The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "The nontrivial extraction of implicit, previously unknown, and potentially useful information from data."

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor

2 Adatelemzés hagyományos megközelítésben I. Megválaszolandó kérdés Hipotézis Módszerek kiválasztása Milyen adaton? Milyen módszerrel? Mit keresünk?

3 Adatelemzés hagyományos megközelítésben II. Verifikáció vezérelt Hipotézis elvetése Adatkinyerés, előkészítés Feldolgozás Elemzés A kérdésre választ kaptunk Az igazi kérdés: jó volt-e a kérdés? Hipotézis OK

4 Felmerülő kérdések A feltett hipotézis valóban a megválaszolandó problémára/kérdésre ad magyarázatot? Jól határoztuk meg, hogy mit veszünk figyelembe és mit nem? Nincs-e más, a vizsgált dolgokon kívüli, fontos információ az adatokban elrejtve?

5 Adatbányászat I. The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. -Frawley, Piatetsky-Shapiro, and Matheus Knowledge Discovery in Databases AI Magazine Vol.13 Num. 3 (1992) AAAI Nontrivial: Magas szintű tudás kinyerése, mint szabályok, kauzális kapcsolatok, predikciók, részhalmazok ( SQL queryk, alap statisztikai adatok)

6 Adatbányászat II. implicit: Az adathalmazban kifejeződő rejtett szabályszerűségek previously unknown: korábban nem ismert összefüggések, mintázatok potentially useful: üzleti értéket hordozó kapcsolatok és szabályok kinyerése, melyek közvetlen döntéstámogatási inputként szolgálhatnak

7 Adatelemzés adatbányászati megközelítésben Felfedezés vezérelt Üzleti Probléma Adatbányászat Eredmény

8 Az adatbányászat folyamata Ballard et al. (2007) Dynamic Warehousing: Data Mining Made Easy

9 Adatbányászati eszközök Klaszterezés Osztályozás Predikció Szabálykinyerés K-means Döntési fa Regressziós módszerek Neurális módszerek Bayesi módszerek Asszociációk Szekvenciális minták

10 Alkalmazások Klaszterezés Osztályozás Predikció Szabálykinyerés Piacszegmentálás Meghibásodás analízis Hitelbírálat Portfólió választás Csalási minták detektálása Kockázat elemzés Megtérülés előrejelzés Eseménysor elemzés Vásárlói kosár elemzés

11 Intelligens adatelemzés Hozzávetőleges meghatározás: Statisztikai és gépi tanulási módszerek alkalmazása komplex adatelemzési és modellezési feladatok megoldására A hangsúly az alkalmazott módszereken van A megközelítés a korábbi kétpólusú (adatbányász vs. klasszikus) felálláshoz képest hibrid 11

12 Intelligens adatelemzés Intelligens elemzés Statisztika KDD Valószínűségi modellek Mesterséges intelligencia Gépi tanulás További kapcsolódó területek Neurális módszerek Algoritmikus módszerek 12 L. Belanche and A.Vellido: Intelligent Data Analysis And Data Mining (UPC)

13 Kihívások Nagy adathalmazok kezelése (BIG DATA) Számítási igény kezelése Eredmények kiértékelése, értelmezése Hiába van eredmény, ha nincs megfelelő értelmezés. Ehhez szükség van: Kiértékelést segítő ügyes módszerekre Vizualizációs eszközökre Esetenként szakértőkre 13

14 Elemzések felhasználása 14 Üzleti intelligencia labor - Adattárházak elemzése, megjelenítése, jelentéskészítés

15 Bayes-háló alapú adatelemzés bioinformatikai adatokon

16 Bioinformatika Orvos-biológiai, genetikai adatok elemzésén alapul Céljai: Új elemzési módszerek kialakítása Eredmények intelligens feldolgozása és kiértékelése Tudásbázisok létrehozása Biomarkerek kutatása

17 A bioinformatika kihívásai Genetikai szabályozás Újabb szabályozó elemek keresése, célponthoz való kapcsolása Genome Wide Association Studies (GWAS) Sok változó, változók számához képest kevés eset Feature Subset Selection Újabb labor technológiák támogatása RNS szekvenálás de novo illesztés Variáns detektálás

18 Bayes-háló alapú relevanciaelemzés I. X 1 X 0 X 3 X 2 X 6 X 7 X 5 A Bayes-háló, mint modellosztály lehetővé teszi a változók közötti függőségi kapcsolatok rendszer szemléletű modellezését X 4 X 12 Y X 9 X 10 X 11 X n X 8 Többváltozós függőségi minták modellezésére alkalmazható Strukturális és parametrikus tulajdonságok vizsgálhatók 18

19 Bayes-háló alapú relevanciaelemzés II. X 1 X 0 X 3 X 2 X 6 X 7 X 5 X 4 Y X 9 X 10 X 11 X 8 A módszer célja: lehetséges Bayes-háló struktúrák, részstruktúrák, strukturális tulajdonságok tanulása az elérhető adathalmaz alapján X 12 X n Ezek alapján következtethetünk egyes változók relevanciájára 19

20 Bayes-háló alapú relevanciaelemzés III. X 1 X 4 X 0 X 2 X 3 X 5 X 12 X 6 X 7 Y X 9 X 10 X 11 X n X 8 Relevancia mindig egy (vagy több) célváltozóhoz képest definiált Bayesi strukturális és parametrikus relevancia mértékek segítségével azonosíthatók a célváltozó szempontjából releváns változók Strukturális: erős relevancia Parametrikus: hatáserősség 20

21 Génasszociációs adatok elemzése Célváltozó: betegségleíró (indikátor) változó Változók: genetikai faktorok, klinikai és környezeti faktorok Adat: genetikai minta és kiegészítő adatok beteg és egészséges páciensektől Cél: releváns genetikai faktorok azonosítása 21

22 Köszönöm a figyelmet! Gabor Hullam (gabor.hullam-at-mit.bme.hu) Budapest University of Technology and Economics Department of Measurement and Information Systems 22

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek

Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek

Részletesebben

Intelligens adatelemzés

Intelligens adatelemzés Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az

Részletesebben

Retro adatbányászat. Kovács Gyula Andego Tanácsadó Kft.

Retro adatbányászat. Kovács Gyula Andego Tanácsadó Kft. Retro adatbányászat Kovács Gyula Andego Tanácsadó Kft. Adattárház Fórum 2012 Magunkról 2010-ben alapították magánszemélyek (az alapítók több mint egy évtizedes BI tapasztalatokkal rendelkeznek) Andego

Részletesebben

Big Data az adattárházban

Big Data az adattárházban Big Data az adattárházban A párbaj folytatódik? Néhány fontos Big Data projekt Cég Téma Adat Újfajta Mennyiség Saját adat? Típus Google Influenza Google I big I Előjelzés előjelzés Farecast Xoom Chicagoi

Részletesebben

BIG DATA ELEMZÉSEK LEHETŐSÉGEI

BIG DATA ELEMZÉSEK LEHETŐSÉGEI BIG DATA ELEMZÉSEK LEHETŐSÉGEI A KÖRNYEZETVÉDELMI MODELLEZÉSBEN Dr. Torma A. 2015.11.13. 2015/11/13 Dr. TORMA A. >> Széchenyi István Egyetem 2 Tartalom 1. A Big Data fogalma 2. Pár érdekes adat a Big Data

Részletesebben

Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben.

Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Tartalom Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Előszó 1. Az adatbányászatról általában 19 1.1. Miért adatbányászat? 21 1.2. Technológia a rejtett információk

Részletesebben

Felhők teljesítményelemzése felhő alapokon

Felhők teljesítményelemzése felhő alapokon Felhők teljesítményelemzése felhő alapokon Kocsis Imre ikocsis@mit.bme.hu HTE Infokom 2014 Budapest University of Technology and Economics Department of Measurement and Information Systems 1 IT Szolgáltatásmenedzsment

Részletesebben

SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből

SZTE Eötvös Loránd Kollégium. 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2010/2011 tavaszi félév SZTE Eötvös Loránd Kollégium 1. Dombi József: Fuzzy elmélet és alkalmazásai 2011. március 3. 19:00 2. Móra György: Információkinyerés természetes nyelvű szövegekből 2011. március

Részletesebben

Adatbányászat és Perszonalizáció az Oracle9i-ben

Adatbányászat és Perszonalizáció az Oracle9i-ben Adatbányászat és Perszonalizáció az Oracle9i-ben Oracle9i adatbányászat 2000. szeptember 6. Fekete Zoltán Palaczk Péter Agenda Oracle9i Database Teljes e-business Intelligence infrastruktúra Mi is az adatbányászat?

Részletesebben

Bayesi relevancia és hatáserősség mértékek. PhD tézisfüzet. Hullám Gábor. Dr. Strausz György, PhD (BME)

Bayesi relevancia és hatáserősség mértékek. PhD tézisfüzet. Hullám Gábor. Dr. Strausz György, PhD (BME) Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Bayesi relevancia és hatáserősség mértékek Hullám Gábor Témavezető: Dr. Strausz György, PhD (BME) Budapest,

Részletesebben

Valószín ségi döntéstámogató rendszerek

Valószín ségi döntéstámogató rendszerek Valószín ségi döntéstámogató rendszerek Antos András Antal Péter Hullám Gábor Millinghoer András Hajós Gergely Kulcsszavak: döntés, becslés, költségfüggvény, kockázat, a priori és a posteriori valószín

Részletesebben

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01

Részletesebben

Gyors sikerek adatbányászati módszerekkel

Gyors sikerek adatbányászati módszerekkel Gyors sikerek adatbányászati módszerekkel Kezdő adatbányászati workshop Petrócziné Huczman Zsuzsanna 2015.10.13. Bemutatkozás BME, műszaki informatika szak, adatbányászati szakirány Citibank Data Explorer

Részletesebben

Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16.

Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Ön a megfelelő mennyiségű és minőségű információk alapján hozza meg döntéseit? Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Tracsek Ferenc igazgató Alapvető változások kora Az IT iparágban alapvető

Részletesebben

Adatbányászat az Oracle9i-ben. Fekete Zoltán vezető termékmenedzser Zoltan.Fekete@oracle.com

Adatbányászat az Oracle9i-ben. Fekete Zoltán vezető termékmenedzser Zoltan.Fekete@oracle.com Agenda Az Oracle9i adattárház tulajdonságai Adatbányászat az Oracle9i-ben DM, Personalization az Oracle9i-ben, architektúra Integrált adatbányászat az Oracle CRM-ben Szünet Perszonalizációs felhasználási

Részletesebben

KÖVETKEZŐ GENERÁCIÓS NAGYVÁLLALATI TARTALOMKEZELŐ MEGOLDÁSOK Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Mezei Ferenc üzletág-igazgató

KÖVETKEZŐ GENERÁCIÓS NAGYVÁLLALATI TARTALOMKEZELŐ MEGOLDÁSOK Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Mezei Ferenc üzletág-igazgató KÖVETKEZŐ GENERÁCIÓS NAGYVÁLLALATI TARTALOMKEZELŐ MEGOLDÁSOK Stratis Kft. / Autonomy üzleti reggeli / 2014.10.16. Mezei Ferenc üzletág-igazgató Hasonló, mégis más Ez se rossz amíg ezt ki nem próbáltad!

Részletesebben

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási

Részletesebben

Adatbányászat SAS Enterprise Miner

Adatbányászat SAS Enterprise Miner Adatbányászat SAS Enterprise Miner Hajas Csilla ELTE SAS gyakorlataihoz segédlet. Forrásként (a webrıl letöltve) felhasználtam Kiss Attila, Lukács András, Sidló Csaba és Kósa Balázs diasorozatait is, lásd

Részletesebben

Gáspár Bencéné Vér Katalin *

Gáspár Bencéné Vér Katalin * 109 Gáspár Bencéné Vér Katalin * ADATBÁNYÁSZAT A GAZDASÁGI ÉLETBEN Az adatbányászat egy döntéstámogatási módszer, olyan üzleti intelligencia megoldás, amely új üzleti lehetõségeket segít megtalálni és

Részletesebben

- Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban

- Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban I. Intelligens tervezőrendszerek - Adat, információ, tudás definíciói, összefüggéseik reprezentációtípusok Részletesebben a téma az AI alapjai című tárgyban Adat = struktúrálatlan tények, amelyek tárolhatók,

Részletesebben

ADATBÁNYÁSZAT ÉS STATISZTIKA

ADATBÁNYÁSZAT ÉS STATISZTIKA MÓDSZERTANI TANULMÁNYOK ADATBÁNYÁSZAT ÉS STATISZTIKA DR. SRAMÓ ANDRÁS A 70-es évek közepétől napjainkig eltelt időszak drámai növekedést hozott az elektronikus adattárolásban. Az automatizált, illetve

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer SZDT-07 p. 1/20 Számítógépes döntéstámogatás Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,

Részletesebben

Témaválasztás, kutatási kérdések, kutatásmódszertan

Témaválasztás, kutatási kérdések, kutatásmódszertan Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének

Részletesebben

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA

BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció

Részletesebben

Intelligens Rendszerek Csoport

Intelligens Rendszerek Csoport Intelligens Rendszerek Csoport Intelligent Systems Research Group Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék BME-MIT 2013 A csoport tagjai Oktatók: Doktoranduszok

Részletesebben

Alter Róbert Báró Csaba Sensor Technologies Kft

Alter Róbert Báró Csaba Sensor Technologies Kft Közúti forgalomelemzés kamerával e_traffic Alter Róbert Báró Csaba Sensor Technologies Kft Előadás témái Cégbemutató Videó analitikai eljárások Forgalomszámláló eszközök összehasonlítása e_traffic forgalomelemző

Részletesebben

Industrial Internet Együttműködés és Innováció

Industrial Internet Együttműködés és Innováció Industrial Internet Együttműködés és Innováció Informatikai Oktatási Konferencia 2014.02.22. Imagination at work. Előadó: Katona Viktória Innováció Menedzser viktoria.katona@ge.com Dr. Reich Lajos Ügyvezető

Részletesebben

Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére

Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Probabilisztikus funkcionális modellek idegrendszeri adatok elemzésére Bányai Mihály! MTA Wigner FK! Computational Systems Neuroscience Lab!! KOKI-VIK szeminárium! 2014. február 11. Struktúra és funkció

Részletesebben

Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May

Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May Orvosi Genomtudomány 2014 Medical Genomics 2014 Április 8 Május 22 8th April 22nd May Hét / 1st week (9. kalendariumi het) Takács László / Fehér Zsigmond Magyar kurzus Datum/ido Ápr. 8 Apr. 9 10:00 10:45

Részletesebben

Geoinformatikai rendszerek

Geoinformatikai rendszerek Geoinformatikai rendszerek Térinfomatika Földrajzi információs rendszerek (F.I.R. G.I.S.) Térinformatika 1. a térinformatika a térbeli információk elméletével és feldolgozásuk gyakorlati kérdéseivel foglalkozó

Részletesebben

Statisztika oktatása és alkalmazása a mérnöki területen

Statisztika oktatása és alkalmazása a mérnöki területen Statisztika oktatása és alkalmazása a mérnöki területen 1,2 1:, Neumann János Informatikai Kar, Élettani Szabályozások Csoport 2: Budapesti Corvinus Egyetem, Statisztika Tanszék MTA Statisztikai Tudományos

Részletesebben

HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat

HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat HAPMAP -2010 Nemzetközi HapMap Projekt A Nemzetközi HapMap Project célja az emberi genom haplotípus* térképének(hapmap; haplotype map) megszerkesztése, melynek segítségével katalogizálni tudjuk az ember

Részletesebben

Adatbányászat. Data Mining: Concepts and Techniques (3 rd ed.)

Adatbányászat. Data Mining: Concepts and Techniques (3 rd ed.) Adatbányászat Data Mining: Concepts and Techniques (3 rd ed.) Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University 2009 Han, Kamber & Pei. All

Részletesebben

A Jövő Internet Nemzeti Kutatási Program bemutatása

A Jövő Internet Nemzeti Kutatási Program bemutatása A Jövő Internet Nemzeti Kutatási Program bemutatása Dr. Bakonyi Péter és Dr. Sallai Gyula Jövő Internet Kutatáskoordinációs Központ Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013. június

Részletesebben

Papp Attila. BI - mindenkinek

Papp Attila. BI - mindenkinek Papp Attila BI - mindenkinek 100% 28% 2012 A kiterjesztett BI piac alakulása BAM/CEP 0.23 Other Data 2 Warehouse 10.5 CRM Analytics 1 Data Integration, Data Quality 3 2010 57 mrd USD BI Services 30 2011

Részletesebben

Vezetői információs rendszerek

Vezetői információs rendszerek Adatbányászás I. Adatbányászás Növekvő adatmennyiség egyre nehezebbé válik az adatokból a kívánt információ kinyerése. Új technika szükséges, amely lehetővé teszi, hogy megismerhetővé, kinyerhetővé váljon

Részletesebben

Szoftver karbantartási lépések ellenőrzése

Szoftver karbantartási lépések ellenőrzése Szoftverellenőrzési technikák (vimim148) Szoftver karbantartási lépések ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék http://www.inf.mit.bme.hu/

Részletesebben

Az alállomási kezelést támogató szakértői funkciók

Az alállomási kezelést támogató szakértői funkciók Az alállomási kezelést támogató szakértői funkciók dr. Kovács Attila Szakértői rendszerek Emberi szakértő kompetenciájával, tudásával rendelkező rendszer Jellemzői: Számítási műveletek helyett logikai

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz 2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:

Részletesebben

Adatbányászat: Bevezetés. 1. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba

Adatbányászat: Bevezetés. 1. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba Adatbányászat: Bevezetés 1. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046 számú Kelet-magyarországi

Részletesebben

Önálló labor feladatkiírásaim tavasz

Önálló labor feladatkiírásaim tavasz Önálló labor feladatkiírásaim 2016. tavasz (ezekhez kapcsolódó saját témával is megkereshetnek) Mészáros Tamás http://www.mit.bme.hu/~meszaros/ Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika

Részletesebben

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék

Folyamatmodellezés és eszközei. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamatmodellezés és eszközei Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Folyamat, munkafolyamat Munkafolyamat (Workflow): azoknak a lépéseknek a sorozata,

Részletesebben

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com

Adatelemzés SAS Enterprise Guide használatával. Soltész Gábor solteszgabee[at]gmail.com Adatelemzés SAS Enterprise Guide használatával Soltész Gábor solteszgabee[at]gmail.com Tartalom SAS Enterprise Guide bemutatása Kezelőfelület Adatbeolvasás Szűrés, rendezés Új változó létrehozása Elemzések

Részletesebben

Tudásalapú információ integráció

Tudásalapú információ integráció Tudásalapú információ integráció (A Szemantikus Web megközelítés és a másik irány) Tanszéki értekezlet, 2008. május 14. 1 Miért van szükségünk ilyesmire? WWW: (Alkalmazások) Keresés a weben (pl. összehasonlítás

Részletesebben

társadalomtudományokban

társadalomtudományokban Gépi tanulás, predikció és okság a társadalomtudományokban Muraközy Balázs (MTA KRTK) Bemutatkozik a Számítógépes Társadalomtudomány témacsoport, MTA, 2017 2/20 Empirikus közgazdasági kérdések Felváltja-e

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

MULTIPARAMETRIKUS MR VIZSGÁLATOK SZEGMENTÁLÁSA NYAKI RÉGIÓBAN

MULTIPARAMETRIKUS MR VIZSGÁLATOK SZEGMENTÁLÁSA NYAKI RÉGIÓBAN Világszínvonalú intelligens és inkluzív egészségügyi információs és döntéstámogató keretrendszer (Analitic Healthcare Quality User Information) kutatása MULTIPARAMETRIKUS MR VIZSGÁLATOK SZEGMENTÁLÁSA NYAKI

Részletesebben

Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben

Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Tantárgy Tárgykód I. félév ősz II. félév tavasz Algoritmusok

Részletesebben

A hierarchikus adatbázis struktúra jellemzői

A hierarchikus adatbázis struktúra jellemzői A hierarchikus adatbázis struktúra jellemzői Az első adatbázis-kezelő rendszerek a hierarchikus modellen alapultak. Ennek az volt a magyarázata, hogy az élet sok területén első közelítésben elég jól lehet

Részletesebben

Az R szoftver alkalmazása az Adatbányászat tárgy oktatásában

Az R szoftver alkalmazása az Adatbányászat tárgy oktatásában DIMENZIÓK 14 Matematikai Közlemények III. kötet, 2015 doi:10.20312/dim.2015.02 Az R szoftver alkalmazása az Adatbányászat tárgy oktatásában Pödör Zoltán NymE, SKK, Informatikai és Gazdasági Intézet podor@inf.nyme.hu

Részletesebben

Így kampányolunk mi. Hans Zoltán. Szolgáltatás Fejlesztés és Online Irányítás vezető. IBM-SPSS üzleti reggeli (Budapest) 2010.09.22.

Így kampányolunk mi. Hans Zoltán. Szolgáltatás Fejlesztés és Online Irányítás vezető. IBM-SPSS üzleti reggeli (Budapest) 2010.09.22. Így kampányolunk mi Hans Zoltán Szolgáltatás Fejlesztés és Online Irányítás vezető IBM-SPSS üzleti reggeli (Budapest) 2010.09.22. LIFE INSURANCE PENSION INVESTMENT Tartalom AEGON Útkeresések Esettanulmány

Részletesebben

II. rész: a rendszer felülvizsgálati stratégia kidolgozását támogató funkciói. Tóth László, Lenkeyné Biró Gyöngyvér, Kuczogi László

II. rész: a rendszer felülvizsgálati stratégia kidolgozását támogató funkciói. Tóth László, Lenkeyné Biró Gyöngyvér, Kuczogi László A kockázat alapú felülvizsgálati és karbantartási stratégia alkalmazása a MOL Rt.-nél megvalósuló Statikus Készülékek Állapot-felügyeleti Rendszerének kialakításában II. rész: a rendszer felülvizsgálati

Részletesebben

Nagy adathalmazok labor

Nagy adathalmazok labor 1 Nagy adathalmazok labor 2015-2015 őszi félév 2015.09.09 1. Bevezetés, adminisztráció 2. Osztályozás és klaszterezés feladata 2 Elérhetőségek Daróczy Bálint daroczyb@ilab.sztaki.hu Személyesen: MTA SZTAKI,

Részletesebben

Segítség, összementem!

Segítség, összementem! Segítség, összementem! Előadók: Kránicz László Irimi János Budapest, 2013. április 10. ITFI - Adatintegrációs Kompetencia Központ ITFI - Adatintegrációs Kompetencia Központ Tartalomjegyzék 2 Az Adattárház

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Változások előtt hol áll a banki (adat)elemzés? Nándorfi György

Változások előtt hol áll a banki (adat)elemzés? Nándorfi György Változások előtt hol áll a banki (adat)elemzés? Nándorfi György Budapest Bank 1987-ben jött létre az egyik legelső hazai kereskedelmi bankként A 8 hazai nagybank egyike Tulajdonosi háttér: 1995-től 2015-ig

Részletesebben

CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés

CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:

Részletesebben

Parametrikus tervezés

Parametrikus tervezés 2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók

Részletesebben

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Kovács Zoltán ügyvezető DEKUT Debreceni Kutatásfejlesztési Közhasznú Nonprofit Kft. Problémadefiníció Első generációs

Részletesebben

Behatolás detektálás. Behatolás megel!zés. IDS rendszerek. Detektálás Eltérítés Elhárítás. (ellenlépések) Megel!z! csapás Küls! megel!

Behatolás detektálás. Behatolás megel!zés. IDS rendszerek. Detektálás Eltérítés Elhárítás. (ellenlépések) Megel!z! csapás Küls! megel! Behatolás detektálás IDS rendszerek Behatolás megel!zés Megel!z! csapás Küls! megel!zés Küls! elrettentés Bels! megel!zés Bels! elrettentés Detektálás Eltérítés Elhárítás (ellenlépések) Behatolási kísérletek

Részletesebben

Döntéstámogatás terepi gyakorlatokon

Döntéstámogatás terepi gyakorlatokon Döntéstámogatás terepi gyakorlatokon Forczek Erzsébet 1 Karsai János 1 - Berke József 2 1 Szegedi Tudományegyetem, Általános Orvostudományi Kar Orvosi Informatikai Intézet, 6720 Szeged, Korányi fasor 9.

Részletesebben

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat

Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat IGYR p. 1/17 Integrált gyártórendszerek Ágens technológia - ágens rendszer létrehozása Gyakorlat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu IGYR

Részletesebben

Költségmegtakarítás járatoptimalizálással. Lukács Lajos Ügyvezető DSS Consulting Kft.

Költségmegtakarítás járatoptimalizálással. Lukács Lajos Ügyvezető DSS Consulting Kft. Költségmegtakarítás járatoptimalizálással Lukács Lajos Ügyvezető DSS Consulting Kft. DSS Consulting Kft. Döntéstámogató rendszerek bevezetése Üzleti- és informatikai tanácsadás Egyedi alkalmazások fejlesztése

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h. Mesterséges Intelligencia Elektronikus Almanach Neurális hálózatokh 1 BME 1990: Miért neurális hálók? - az érdeklıdésünk terébe kerül a neurális hálózatok témakör - fıbb okok: - adaptív rendszerek - felismerési

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Kiss Ferenc, hunfek@mvs.sas.com SAS Institute. Abstract

Kiss Ferenc, hunfek@mvs.sas.com SAS Institute. Abstract ADATBÁNYÁSZATI MÓDSZEREK OKTATÁSA A SAS RENDSZERREL Kiss Ferenc, hunfek@mvs.sas.com SAS Institute Abstract This paper briefly summarises the core of Data Mining enlighting some application fields and techniques

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

Csalásfelderítés hálózatokon keresztül. Innovatív BI konferencia, Budapest, 2011. 11. 22.

Csalásfelderítés hálózatokon keresztül. Innovatív BI konferencia, Budapest, 2011. 11. 22. Csalásfelderítés hálózatokon keresztül Innovatív BI konferencia, Budapest, 2011. 11. 22. Hans Zoltán AEGON Magyarország Szolgáltatás Fejlesztés és Online Irányítás Vezető Benczúr András MTA SZTAKI Informatika

Részletesebben

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti

Részletesebben

A proteomika új tudománya és alkalmazása a rákdiagnosztikában

A proteomika új tudománya és alkalmazása a rákdiagnosztikában BIOTECHNOLÓGIAI FEJLESZTÉSI POLITIKA, KUTATÁSI IRÁNYOK A proteomika új tudománya és alkalmazása a rákdiagnosztikában Tárgyszavak: proteom; proteomika; rák; diagnosztika; molekuláris gyógyászat; biomarker;

Részletesebben

Microsoft SQL Server telepítése

Microsoft SQL Server telepítése Microsoft SQL Server telepítése Az SQL Server a Microsoft adatbázis kiszolgáló megoldása Windows operációs rendszerekre. Az SQL Server 1.0 verziója 1989-ben jelent meg, amelyet tizenegy további verzió

Részletesebben

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága A PhysioBank adatmegjelenítő szoftvereinek hatékonysága Kaczur Sándor kaczur@gdf.hu GDF Informatikai Intézet 2012. november 14. Célok, kutatási terv Szabályos EKG-felvétel: P, Q, R, S, T csúcs Anatómiai

Részletesebben

Pénzügyi és Számviteli Intézet intézetvezető: Prof. Dr. Vigvári András CSc. Számvitel Intézeti Tanszék

Pénzügyi és Számviteli Intézet intézetvezető: Prof. Dr. Vigvári András CSc. Számvitel Intézeti Tanszék TANTÁRGYAK INTÉZETI TANSZÉKI BONTÁSBAN A Budapesti Gazdasági Főiskolán és a karokon szakmai intézetek működnek. Az intézetekhez intézeti tanszékek illetve intézeti tanszéki osztályok kapcsolódnak. A Pénzügyi

Részletesebben

Modellezett orvosszakmai protokollok, folyamatvezérelt páciens életút

Modellezett orvosszakmai protokollok, folyamatvezérelt páciens életút Modellezett orvosszakmai protokollok, folyamatvezérelt páciens életút Daiki Tennó Sendorfin Kft. 2012.4.13. NJSzT Orvos-biológiai Szakosztály Egészségügyi életút támogatáshoz megvalósított rendszerünk

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

Képzés > Hatékonyság > Versenyelőny!

Képzés > Hatékonyság > Versenyelőny! Képzés > Hatékonyság > Versenyelőny! Avagy mit, hogyan és miből képezzünk, hogy a 21. század kihívásai közepette is megőrizzük versenyképességünket A Nemzeti Munkaügyi Hivatal Szak- és Felnőttképzési Igazgatósága

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

Mintavételezés, szűrés, outlierek detektálása

Mintavételezés, szűrés, outlierek detektálása Mintavételezés, szűrés, outlierek detektálása Salánki Ágnes salanki@mit.bme.hu Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and

Részletesebben

Palaczk Péter A marketing folyamatok adattárház alapú támogatása

Palaczk Péter A marketing folyamatok adattárház alapú támogatása Palaczk Péter A marketing folyamatok adattárház alapú támogatása A hatékony marketingtámogatás alapjai Infrastrukturális feltételek Működő vállalati adattárház Megbízható ügyféladatok Beüzemelt adatbányászati

Részletesebben

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Ágazati Vezetői Információs Rendszer koncepciója

Ágazati Vezetői Információs Rendszer koncepciója Ágazati Vezetői Információs Rendszer koncepciója Ágazati Vezetői Információs Rendszer koncepciója Bemutatja: Bruhács Tamás főosztályvezető-helyettes - OM, Fejlesztési és Tudományos Ügyek Főosztálya Hodász

Részletesebben

A döntéstámogatás területén a 90-es évek főárama a tudásbázisú rendszerek fejlesztése. A tudásbázisú rendszer az első olyan döntéstámogató módszer, am

A döntéstámogatás területén a 90-es évek főárama a tudásbázisú rendszerek fejlesztése. A tudásbázisú rendszer az első olyan döntéstámogató módszer, am Fogalmakat is kezelni tudó számítógépes döntéstámogatás Starkné Dr. Werner Ágnes A döntéstámogatás területén a 90-es évek főárama a tudásbázisú rendszerek fejlesztése. A tudásbázisú rendszer az első olyan

Részletesebben

Mezőgazdasági külső információs rendszerek fejlesztése

Mezőgazdasági külső információs rendszerek fejlesztése Mezőgazdasági külső információs rendszerek fejlesztése Pető István Szent István Egyetem, Gödöllő Gazdasági Informatika Tanszék I. Agrárinformatikai Nyári Egyetem, Gödöllő 2004. augusztus 25-27. Az előadás

Részletesebben

Mesterséges Intelligencia Elektronikus Almanach. Megnyit. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.

Mesterséges Intelligencia Elektronikus Almanach. Megnyit. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h. Mesterséges Intelligencia Elektronikus Almanach Megnyit itó - Célkitőzések 1 Elızetes program I. Mesterséges Intelligencia Elektronikus Almanach: a projekt és a résztvevık 9.00-9.10 Megnyitó. A projekt

Részletesebben

10. HÉT: ADATTÁRHÁZAK ÉS ÜZLETI INTELLIGENCIA

10. HÉT: ADATTÁRHÁZAK ÉS ÜZLETI INTELLIGENCIA 10. HÉT: ADATTÁRHÁZAK ÉS ÜZLETI INTELLIGENCIA Dr. Danyi Pál Egyetemi docens, BME 2015-16 I. FÉLÉV DR. DANYI PÁL - INFORMÁCIÓMENEDZSMENT 1 MIS RENDSZEREK: ALKALMAZÁS-TECHNOLÓGIA-ADAT MIS rendszerek: DSS,

Részletesebben

A genomikai oktatás helyzete a Debreceni Egyetemen

A genomikai oktatás helyzete a Debreceni Egyetemen A genomikai oktatás helyzete a Debreceni Egyetemen Bálint Bálint L. GNTP Oktatás és Tudásmenedzsment Munkabizottság, 2009. június 10. Tények Debreceni Egyetemről 21000 nappali és 33000 összes hallgató

Részletesebben

2. Cím: Nézettségmérés új módszerei avagy Audience measurement Kulcsszavak: IPTV, felhasználói viselkedés, média, ajánlórendszerek

2. Cím: Nézettségmérés új módszerei avagy Audience measurement Kulcsszavak: IPTV, felhasználói viselkedés, média, ajánlórendszerek ImpressTV Zrt. kutatási témák 1. Cím: Média tartalmak automatikus címkézése és adatbővítése Kulcsszavak: adatbányászat, statisztika, metaadat, felhasználói viselkedés, ajánlórendszerek Probléma: A média

Részletesebben

A PET szerepe a gyógyszerfejlesztésben. Berecz Roland DE KK Pszichiátriai Tanszék

A PET szerepe a gyógyszerfejlesztésben. Berecz Roland DE KK Pszichiátriai Tanszék A PET szerepe a gyógyszerfejlesztésben Berecz Roland DE KK Pszichiátriai Tanszék Gyógyszerfejlesztés Felfedezés gyógyszertár : 10-15 év Kb. 1 millárd USD/gyógyszer (beleszámolva a sikertelen fejlesztéseket)

Részletesebben

Dodé Réka (ELTE BTK Nyelvtudomány Doktori IskolaAlkalmazott Alknyelvdok 2017 nyelvészet program) február 3. 1 / 17

Dodé Réka (ELTE BTK Nyelvtudomány Doktori IskolaAlkalmazott Alknyelvdok 2017 nyelvészet program) február 3. 1 / 17 Doménspecifikus korpusz építése és validálása Dodé Réka ELTE BTK Nyelvtudomány Doktori Iskola Alkalmazott nyelvészet program 2017. február 3. Dodé Réka (ELTE BTK Nyelvtudomány Doktori IskolaAlkalmazott

Részletesebben

Az egységes tartalomkezelés üzleti előnyei

Az egységes tartalomkezelés üzleti előnyei CNW Rendszerintegrációs Zrt. Mészáros Tamás értékesítési igazgató Az egységes tartalomkezelés üzleti előnyei NetRegisterX - Webes dokumentumkezelési megoldások A-Z-ig 1 Az éves papírfelhasználás mértéke

Részletesebben

Gyors sikerek adatbányászati módszerekkel

Gyors sikerek adatbányászati módszerekkel Gyors sikerek adatbányászati módszerekkel Kezdő adatbányászati workshop Petrócziné Huczman Zsuzsanna Tajti András 2016.10.25. Petrócziné Huczman Zsuzsanna Andego Tanácsadó Kft. PBA, KÖBE, Fókusz Takarék,

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben