Mintavételezés, szűrés, kilógó esetek detektálása
|
|
- Imre Barta
- 8 évvel ezelőtt
- Látták:
Átírás
1 Mintavételezés, szűrés, kilógó esetek detektálása Salánki Ágnes Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems
2 Az alapfeladat ugyanaz Az aspektus más Alapfogalmak
3 MINTAVÉTELEZÉS
4 SRS o Simple Random Sample o random mintavétel Mintavételezés Stratified Sample Cluster sample
5 SRS o Simple Random Sample Mintavételezés Stratified Sample o Homogén réteg o Mindegyikből random m. Cluster sample
6 SRS o Simple Random Sample Mintavételezés Stratified Sample Cluster sample o ~azonos méretű klaszterek o Azokból random m.
7 Idősoroknál Outlierek? Random sampling size mondjuk p = nél? Imbalanced adatsorok
8 SZŰRÉS
9 Definíciók Jelfeldolgozás frekvencia Fizika hullámhosszok Matematika részhalmaz Industrial rock?? Számítástechnika o Értékek, jellemzően data streamben Mail Tartalom Wordfilter
10 Ábra és a számértékes példák forrása: [1] Egyszer streamenként: Lokális maximum? Adatfolyamok Globális kérdések: Minden új maximumot jelezzünk Buffer, megengedett számítási memória igény korlátos 1. több forrásból, 2. ismeretlen sebességgel
11 Szenzor-adatok Adatfolyam-források o 1 millió szenzor x 10/s x 4B Képek o Szatelitek: n TB/nap Internetes szolgáltatók o A legutóbbi órában melyik volt a legnépszerűbb weboldal Hálózati forgalom Tőzsdei adatok
12 Feldolgozás: időkorlát! Diszk nem használható Megengedett memóriaigény: korlátos Elemenkénti számítási igény: korlátos Szokásos megoldások: o Csúszóablakos tárolás és feldolgozás o Mintavételezés o Közelítő algoritmusok
13 Eltároljuk Csúszóablakos tárolás o A legutolsó t elemet o Az elmúlt T időben jövőket o A triggertől számító utolsókat Csúszóablakra tervezett algoritmusok o Pl. átlagszámítás
14 Mintavételezés streamekben Pl. az elmúlt héten hány egyedi query jött? Ezt kb. 10% minta alapján
15 Random mintavételezés 1/3-os mintavételezés p = 1.0 p = 1.0 p = 1.0
16 Mintavételezés streamekben Pl. az elmúlt héten hány egyedi query jött? Ezt kb. 10% minta alapján Random mintavételezés Nem tudunk a minta alapján általánosítani a teljes streamre o Ha kétszer fordul elő, p = 0.18 a mintában o Ha tényleg egyedi a streamben, p = 0.1 a mintában o Stb.
17 Mintavételezés streamekben: Hash Pl. az elmúlt héten hány egyedi query jött? Ezt kb. 10% minta alapján Érték alapján szűrünk o Pl. hash függvény 0-9 közé o Feltételezések A hash egyenletes az értékek 1/10-e kerül be a 0-ba
18 Mintavételezés streamekben: hash 1/3-os mintavételezés Legalább becsülni tudunk Mintavételezés típusa? p = 1/3 p = 1/3 p = 1/3
19 Pl. találjuk meg o a különlegeseket o az azonosokat o a különbözőeket Szűrés streamekben Már az első is nehéz probléma
20 Adott: 0-1 stream N buffermérettel Bitszámlálás Ad-hoc query: Hány 1-es van az utolsó k bitben? Néha még erre sincs időnk
21 Bloom filterek Pl. web crawling: láttuk-e már ezt az URL-t? Bloom filter o bitvektor o hash függvények (h 1, h 2 stb.) Folyamat: x inputra o BESZÚR: h 1 x, h 2 (x) stb. indexekre: 0 1 a vektorban o KERES: ha h 1 x h 2 x... 1, akkor BESZÚR
22 Bloom filterek N = 11 Input: egész számok h 1 x : a páros bitekből képzett y mod N h 2 x : a páratlan bitekből képzett y mod N
23 Bloom filterek Folyam h 1 (x) h 2 (x) Filter BESZÚR(25 = 11001) BESZÚR(159 = ) BESZÚR(585 = ) KERES(118 = )
24 Bloom filterek Persze van fals pozitív N mérettel h hash függvénnyel eddig k beszúrt elemmel h o p P = #(1) N o # 1 k N Pl. N = 10 6, h = 5, k = 10 7 értékekkel o p FP =
25 OUTLIER DETEKTÁLÁS
26 Alapfeladat Vannak-e egyáltalán? Vannak-e egyáltalán? Hogy néznek ki? Szakterület specifikus? Hogyan szeparálhatóak? Nagy adat: aggregálás? Miért? Hatások? Ábra forrása:
27 Alapfeladat
28 Használati esetek Kép forrása:
29 Használati esetek Képek forrása:
30 Használati esetek
31 Alapfogalmak novelty peculiarity anomaly outlier discordant observations surprise exception rare event aberration
32 Kevés van belőlük Definíció Gyanús, hogy más a generáló folyamat/forrás
33 Pont- és kollektív anomála Pontanomália Kollektív anomália
34 Pont- és kollektív anomála Pontanomália Kollektív anomália
35 Pont- és kollektív anomália
36 Viselkedési és kontextusanomália Viselkedési Kontextus Ábrák forrása:
37 Viselkedési és kontextusanomália Viselkedési Kontextus Itt: viselkedési és pontanomáliák Ábrák forrása:
38 Megközelítések Távolság alapúak Sűrűség alapúak
39 Megközelítések Távolság alapúak Sűrűség alapúak
40 VIZUÁLIS MÓDSZEREK
41 1D Az aggregálás általában nem jó
42 1D Az aggregálás általában nem jó Néhány kilógó értéket a boxplot egyszerűen elmaszkol
43 nd Eddig: kilógó esetek az egyes dimenziókban Hogyan általánosítsunk? o Descartes szorzat? o Sűrűségfüggvény bevonása?
44 nd: Descartes szorzat
45 nd: Többdimenziós sűrűségfüggvény Generalization of 1D density
46 nd: Többdimenziós sűrűségfüggvény Egydimenziós általánosítása Több normál kategória is létezhet Minden más outlier, esetleg átmenet a normálok között Pontok nélkül a 0-1 nem látszik
47 TÁVOLSÁG ALAPÚ TECHNIKÁK
48 Befoglaló burok Féltér-mélység: Tukey, Min.: Extrém Medián: majd a végén pontok hds z : min x i : x i z, x j : x j z
49 Befoglaló burok Féltér-mélység: Tukey, 1974
50 Befoglaló burok Féltér-mélység: Tukey, 1974
51 DEMO Befoglaló burok Csomag: depth Hasznos függvények: depth, isodepth Paraméterek: u pont, dpth mélység
52 DB Distance Based Outlier: szomszédok száma alacsony Paraméterek o r sugarú hipergömb o Szomszédok elvárt π aránya
53 DEMO DB Csomag: fields Függvény: fields.rdist.near Paraméterek: delta sugár
54 MCD Minimum Covariance Determinant Alapötlet o Keressük meg a legkompaktabb részhalmazt!
55 MCD Minimum Covariance Determinant Alapötlet o Keressük meg a legkompaktabb részhalmazt! Kimerítő keresés? choose(n = 1000, k = 900) [1] e
56 Közelítő algoritmus FAST-MCD Véletlenszerűen választott kezdőhalmaz Iteratív Legközelebbi pontok kiválasztása o Mahalanobis távolság alapján
57 Mahalanobis távolság D x, M = (x θ) T S 1 x θ o S kovarianciamátrix o θ súlypont Ábra forrása:
58 Közelítő algoritmus FAST-MCD Véletlenszerűen választott kezdőhalmaz Iteratív X Legközelebbi pontok kiválasztása o Mahalanobis távolság alapján o Legközelebbi x%
59 BACON Blocked Adaptive Computationally Efficient Outlier Nominators Kiinduló halmaz félig felügyelt módban is! Új halmaz: küszöbérték alapján
60 DEMO BACON Csomag: robustx Függvény: mvbacon Paraméterek o init. sel kezdőhalmaz manual man. sel kezdőhalmaz Mahalanobis, dunimedian m kezdőhalmaz mérete
61 DEMO BACON Csomag: robustx Függvény: mvbacon Paraméterek o init. sel kezdőhalmaz manual man. sel kezdőhalmaz Mahalanobis, dunimedian m kezdőhalmaz mérete
62 SŰRŰSÉG ALAPÚ TECHNIKÁK
63 LOF motiváció
64 LOF Local Outlier Factor Alapötlet: csak a szomszédaival hasonlítsuk össze o lokális sűrűség Outlier kritérium o a lokális sűrűség jóval kisebb, mint a szomszédaimnak átlagosan
65 DEMO LOF Csomag: DMwR (Data Mining with R) Függvény: lofactor Paraméterek: k szomszédság mérete
66 Big Data környezet? Közelítő algoritmusok Stream processing
67 Hivatkozásjegyzék [1] Stream Processing, filtering: Mining of Massive Data Sets o Alapmű: o Coursera tárgy: [2] Outlier Detection o Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3):15, 2009
Mintavételezés, szűrés, outlierek detektálása
Mintavételezés, szűrés, outlierek detektálása Salánki Ágnes salanki@mit.bme.hu Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and
Mintavételezés, szűrés, kilógó esetek detektálása
Mintavételezés, szűrés, kilógó esetek detektálása Salánki Ágnes salanki@mit.bme.hu Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology
Stream Processing. Big Data elemzési módszerek. Kocsis Imre
Stream Processing Big Data elemzési módszerek Kocsis Imre ikocsis@mit.bme.hu 2014.11.12. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Szenzor-adatok Adatfolyam-források
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Vizuális adatelemzés
Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics
RHadoop. Kocsis Imre Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék
RHadoop Kocsis Imre ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Házi feladat Csapatépítés o 2 fő, tetszőleges kombinációkban http://goo.gl/m8yzwq
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Virtualizált környezetek teljesítménymérése és elemzése
Rendszermodellezés Virtualizált környezetek teljesítménymérése és elemzése Micskei Zoltán, Nádudvari György fóliáinak felhasználásával Budapest University of Technology and Economics Fault Tolerant Systems
Teljesítménymodellezés
Teljesítménymodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó
Searching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz Szekér Szabolcs 1, Dr. Fogarassyné dr. Vathy Ágnes 2 1 Pannon Egyetem Rendszer- és Számítástudományi Tanszék, szekersz@gmail.com
Csima Judit április 9.
Osztályozókról még pár dolog Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. április 9. Csima Judit Osztályozókról még pár dolog 1 / 19 SVM (support vector machine) ez is egy
Házi Feladat. 3 fős csapatok o Javasolt: legyen benne > másodéves informatikus
HÁZI FELADAT Házi Feladat 3 fős csapatok o Javasolt: legyen benne > másodéves informatikus Feladatválasztás listából o Eseti elbírálással: hozott feladat o Kiírások: honlap o Jelentkezés: form Teljesítés
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
PONTFELHŐ REGISZTRÁCIÓ
PONTFELHŐ REGISZTRÁCIÓ ITERATIVE CLOSEST POINT Cserteg Tamás, URLGNI, 2018.11.22. TARTALOM Röviden Alakzatrekonstrukció áttekintés ICP algoritmusok Projektfeladat Demó FORRÁSOK Cikkek Efficient Variants
Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41
Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt
Hálózati réteg. WSN topológia. Útvonalválasztás.
Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,
Rendszermodellezés: házi feladat bemutatás
Rendszermodellezés: házi feladat bemutatás Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Teljesen elosztott adatbányászat alprojekt
Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
Problémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Felhők teljesítményelemzése felhő alapokon
Felhők teljesítményelemzése felhő alapokon Kocsis Imre ikocsis@mit.bme.hu HTE Infokom 2014 Budapest University of Technology and Economics Department of Measurement and Information Systems 1 IT Szolgáltatásmenedzsment
Tipikus időbeli internetezői profilok nagyméretű webes naplóállományok alapján
Tipikus időbeli internetezői profilok nagyméretű webes naplóállományok alapján Schrádi Tamás schraditamas@aut.bme.hu Automatizálási és Alkalmazott Informatikai Tanszék BME A feladat A webszerverek naplóállományainak
Klaszterezés, 2. rész
Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Nagyméretű adathalmazok vizualizációja
Nagyméretű adathalmazok vizualizációja Big Data elemzési módszerek Salánki Ágnes, Kocsis Imre salanki, ikocsis@mit.bme.hu 2015.10.22. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Algoritmusok és adatszerkezetek 2.
Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Nagy méretű adathalmazok vizualizációja
Nagy méretű adathalmazok vizualizációja Big Data elemzési módszerek Kocsis Imre, Salánki Ágnes ikocsis, salanki@mit.bme.hu 2014.10.15. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Mesterséges intelligencia 2. laborgyakorlat
Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító)
Mérés 3 - Ellenörzö mérés - 5. Alakítsunk A-t meg D-t oda-vissza (A/D, D/A átlakító) 1. A D/A átalakító erısítési hibája és beállása Mérje meg a D/A átalakító erısítési hibáját! A hibát százalékban adja
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
Hátralevı órák. Néhány fontos probléma. Többdimenziós adatbázisok. k dimenziós térbeli indexek
1 2 Hátralevı órák 1. A negyedik paradigma 2. Amdahl-törvénye és az Amdahl-szám 3. x64 alapú nagyteljesítményű hardverek 4. Adattároló rendszerek 5. Hálózatok 6. Relációs adatbázis-kezelők 7. Adatok tárolása
A társadalomkutatás módszerei I. Outline. 1. Zh Egyéni eredmények. Notes. Notes. Notes. 9. hét. Daróczi Gergely november 10.
A társadalomkutatás módszerei I. 9. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 10. Outline 1 1. Zh eredmények 2 Újra a hibatényezőkről 3 A mintavételi keret 4 Valószínűségi mintavételi
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský Recenzió: Németh Boldizsár Térbeli indexelés Az adatszerkezetek alapvetően fontos feladata, hogy
Teljesítménymodellezés
Teljesítménymodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével
Kockázatkezelés a rezgésdiagnosztikában többváltozós szabályozó kártya segítségével Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése konvergencia program
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar
A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai
A modellezés sajátosságai anomáliákkal terhelt idősorok esetén
A modellezés sajátosságai anomáliákkal terhelt idősorok esetén MÓDSZERTANI DILEMMÁK A STATISZTIKÁBAN 4 ÉVE ALAKULT A JÖVŐKUTATÁSI BIZOTTSÁG SJTB Tudományos ülés, 216. november 18. 1 Idősor-modellezés alapkérdései
Adaptív menetrendezés ADP algoritmus alkalmazásával
Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet
Szomszédság alapú ajánló rendszerek
Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló
Grid felhasználás: alkalmazott matematika
Grid felhasználás: alkalmazott matematika Konvex testek egyensúlyi osztályozása a Saleve keretrendszerrel Kápolnai Richárd 1 Domokos Gábor 2 Szabó Tímea 2 1 BME Irányítástechnika és Informatika Tanszék
TABLE ACCESS FULL HASH CLUSTER BY INDEX ROWID BY USER ROWID BY GLOBAL INDEX ROWID BY LOCAL INDEX ROWID
Az eddigi pédákban szereplo muveletek (operation és option együtt) (Az összes létezo lehetoséget lásd -> Performance Tuning Guide 19.9 fejezet, 19.3. táblázat) TABLE ACCESS FULL HASH CLUSTER BY INDEX ROWID
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Mi a modell? Matematikai statisztika. 300 dobás. sűrűségfüggvénye. Egyenletes eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 7. Előadás Egyenletes eloszlás Binomiális eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell /56 Matematikai statisztika Reprezentatív mintavétel
Távérzékelés a precíziós gazdálkodás szolgálatában : látvány vagy tudomány. Verőné Dr. Wojtaszek Malgorzata
Távérzékelés a precíziós gazdálkodás szolgálatában : látvány vagy tudomány Verőné Dr. Wojtaszek Malgorzata Az előadás felépítése Trendek a Föld megfigyelésében (hol kezdődött, merre tart ) Távérzékelés
Szimuláció. Fault Tolerant Systems Research Group. Budapest University of Technology and Economics. Department of Measurement and Information Systems
Szimuláció Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems 1 Mérés:
A sz.ot.ag. III. Magyar Számítógépes Nyelvészeti Konferencia december 8. Bíró Tamás, ELTE, Budapest / RUG, Groningen, NL 1/ 16
A sz.ot.ag Optimalitáselmélet szimulált hőkezeléssel Bíró Tamás Humanities Computing, CLCG University of Groningen, Hollandia valamint Eötvös Loránd Tudományegyetem, Budapest birot@let.rug.nl, birot@nytud.hu
HLSL programozás. Grafikus játékok fejlesztése Szécsi László t06-hlsl
HLSL programozás Grafikus játékok fejlesztése Szécsi László 2013.02.16. t06-hlsl RESOURCES PIPELINE STAGES RENDER STATES Vertex buffer Instance buffer Constant buffers and textures Index buffer Constant
OpenCL - The open standard for parallel programming of heterogeneous systems
OpenCL - The open standard for parallel programming of heterogeneous systems GPU-k általános számításokhoz GPU Graphics Processing Unit Képalkotás: sok, általában egyszerű és független művelet < 2006:
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
IBM SPSS Modeler 18.2 Újdonságok
IBM SPSS Modeler 18.2 Újdonságok 1 2 Új, modern megjelenés Vizualizáció fejlesztése Újabb algoritmusok (Python, Spark alapú) View Data, t-sne, e-plot GMM, HDBSCAN, KDE, Isotonic-Regression 3 Új, modern
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
Relációs algebra lekérdezések optimalizációja. Adatbázisok használata
Relációs algebra lekérdezések optimalizációja Adatbázisok használata Mi a cél? Moore-törvénye: (Gordon Moore) szerint az integrált áramkörök sok jellemzőjének fejlődése exponenciális, ezek az értékek 18
Funkcionálanalízis. n=1. n=1. x n y n. n=1
Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Hash-alapú keresések
1/16 az információ-visszakeresésben Babeş Bolyai Tudományegyetem Magyar Matematika és Informatika Intézet A Magyar Tudomány Napja Erdélyben Kolozsvár, 2012 2/16 Tartalom Információ-visszakeresés Információ-visszakeresés
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Függvények vizsgálata
Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika
Az fmri alapjai Statisztikai analízis II. Dr. Kincses Tamás Szegedi Tudományegyetem Neurológiai Klinika Autokorreláció white noise Autokorreláció: a függvény önnmagával számított korrelációja különböző
Információs Rendszerek Szakirány
Információs Rendszerek Szakirány Laki Sándor Kommunikációs Hálózatok Kutatócsoport ELTE IK - Információs Rendszerek Tanszék lakis@elte.hu http://lakis.web.elte.hu Információs Rendszerek szakirány Közös
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Line aris f uggv enyilleszt es m arcius 19.
Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés
VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között
VÁROSI CSAPADÉKVÍZ GAZDÁLKODÁS A jelenlegi tervezési gyakorlat alkalmazhatóságának korlátozottsága az éghajlat változó körülményei között Dr. Buzás Kálmán címzetes egyetemi tanár BME, Vízi Közmű és Környezetmérnöki
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel
A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)
Kódverifikáció gépi tanulással
Kódverifikáció gépi tanulással Szoftver verifikáció és validáció kiselőadás Hidasi Balázs 2013. 12. 12. Áttekintés Gépi tanuló módszerek áttekintése Kódverifikáció Motiváció Néhány megközelítés Fault Invariant
Mit mond a XXI. század emberének a statisztika?
Mit mond a XXI. század emberének a statisztika? Rudas Tamás Magyar Tudományos Akadémia Társadalomtudományi Kutatóközpont Eötvös Loránd Tudományegyetem Statisztika Tanszék Nehéz a jövőbe látni Változik
Stream processing ősz, 10. alkalom Kocsis Imre,
Stream processing 2017 ősz, 10. alkalom Kocsis Imre, ikocsis@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Az adatfolyam-feldolgozó elem: blokkséma
Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével. Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215 Célok: Ismerkedés a kao2kus dinamikával és ennek tanulmányozása. A
SZÁMÍTÁSTUDOMÁNY ALAPJAI
SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz