti levágásakor - egyik fejet sem vághatjuk le annyiadikként, amennyi a sorszáma; - legelıször és negyedikként páratlan sorszámú fejet kell levágni; - a hatos sorszámú fej levágása után már csak ennek két, eredeti szomszédját kell levágni. Milyen sorrendben vagdossunk, ha a fejek balról jobbra 1-tıl 7-ig számozottak, és meg is akarunk menekülni? Megoldás: A hatos sorszámú fej ötödikként kerül vágás alá, így a két szomszédját, az 5 illetve 7 sorszámút a feltételek miatt csak a 675 sorrendben vághatjuk....3 pont A maradt két páratlan sorszámú 1 és 3 közül a 3 az elsı vágásnak esik áldozatul,... míg az 1 a negyedik e sorban.... A maradék két fej, a és a 4 számú a 4, sorrendben jön második illetve harmadik vágásra.... A a menekülést adó sorrend.... Bármelyik feladat eredményének indoklás nélküli közlése ot ér. Több megoldásból csak egy (lehetıleg a jobbik) kaphat pontot. Az útmutatóban közöltektıl eltérı, de kifogástalan indoklású megoldások egyenértékőek a bemutatott megoldásokkal. Az elérhetı maximális pontszám 50 pont. Az I. kategóriába tartozó versenyzık akiknek a kötelezı matematika óraszáma legfeljebb heti 4 óra dolgozatainak továbbküldési ponthatára 5 pont. A továbbküldés nem feltétlenül jelent továbbjutást. A továbbjutáshoz szükséges ponthatárt a versenybizottság állapítja meg, s errıl a megyei szervezık értesítést kapnak. Kérjük a kollégákat, hogy feltőnıen írják rá a versenydolgozatokra, a tanuló neve mellé a megfelelı kategóriát! Köszönjük a munkájukat! Székesfehérvár, 011. január A Versenybizottság

7 Varga Tamás Matematikaverseny megyei forduló osztály II. kategória Megoldások 1. feladat Egy Guiness - rekord kísérletben 1 dm 3 térfogatú kockákat ragasztanak össze 1 dm alapterülető négyzetes oszloppá. Az oszlop felszíne egy kocka felszínének 011-szerese lesz. Hány kockát kell összeragasztani? Megoldás: ha n darab kocka kell a négyzetes oszlophoz,... akkor az alaplapjának és fedılapjának területe = dm,... míg az n darab kocka palástja összesen 4n dm -t ad....3 pont A 4n + = bıl... n = 3016 kocka kell a toronyhoz..... feladat Egy egyenlı szárú háromszög két oldala centiméterekben mérve egész szám, és egyikük sem hosszabb 3 cm-nél. Hány ilyen különbözı háromszög van? (Két háromszög különbözı, ha legalább egy oldalhosszukban különböznek.) Megoldás: Ha a szárakat a jelöli, akkor a háromszög egyenlıtlenség miatt 6 a + a > alap > a a = 0 mellett...3 pont a a alap hossza lehet cm 1; ; 3 cm 3 3 1; ; 3; 4; 5 cm...5 pont Tehát kilenc, a feltételeknek megfelelı háromszög van....

8 3. feladat P az elsı 64 pozitív egész szorzata. Határozzuk meg a legnagyobb olyan n értéket, amelyre P osztható 1 n -nel! Megoldás: Mivel 1 = 3, ezért 1 n = ( 3) n = n 3 n... ezért egyrészt megszámoljuk, hogy hány -es tényezıt hoz P.... A 64 számból 3 páros, ezekbıl 16 db 4-gyel, 8 db 8-cal, 4 db 16-tal, továbbá db 3-vel és 1 db 64-gyel osztható....3 pont Ez azt jelenti, hogy = 63 kettes tényezı van P-ben.... Másrészt a 3-as tényezıket 1 db 3-többszörös, ebbıl 7 db 9-többszörös, és db 7-többszörös adja.... Az n = 30 tehát a megfelelı legnagyobb egész feladat Az A-nál nem 60 o os ABC háromszög AB és AC oldalaira kifelé az ABD illetve ACE, a harmadik oldalára befelé a BCF szabályos háromszögeket rajzoltuk. Bizonyítsuk be, hogy az ADFE négyszög paralelogramma! 1. megoldás: D B F A C E Forgassuk el a B csúcs körül -60 o -kal a BDF háromszöget!... F pont a C-be, D pont az A-ba kerül, tehát DF = AC = AE.... Ugyanígy, a C pont körüli +60 o -os forgás a CEF háromszöget ABC háromszögbe viszi,... tehát FE = AB = AD.... Az ADFE négyszög --szemköztes oldala egyenlı, tehát paralelogramma..... megoldás: BDF háromszög egybevágó ABC háromszöggel, mert - oldaluk, s az ezekkel bezárt szögek egyenlık,... mivel (ABC < - 60 o) vagy (60 o ABC < ) szögeket kell 60 o -kal növelni, vagy 60 o -ból kivonni. + ugyanígy CEF háromszög egybevágó ABC háromszöggel,... + tehát az ADFE paralelogramma, mert - szemköztes oldal egyenlı megoldás: Az ADFE négyszög D-nél és E-nél levı szögei egyenlık, mert mindkettı az elıbbi egybevágóságok okán 60 o BAC < vagy BAC < - 60 o...4 pont Hasonlóan A-nál és F-nél levı szögek 10 o + BAC < vagy ennek 360 o -ra kiegészítı szöge, ha 10 o + BAC < > 180 o...4 pont tehát négyszögünk paralelogramma, mert - szemköztes szöge egyenlı....

9 5. feladat Kata délben beállította a karóráját a pontos idınek megfelelıen. Egy óra múlva, pontosan 1 órakor Kata órája 1 óra 57 perc 36 másodpercet mutatott. Mennyi a pontos idı, amikor a karóra 10 órát mutat, ha tudjuk, hogy egyenletesen késik, azaz a déltıl eltelt tényleges idı, és a karóra által mutatott idı aránya állandó? Megoldás: Ha K a Kata órája által mutatott, V pedig a valódi idı déltıl számítva percekben, akkor délután 1 órakor: K = 57 + = és 60 5 V 300 = 60 = pont Az egyenletes késés miatt K 88 4 = =,...4 pont V ezért Kata órája szerinti este 10-kor valójában 5 V = 600 = 65 perc, vagyis 10 óra 5 perc van Bármelyik feladat eredményének indoklás nélküli közlése ot ér. Több megoldásból csak egy (lehetıleg a jobbik) kaphat pontot. Az útmutatóban közöltektıl eltérı, de kifogástalan indoklású megoldások egyenértékőek a bemutatott megoldásokkal. Az elérhetı maximális pontszám 50 pont. A II. kategóriába tartozó versenyzık akiknek a kötelezı matematika óraszáma több mint heti 4 óra dolgozatainak továbbküldési ponthatára 5 pont. A továbbküldés nem feltétlenül jelent továbbjutást. A továbbjutáshoz szükséges ponthatárt a versenybizottság állapítja meg, s errıl a megyei szervezık értesítést kapnak. Kérjük a kollégákat, hogy feltőnıen írják rá a versenydolgozatokra, a tanuló neve mellé a megfelelı kategóriát! Köszönjük a munkájukat! Székesfehérvár, 011. január A Versenybizottság

10 Varga Tamás Matematikaverseny országos döntı osztály I. kategória megoldások 1. feladat Beának 18 pénzérméje van, mindegyik 0 vagy 50 Ft-os. Ha a 0 Ft-osokat 50 Ft-osokra, az 50 Ft-osokat 0 Ft-osokra cserélné, akkor pénzének értéke kétszeresére nıne. Mennyi pénze van Beának? Megoldás: (elsı megoldás): Ha az eredeti és a cserélt összegeket összeadjuk, Akkor az eredeti összeg háromszorosát kapjuk. Így = 3 S, vagyis S = 40 Ft. Ez csak db 50 és 16 db 0 Ft-osokból állhat elı. Valóban 16 db 50 Ft = 800 és db 0 Ft = 40 összege 840 Ft (második megoldás): (0a + 50(18-a)) = 50a + 0(18-a) Ebbıl a = 16 és 18-a =, Tehát = 4 Ft. Ez valóban megoldás, mert = 840 Ft. + 4 pont 5 pont. feladat Egy téglalap két szomszédos csúcsához tartozó szögfelezık a téglalap középvonalának egyik negyedelı pontjában metszik egymást. Mekkora a téglalap területe, ha a téglalap eme középvonalának hossza 10 egységnyi? Megoldás: A középvonalnak három negyedelı pontja van D Ha FH =, akkor AHD háromszög egyenlı szárú 4 F 10 H derékszögő, tehát FH = FD = FA = 4 azaz a téglalap területe 5 10 = 50 te. A 10 Ha FH =, akkor ugyanúgy mint az elıbb 3 pont FH = FD = FA = 10 tehát a téglalap területe = 100 te. 4 Ha FH = , akkor, mint eddig FH = FD = FA = , a terület = 150 te.

11 3. feladat A 4, 4 és k pozitív egészek bármelyike osztója a másik kettı szorzatának. Adjuk meg a legkisebb ilyen k pozitív egész számot! Megoldás: 4 = 6 4, 4 = 6 7 E két szám legkisebb közös többszöröse így a legkisebb k = 4 7 = 8. 5 pont 3 pont 4. feladat Az ABC egyenlı szárú háromszög AB szárán van a P és AC szárán van a Q pont úgy, hogy a PCB szög 40 o -os a QBC szög pedig 50 o -os. Mekkora a PQB szög, ha a BAC szög 0 o -os? Megoldás: Jó ábra P A Q A BCQ háromszögben Q < = 180 o 50 o 80 o = 50 o tehát BC = CQ, és ezért PC merılegesen felezi BQ-t, tehát PBCQ deltoid, s így PQB szög 30 o 30 o B 50 o 40 o C 5. feladat Ebben a keretben pontosan 1 állítás hamis; Ebben a keretben pontosan állítás hamis; Ebben a keretben pontosan 3 állítás hamis; Ebben a keretben pontosan 4 állítás hamis; A 4 állítás közül hány lehet igaz? Megoldás: Két állítás nem lehet egyszerre igaz, mert ellentmondók. Legfeljebb tehát egy állítás lehet igaz. Ha egyetlen állítás sem lenne igaz, akkor a sorban az utolsó igaz lenne, ami ellentmondás. Így egy igaz lehet, Ami a harmadik sor állítása.

12 Varga Tamás Matematikaverseny országos döntı osztály II. kategória megoldások 1. feladat Egy urnában piros és sárga golyók vannak. Ha egy piros golyót kiveszünk, akkor az urnában maradt golyók hetede lesz piros. Ha viszont öt sárga golyót veszünk ki, akkor a megmaradt golyók hatoda lesz piros. Hány piros és hány sárga golyó van az urnában? Megoldás: p 1+ s = p 1, azaz s = 6 p 6, 7 + p + s 5 = p, azaz s = 5 p E kettıbıl p = 11 és s = 60 Ezek valóban a feladat megoldását adják.. feladat Az ABCD téglalap CD oldalának C-hez közelebbi harmadoló pontja H. A H ponton keresztül húzott egyenes az AB oldalt M-ben metszi úgy, hogy a téglalap területét 1 : 3 arányban osztja. Mekkora az MB : AB arány? Megoldás: D b A a x H a/3 M x C B MB < MA, mert az ADHM trapéz a téglalap területének legalább a harmada. 3 pont a x + a x + a / 3 így 3 b = 3 b 4 pont amibıl 3x + a = 3 5 a x, azaz MB:AB = 1:6 mert x 1 = a 6 3. feladat Ma van. A nyolc számjegybıl hány nyolcjegyő, 360-nal osztható szám képezhetı? Megoldás: 360 = 9 40 és = 18, tehát nyolcjegyőnk a számjegyek bármely sorrendjére 9-nek többszöröse. Az utolsó jegy 0 kell legyen. Így a 6. és 7. jegybıl álló kétjegyő 4-nek többszöröse kell legyen vagyis a 7. jegy páros, azaz 0 vagy. Ha a 7. jegy is a 0, akkor a 6. jegy csak a lehet, 5! így a maradó 1,1,,3,9 jegyekbıl = 60, míg ha a 7. jegy a, akkor a 6. jegy az 1, a 3 és a 9 valamelyike végőbıl = 96, 30 végőbıl = 48 és 90 végőbıl ugyanennyi, összesen tehát = 5 nyolcjegyőnk van.

13 4. feladat Az ABC egyenlı szárú háromszög AB szárán van a P és AC szárán van a Q pont úgy, hogy a PCB szög 40 o -os, a QBC szög 50 o -os, a BAC szög pedig 0 o. Mekkora a PQ és a BC egyenesek szöge? Megoldás: Lásd a 7/I. 4. feladatból PQC szög 80 o, tehát PQ és BC szöge 0 o 9 pont 5. feladat Létezik-e olyan társaság, amelyben senkinek sincs 4-nél több ismerıse és pontosan 1 olyan társaságbeli ember van, akinek pontosan 1, pontosan olyan társaságbeli ember van, akinek pontosan, pontosan 3 olyan társaságbeli ember van, akinek pontosan 3 és pontosan 4 olyan társaságbeli ember van, akinek pontosan 4 ismerıse van a társaságban? Megoldás: A válasz igen, van ilyen 10 tagú társaság A tagokat jelölje egy-egy pont, az ismeretséget két pontot összekötı szakasz (1) () () (4) (4) (4) (4) (3) (3) (3) 8 pont

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E! Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,

Részletesebben

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?

3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2? Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak

Részletesebben

Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010.

Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010. Varga Tamás Matematikaverseny 8. osztályos feladatok megoldásai iskolai forduló 2010. 1. feladat tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a

Részletesebben

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2018/ osztály

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2018/ osztály 1. Marci, a teniszező a tavalyi évben az első 30 mérkőzéséből 24-et megnyert. Az év további részében játszott mérkőzéseinek már csak az egyharmadát nyerte meg. Így éves teljesítménye 50%-os lett, vagyis

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az

Részletesebben

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2016/ osztály

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2016/ osztály 1. Az erdészet dolgozói pályázaton nyert facsemetékkel ültetnek be egy adott területet. Ha 450-et ültetnének hektáronként, akkor 380 facsemete kimaradna. Ha 640 facsemetével többet nyertek volna, akkor

Részletesebben

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2018/ osztály

Varga Tamás Matematikaverseny Javítási útmutató Iskolai forduló 2018/ osztály 1. Dóri a könyveit két polcon tartotta úgy, hogy a felső polcon volt könyveinek egyharmada. Egyszer átrendezte a könyveket: az alsó polcon lévő könyvek egyharmadát feltette a felső polcra, majd az eredetileg

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú. Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44. 00 009 + 008 007 +... + 4

Részletesebben

9. évfolyam 2. forduló

9. évfolyam 2. forduló 9. évfolyam. forduló. különbözı pozitív egész szám átlaga. Legfeljebb mekkora lehet ezen számok közül a legnagyobb? (A) (B) 8 (C) 9 (D) 78 (E) 44 Válasz: (D) 78 Megoldás: Ha a szám átlaga, akkor összegük

Részletesebben

Megoldások 9. osztály

Megoldások 9. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege

Részletesebben

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK 1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!

Részletesebben

Gyakorló feladatok a geometria témazáró dolgozathoz

Gyakorló feladatok a geometria témazáró dolgozathoz Gyakorló feladatok a geometria témazáró dolgozathoz Elmélet 1. Mit értünk két pont, egy pont és egy egyenes, egy pont és egy sík, két metszı, két párhuzamos illetve két kitérı egyenes, egy egyenes és egy

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! 1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 11. évfolyam 015. évi Bolyai János Megyei Matematikaverseny A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"

Részletesebben

MATEMATIKA VERSENY ABASÁR, 2018

MATEMATIKA VERSENY ABASÁR, 2018 MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?

1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? 1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig

4 = 0 egyenlet csak. 4 = 0 egyenletből behelyettesítés és egyszerűsítés után. adódik, ennek az egyenletnek két valós megoldása van, mégpedig Oktatási Hivatal Az forduló feladatainak megoldása (Szakközépiskola) Melyek azok az m Z számok, amelyekre az ( m ) x mx = 0 egyenletnek legfeljebb egy, az m x + 3mx 4 = 0 egyenletnek legalább egy valós

Részletesebben

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint

1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül

Részletesebben

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x,

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x, 1. Egy 31 fős osztály játékos rókavadászaton vett részt. Az erdőben elrejtett papír rókafejeket kellett összegyűjteniük. Minden lány 4 rókafejet talált, a fiúk mindegyike pedig 5 darabot. Ha minden lány

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Kisérettségi feladatsorok matematikából

Kisérettségi feladatsorok matematikából Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)

Részletesebben

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük: 1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

III. Vályi Gyula Emlékverseny december

III. Vályi Gyula Emlékverseny december III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

A TERMÉSZETES SZÁMOK

A TERMÉSZETES SZÁMOK Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

XI. PANGEA Matematika Verseny I. forduló 8. évfolyam

XI. PANGEA Matematika Verseny I. forduló 8. évfolyam 1. A következő állítások közül hány igaz? Minden rombusz deltoid. A deltoidnak lehet 2 szimmetriatengelye. Minden rombusz szimmetrikus tengelyesen és középpontosan is. Van olyan paralelogramma, amelynek

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege?

VIII. Vályi Gyula Emlékverseny 2001 november Mennyivel egyenlő ezen számjegyek összege? VIII. Vályi Gyula Emlékverseny 001 november 3-5 VI osztály Csak az eredmény kérjük! 1. Frédi 3 naponként, Béni 4 naponként jár az uszodába, mindig pontosan délután 4-től 6-ig. Kedden találkoztak az uszodában.

Részletesebben

2. Melyik kifejezés értéke a legnagyobb távolság?

2. Melyik kifejezés értéke a legnagyobb távolság? 1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így

Részletesebben

Megyei matematikaverseny évfolyam 2. forduló

Megyei matematikaverseny évfolyam 2. forduló Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000

Részletesebben

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan

Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete? 1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

IV. Vályi Gyula Emlékverseny november 7-9.

IV. Vályi Gyula Emlékverseny november 7-9. IV. Vályi Gyula Emlékverseny 997. november 7-9. VII. osztály LOGIKAI VERSENY:. A triciklitolvajokat a rendőrök biciklin üldözik. Összesen tíz kereken gurulnak. Hány triciklit loptak el. (A) (B) 2 (C) 3

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

A) 0 B) 2 C) 8 D) 20 E) 32

A) 0 B) 2 C) 8 D) 20 E) 32 1. X és Y egyjegyű nemnegatív számok. Az X378Y ötjegyű szám osztható 72-vel. Mennyi X és Y szorzata? A) 0 B) 2 C) 8 D) 20 E) 32 2. Hány valós gyöke van a következő egyenletnek? (x 2 1) (x + 1) (x 2 1)

Részletesebben

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5

Láthatjuk, hogy az els szám a 19, amelyre pontosan 4 állítás teljesül, tehát ez lesz a legnagyobb. 1/5 D1. Egy pozitív egész számról az alábbi 7 állítást tették: I. A szám kisebb, mint 23. II. A szám kisebb, mint 25. III. A szám kisebb, mint 27. IV. A szám kisebb, mint 29. V. A szám páros. VI. A szám hárommal

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam 01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás

Részletesebben

törtet, ha a 1. Az egyszerűsített alak: 2 pont

törtet, ha a 1. Az egyszerűsített alak: 2 pont 1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 37. évfolyam, 2015/2016-os tanév

PYTAGORIÁDA Az országos forduló feladatai 37. évfolyam, 2015/2016-os tanév Kategória P 6 1. Zsombornak a szekrényben csak fekete, barna és kék pár zoknija van. Ingjei csak fehérek és lilák, nadrágjai csak kékek és barnák. Hányféleképpen felöltözve tud Zsombor iskolába menni,

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb

Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben