A mai el!adás. Bioinformatika és genom analízis az orvostudományban (AOGENBIG_1M) Mi a bioinformatika? Pontosítjuk a definíciót

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A mai el!adás. Bioinformatika és genom analízis az orvostudományban (AOGENBIG_1M) Mi a bioinformatika? Pontosítjuk a definíciót"

Átírás

1 Bioinformatika és genom analízis az orvostudományban (AOGENBIG_1M) Miklós István SOTE, szeptember 11. A mai eladás Mi a bioinformatika? Kik a bioinformatikusok? A bioinformatika oktatása a világban és Magyarországon A bioinformatika története A bioinformatikai gondolkodás A kurzus ismertetése Magamról Els definíció: Mi a bioinformatika? Bioinformatika = + informatika, azaz bioinformatika minden olyan biológiai kutatás, amely számítógép segítségével történik Problémák: Ma már mindenhol elterjedt a számítógépek használata, így gyakorlatilag minden biológiai kutatás bioinformatika lenne Miért külön tudományág? Miért nincs pl. hisztoinformatika? Pontosítjuk a definíciót A biológiában, és ezen belül különösképpen a biokémiában olyan mérték" adatmennyiség keletkezik, amelynek a feldolgozása, értelmezése, tárolása számítógépek nélkül lehetetlen lenne. Ezen feladatokat végzi el a bioinformatika Tény: A csillagászatban sokkal több mérési adat keletkezik, mint a biológiában. Kérdés: Miért nincs asztroinformatika? : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma?

2 : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? Szabályozás Szabályozás : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? : pl.: Kepler törvények, Maxwell egyenletek : pl: Centrális dogma? Szabályozás Peptid Szabályozás ` Peptid + Epigenetika glikolizáció, stb.

3 Az adatok valós számokkal mérhetek Diszkrét, kombinatorikus adatok (zömével...) : Égitestek tömege, fényessége, sugárzás hullámhossza, stb. : Dönt többségében szekvenciális adatok Kisebb mértékben gráfok (biokémiai útvonalak, kölcsönhatásgráfok, leszármazási viszonyok) Egyre növekv mértékben valós számokkal leírható adatok, pl. expressziós mintázat. Az entitások közötti kölcsönhatások világosak Kismérték" perturbáció nem okoz dramatikus eltérést Klasszikus példa: Sarlós-sejtes vérszegénység: 1 VHLTP E EKSAVTALWGKVNVDEVGGE 26 V Sok kölcsönhatás nem ismert A kölcsönhatások bonyolultak, kis változás is okozhat nagy eltérést Mi tehát a bioinformatika? Kik a bioinformatikusok? A modern biokémia korszakában olyan mennyiség" és a hagyományos adatoktól eltér minség" adat keletkezik, amelynek a feldolgozására, értelmezésére és tárolására új matematikai, statisztikai, algoritmikai és számítástechnikai eljárásokat kellett kidolgozni. Ez a bioinformatika. It is hard for me to say confidently that, after fifty more years of explosive growth of computer science, there will still be a lot of fascinating unsolved problems at peoples' fingertips, that it won't be pretty much working on refinements of well-explored things. Maybe all of the simple stuff and the really great stuff has been discovered. It may not be true, but I can't predict an unending growth. I can't be as confident about computer science as I can about biology. Biology easily has 500 years of exciting problems to work on, it's at that level. Donald E. Knuth Bioinformatikus technikus A felhasználó Tudja a szoftvereket használni Értse, hogy mit csinál Legyen tisztában a módszerek korlátaival Interpretálni tudja a biológusok elvárásait az informatikusoknak Önállóan nem felsfokú végzettség, de lassan minden (biológus) felsfokú végzettséghez kell. Bioinformatikus mérnök Az új metódusok kidolgozója Írjon szoftvereket Gyártson algoritmusokat Legyen tisztában a matematikai modellek biológiai hátterével Legyen nyitott a biológusok új igényeire Önálló felsfokú végzettség, de alapkutatás alapja, kollaborációk nélkül haszontalan. A világban: A bioinformatika oktatása Bioinformatikus technikus képzések: Nagyon elterjedt Zömében egységes tananyag Biológus igényeknek megfelelen Bioinformatikus mérnök képzések: Spóradikus (persze világméretben ez is sok iskolát jelent) Minden iskola saját témára helyezi a hangsúlyt Általában informatikusok, matematikusok, statisztikusok Magyarországon: A bioinformatika oktatása Bioinformatikus technikus képzések, hivatalos kurzusok: Debrecen Szeged (Pongor S.,... ) Budapest, Pázmány P. (Závodszky P.,... ) Budapest, ELTE + Szent István egyetem (Pónyi T., Barta E., Tóth G.) SOTE: ez a kurzus stb... Bioinformatikus mérnök képzések, speciálkollégiumok: ELTE, i Fizika TSz. (hálózatok) ELTE, Növényrendszertani TSz. (evolúciógenetikai aspektusok, sztochasztikus modellek, Monte Carlo módszerek)???

4 A bioinformatika története A bioinformatika története 1941,Sturtevant, Novitski: The homologies of chromosome elements in the genus Drosophila. 1953: Watson-Crick, DNS szerkezete, 1965: Pauling, Molecules as Documents of Evolutionary History 1969: Jukes-Cantor modell 1970: Needleman-Wunch, biológiai szekvenciaillesztés 1973, 1975: Sankoff: többszörös szekvenciaillesztés 1978: Nussinov algoritmusa RNS térszerkezetekre 1984: Hogeweg and Hesper, The alignment of sets of sequences and the construction of phyletic trees: an integrated method. ; 1987: Profile szekvenciaillesztés, 1988: Clustal 1992: Sztochasztikus modellek, HMMs 1993: Fodor et al. DNS chip 1999: Barabási-Albert modell Wolfe KH, Li WH. (2003). Molecular evolution meets the genomics revolution. Nat Genet Mar; 33 Suppl: A bioinformatikai gondolkodás I. Legegyszer"bb példa: keresés egy telefonkönyvben A bioinformatikai gondolkodás I. Szekvenciaillesztés Naív algoritmus Sorban haladunk... Aba Ágnes Aba Béla Aba Ferencné... Gyors algoritmus Intervallumfelez A-M vagy N-Z? A-F vagy G-M? Stb A lehetségek száma drámaian n A bioinformatikai gondolkodás I. Naív algoritmus: Megnézi az összes lehetséget. Szofisztikált algoritmus: Az optimális megoldást valamilyen cseles úton találja meg (az okos algoritmus sem nézi meg az összes nevet a telefonkönyben) Az algoritmusok futási idejét a bemen adatok függvényeként is megadhatjuk Gyors algoritmusok: O(n): Kétszer annyi adatot kétszer annyi id alatt elemez. O(n 2 ): Kétszer annyi datot négyszer annyi id alatt elemez. Lassú algoritmusok: O(2 n ): Eggyel növelve a bemen adat mennyiségét, a futási id kétszeresére n. A bioinformatikai gondolkodás I. Heurisztikus algoritmusok: Gyorsabb, mint a nem heurisztikus algoritmus. Nem garantált, hogy az optimális megoldást kapjuk meg, de általában értelmes megoldást kapunk. Példák: BLAST: Kb. O(n) futási id O(n 2 ) helyett (1000 aminosavból álló szekvenciák esetén ezerszer gyorsabb) Többszörös szekvenviaillesztés: Bizonyítottan nincs optimális gyors algoritmus Iteratív szekvenciaillesztés: Clustal, T-COFFEE, stb. Ez így inkább érthet, mint precíz megfogalmazás...

5 A bioinformatikai gondolkodás I. Mit kell egy bioinformatikus technikusnak (is) tudnia egy algoritmusról? Mennyi az algoritmus futási ideje Meg tudja becsülni hogyan változik a futási id az adatmennyiség növelésével Az algoritmus egzakt vagy heurisztikus megoldást jelent-e? Általában az algoritmikai problémákról tudni kell, hogy: Lehetségek száma " futási id Vannak olyan problémák, amelyek egzakt megoldására nem lehet gyors algoritmust megadni, csak heurisztikus algoritmust A bioinformatikai gondolkodás II. Egy marslakó embereket akar tanulmányozni. Kér egy modellt egy divatterveztl és egy gyógyszerkutatótól... A divattervez egy viaszbábut küld, a gyógyszerkutató egy egeret. A két modellben csak a bajszuk a közös... Miért nem fog semmit sem megtudni az emberekrl a marslakó? A bioinformatikai gondolkodás II. Egy marslakó embereket akar tanulmányozni. Kér egy modellt egy divatterveztl és egy gyógyszerkutatótól... A divattervez egy viaszbábut küld, a gyógyszerkutató egy egeret. A két modellben csak a bajszuk a közös... Miért nem fog semmit sem megtudni az emberekrl a marslakó? Mert nem tudja, hogy a modell a valóság mely aszpektusát modellezi A bioinformatikai gondolkodás II. Példa: Szekvenciaillesztés: 1 MRRLLICLMLTVLAGCAQQQQPPKDDSLYRDLGQRAGIQRIVEGMLMNVARDDRIVERFK 2 MLSTAHRDIIKATVPILETGGEALTTHFYRIMLN--DYPQVRP--LFNQANQANGAQPRA ::... :. : : :. :: :.:..: A mutációk egymástól függetlenek Nincs letális mutáció Nincsenek tiltott motívumok Nincsenek térbeli kölcsönhatások, korrelációk Nyílván ezen állítások egyike sem igaz, de ezt kell feltételezni ahhoz, hogy gyors algoritmusunk legyen. A bioinformatikai gondolkodás II. Minden modell rossz, de némelyik használható... Az örökké fejld tudomány és a bioinformatika kapcsolata Model Predikció Tesztelés A bioinformatikában a körforgás minden egyes lépésére önálló tudományág épül i megfigyel ések Tudásábrázolás Adatbázisok Predikciók Adatbányászat

6 A bioinformatikai gondolkodás III. A bioinformatikai gondolkodás III. A Rosetta-k Törvények három nyelven. Központi hipotézis: a struktúra konzervatívabb, mint a szekvencia Amikor megtalálták, csak az ógörög és az egyiptomi alfabetikus írás volt ismert, a hielográfiák nem. A hielografikus írást a különböz írások összehasonlításával fejtették meg. si szekvencia struktúrafügg evolúció A változásokból következtetünk a struktúrára modern szekvencia A bioinformatikai gondolkodás III. Központi hipotézis: a struktúra konzervatívabb, mint a szekvencia A bioinformatikai gondolkodás III. Központi hipotézis: a struktúra konzervatívabb, mint a szekvencia si szekvencia struktúrafügg evolúció modern szekvencia si szekvencia struktúrafügg evolúció modern szekvencia A változásokból következtetünk a struktúrára A változásokból következtetünk a struktúrára Egy szekvencia: Egy szekvencia: Két szekvencia: DEFYTHISPSQALISCAMPLETELYIHIDDENYWAE A bioinformatikai gondolkodás III. Központi hipotézis: a struktúra konzervatívabb, mint a szekvencia A bioinformatikai gondolkodás IV. Korunk paradigmaváltása Több tényez együtthatása si szekvencia struktúrafügg evolúció A változásokból következtetünk a struktúrára modern szekvencia D NS chip Lehetvé vált egyszerre sok gén expressziójának vizsgálata Barabási-Albert modell, scale-free gráfok Matematikusok érdekldnek a hálózatok iránt Egy szekvencia: Két szekvencia, elemezve DEFYTHISPSQALISCAMPLETELYIHIDDENYWAE Els genomprojectek befejezése, rájöttünk, hogy (majdnem) semmit sem értünk Igény új gyógyszertargetek iránt -> fel kell fedezni az ismeretlen fehérjéket

7 A bioinformatikai gondolkodás IV. Korunk paradigmaváltása A bioinformatikai gondolkodás IV. Korunk paradigmaváltása Hagyományos megközelítés: Hipotézis, prekoncepció Hagyományos megközelítés: Hipotézis, prekoncepció tudásanyag hagyomány divat grant-climate Kisérlet, eredmények tudásanyag hagyomány divat grant-climate Kisérlet, eredmények Genomikai megközelítés: Génvadászat prekoncepció-mentes A bioinformatikai gondolkodás IV. Korunk paradigmaváltása A kurzus tematikája Tudományos eljárás prekoncepciók alapján 1. Állapot (egészséges) 2. Állapot (daganatos) Molekula A Molekula B Molekula C Molekula D Molekula E Molekula X Molekula A Molekula B Molekula C Molekula D Molekula E Molekula X Tudományos eljárás prekoncepciók nélkül: génhalászat 1. egészséges 2. daganatos (eltérés) Információkeresés az adatbázisokban I. Információkeresés az adatbázisokban II. Szekvencia-összehasonlítások. Hasonlósági keresések szekvencia-adatbázisokban Molekuláris filogenetikai elemzések Single Nucleotide Polymorphism Struktúrák predikciója biológiai szekvenciákban Genom szint" mutációk Hálózatok Génexpressziós elemzések. Betegséggének. Pathogének Genetikai adat- etikai, jogi aspektusok miklosi@ramet.elte.hu Algoritmuselmész: Magamról Lunter G.A., Miklós, I., Song, Y.S. & Hein, J. (2003) An efficient algorithm for statistical multiple alignment on arbitrary phylogenetic trees J. Comp. Biol. 10(6): Miklós, I. (2002) An improved algorithm for statistical alignment of sequences related by a star tree. Bul Math. Biol. 64(4): Sztochasztikus modellez, statisztikus: Miklós, I., Lunter, G. A. & Holmes, I. (2004) A 'long indel' model for evolutionary sequence alignment. Mol. Biol. Evol., 21(3): Miklós, I., Ittzés, P. & Hein, J. (2005) ParIS Genome Rearrangement Server Bioinformatics, 21(6): Lunter, G.A., Miklós, I., Drummond, A., Jensen, J.L., & Hein, J. (2005) Bayesian Coestimation of Phylogeny and Sequence Alignment BMC Bioinformatics, 6:83. RNS térszerkezetelemz: Meyer, I.M. & Miklós, I. (2004) Co-transcriptional folding is encoded within RNA genes. BMC Molecular Biology, 5:10 Miklós, I., Meyer, I.M. & Nagy, B. (2005) Moments of the Boltzmann distribution for RNA secondary structures Bul. Math. Biol., 67(5): Köszönetnyílvánítás Patthy László: Pevzner (2004) bioinformatics cikk, bioinformatikus technikus vs. mérnök Simon István: Asztroinformatika vs. Bioinformatika Richard Durbin: Komparatív bioinformatika Falus András: Korunk paradigmaváltása a bioinformatikában

8 Ajánlott olvasmányok Pevzner, P (2004) Educating biologists in the 21st century: bioinformatics scientists versus bioinformatics technicians. Bioinformatics 20(14): Wolfe, K. H. & Li, W-H. (2003) Molecular evolution meets the genomic revolution. Nature Genetics 33:

Bakteriális identifikáció 16S rrns gén szekvencia alapján

Bakteriális identifikáció 16S rrns gén szekvencia alapján Bakteriális identifikáció 16S rrns gén szekvencia alapján MOHR ANITA SIPOS RITA, SZÁNTÓ-EGÉSZ RÉKA, MICSINAI ADRIENN 2100 Gödöllő, Szent-Györgyi Albert út 4. info@biomi.hu, www.biomi.hu TÖRZS AZONOSÍTÁS

Részletesebben

Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May

Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May Orvosi Genomtudomány 2014 Medical Genomics 2014 Április 8 Május 22 8th April 22nd May Hét / 1st week (9. kalendariumi het) Takács László / Fehér Zsigmond Magyar kurzus Datum/ido Ápr. 8 Apr. 9 10:00 10:45

Részletesebben

Semmelweis Egyetem / Élettani Intézet / Budapest. Bioinformatika és genomanalízis az orvostudományban. Bevezetés. Cserző Miklós 2018

Semmelweis Egyetem / Élettani Intézet / Budapest. Bioinformatika és genomanalízis az orvostudományban. Bevezetés. Cserző Miklós 2018 Bioinformatika és genomanalízis az orvostudományban Bevezetés Cserző Miklós 2018 A mai előadás A kurzus menete Hol találkozunk bioinformatikával Mi a bioinformatika Miért van bioinformatika A számítógépekről

Részletesebben

Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.)

Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.) Genomika Új korszak, paradigmaváltás, forradalom: a teljes genomok ismeretében a biológia adatokban gazdag tudománnyá válik. Új kutatási módszerek, új szemlélet. Hajtóerõk: Genomszekvenálási projektek

Részletesebben

Gyakorlati bioinformatika

Gyakorlati bioinformatika Gyakorlati bioinformatika Szekvenciaillesztés PhD kurzus 2. Szekvenciaillesztés Bagossi Péter Fajtái: - egyszer ill. többszörös illesztés - globális ill. lokális illesztés Alkalmazása: - adatbázisokban

Részletesebben

Milyen a modern matematika?

Milyen a modern matematika? Milyen a modern matematika? Simonovits Miklós Milyen a modern matematika? p.1 Miért rossz ez a cím? Nem világos, mit értek modern alatt? A francia forradalom utánit? Általában olyat tanulunk, amit már

Részletesebben

Bioinformatika és genomanalízis az orvostudományban. Biológiai adatbázisok. Cserző Miklós 2018

Bioinformatika és genomanalízis az orvostudományban. Biológiai adatbázisok. Cserző Miklós 2018 Bioinformatika és genomanalízis az orvostudományban Biológiai adatbázisok Cserző Miklós 2018 A mai előadás Mi az adatbázis A biológia kapcsolata az adatbázisokkal Az adatbázisok típusai Adatbázis formátumok,

Részletesebben

A tárgy címe: Bioinformatika

A tárgy címe: Bioinformatika A tárgy címe: Bioinformatika Kötelezően választható tárgy IV. és V. évfolyamos biológus hallgatók számára; heti 2+3 óra Előkövetelmény: Biokémia főkollégium; genetika főkollégium; alapszintű számítógépes

Részletesebben

A genomikai oktatás helyzete a Debreceni Egyetemen

A genomikai oktatás helyzete a Debreceni Egyetemen A genomikai oktatás helyzete a Debreceni Egyetemen Bálint Bálint L. GNTP Oktatás és Tudásmenedzsment Munkabizottság, 2009. június 10. Tények Debreceni Egyetemről 21000 nappali és 33000 összes hallgató

Részletesebben

A mai el!adás témája: Miklós István Állapot Emisszió Útvonal Legvalószín!bb útvonal (Viterbi path) Szuboptimális útvonal

A mai el!adás témája: Miklós István Állapot Emisszió Útvonal Legvalószín!bb útvonal (Viterbi path) Szuboptimális útvonal Bioinformatika és genom analízis az orvostudományban (AOGENBIG_1M) Miklós István SOTE, 2008. november 6. A mai el!adás témája: Struktúrák predikciója Az összehasonlító bioinformatika alapelvei Rejtett

Részletesebben

10. Genomika 2. Microarrayek és típusaik

10. Genomika 2. Microarrayek és típusaik 10. Genomika 2. 1. Microarray technikák és bioinformatikai vonatkozásaik Microarrayek és típusaik Korrelált génexpresszió mint a funkcionális genomika eszköze 2. Kombinált megközelítés a funkcionális genomikában

Részletesebben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK

Részletesebben

Miben különbözünk az egértől? Szabályozás a molekuláris biológiában

Miben különbözünk az egértől? Szabályozás a molekuláris biológiában Az atomoktól a csillagokig, 2010. október 28., ELTE Fizikai Intézet Miben különbözünk az egértől? Szabályozás a molekuláris biológiában brainmaps.org Homo sapiens (Miroslav Klose) Mus musculus Farkas Illés

Részletesebben

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Adatelemzés intelligens módszerekkel Hullám Gábor Adatelemzés hagyományos megközelítésben I. Megválaszolandó

Részletesebben

Bevezetés a rendszerbiológiába

Bevezetés a rendszerbiológiába Bevezetés a rendszerbiológiába Papp Balázs http://group.szbk.u-szeged.hu/sysbiol/ MTA Szegedi Biológiai Központja Biokémiai Intézet Alapprobléma Ma a biológiában rengeteg adat termelődik és áll rendelkezésre.

Részletesebben

0. Kurzusok tudnivalók 1. Az anyag - csak az írott anyagban 2. Az élet molekulái - csak az írott anyagban 3. Mi az Élet? 4. A Világ keletkezése 5.

0. Kurzusok tudnivalók 1. Az anyag - csak az írott anyagban 2. Az élet molekulái - csak az írott anyagban 3. Mi az Élet? 4. A Világ keletkezése 5. 0. Kurzusok tudnivalók 1. Az anyag - csak az írott anyagban 2. Az élet molekulái - csak az írott anyagban 3. Mi az Élet? 4. A Világ keletkezése 5. Az Élet keletkezése 6. Modellek a biológiában - csak az

Részletesebben

Bioinformatika előadás

Bioinformatika előadás 10. előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat Genomika vs. proteomika A genomika módszereivel nem a tényleges fehérjéket vizsgáljuk,

Részletesebben

Human genome project

Human genome project Human genome project Pataki Bálint Ármin 2017.03.14. Pataki Bálint Ármin Human genome project 2017.03.14. 1 / 14 Agenda 1 Biológiai bevezető 2 A human genome project lefolyása 3 Alkalmazások, kitekintés

Részletesebben

Fehérjék rövid bevezetés

Fehérjék rövid bevezetés Receptorfehérj rjék szerkezetének felderítése Homológia modellezés Fehérjék rövid bevezetés makromolekulák számos biológiai funkció hordozói: enzimatikus katalízis, molekula transzport, immunválaszok,

Részletesebben

MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI

MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI Doktori értekezés tézisei MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI MÓDSZER, A BOOLE ANALÍZIS SEGÍTSÉGÉVEL Ari Eszter Dr. Jakó Éena, tudományos főmunkatárs témavezető Dr. Szathmáry Eörs,

Részletesebben

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar

A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai

Részletesebben

Hálózati modellek alkalmazása a molekuláris biológia néhány problémájára. Doktori (PhD) értekezés tézisei. Ágoston Vilmos

Hálózati modellek alkalmazása a molekuláris biológia néhány problémájára. Doktori (PhD) értekezés tézisei. Ágoston Vilmos Hálózati modellek alkalmazása a molekuláris biológia néhány problémájára Doktori (PhD) értekezés tézisei Ágoston Vilmos Témavezető: Dr. Pongor Sándor SZEGED 2007 Konferencia-részvétel: Bevezetés Ágoston,

Részletesebben

Matematika MSc záróvizsgák (2015. június )

Matematika MSc záróvizsgák (2015. június ) Június 23. (kedd) H45a 12.00 13.00 Bizottság: Simonovits András (elnök), Simon András, Katona Gyula Y., Pap Gyula (külső tag) 12.00 Bácsi Marcell Közelítő algoritmusok és bonyolultságuk tv.: Friedl Katalin

Részletesebben

1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Kredit

1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Kredit 2. MELLÉKLET Az oktatási koncepciója 1. Az informatika alapjai (vezetője: Dr. Dömösi Pál, DSc, egyetemi tanár) Az informatika alapjai Tud. Min. 1 Automata hálózatok 2 V Dr. Dömösi Pál DSc 2 Automaták és

Részletesebben

Problémák és megoldások a bioinformatikában. Válogatott fejezetek a bioinformatikából. Gyimesi Gergely, 2008. február 25.

Problémák és megoldások a bioinformatikában. Válogatott fejezetek a bioinformatikából. Gyimesi Gergely, 2008. február 25. Problémák és megoldások a bioinformatikában Válogatott fejezetek a bioinformatikából Gyimesi Gergely, 2008. február 25. Mik a fontos, megoldatlan biológiai problémák? Milyen módszereket, megoldási lehetıségeket

Részletesebben

A fő egészségügyi kihívások

A fő egészségügyi kihívások A fő egészségügyi kihívások Öregedés Mentális betegségek Fertőző betegségek Elhízás, diabetes Allergia, asztma Szív- és érbetegségek Autoimmun kórképek Rák Komplex betegségek Rendszerbiológia Bioinformatika,

Részletesebben

Dobzhansky: In Biology nothing makes sense except in the light of Evolution.

Dobzhansky: In Biology nothing makes sense except in the light of Evolution. Dobzhansky: In Biology nothing makes sense except in the light of Evolution. Az Evolúcióbiológia Története Molnár István im54@invitel.hu Mai témák 1. Mi az evolúció? 2. Hogyan alakult ki a mai evolúciós

Részletesebben

Genetikai kölcsönhatások rendszerbiológiája

Genetikai kölcsönhatások rendszerbiológiája Genetikai kölcsönhatások rendszerbiológiája Papp Balázs www.brc.hu/sysbiol MTA Szegedi Biológiai Kutatóközpont Biokémiai Intézet Szintetikus és Rendszerbiológiai Egység Mikrobiális rendszerbiológia főbb

Részletesebben

Az evolúció az adatok mögött

Az evolúció az adatok mögött Filogenetika Az evolúció az adatok mögött Ortutay Csaba, PhD 2013 április 9 Miről lesz ma szó? Nukleotid szubsztitúciós modellek Távolság alapú módszerek UPGMA Neighbor joining Modell alapú filogenetika

Részletesebben

Semmelweis Egyetem / Élettani Intézet / Budapest. Bioinformatika és genomanalízis az orvostudományban. Szekvenciaelemzés. Cserző Miklós 2017

Semmelweis Egyetem / Élettani Intézet / Budapest. Bioinformatika és genomanalízis az orvostudományban. Szekvenciaelemzés. Cserző Miklós 2017 Bioinformatika és genomanalízis az orvostudományban Szekvenciaelemzés Cserző Miklós 2017 A mai előadás Szekvencia analízis statisztikus szempontból Annotálás homológia alapján Az annotálás szempontjai

Részletesebben

Bevezetés a bioinformatikába. Harangi János DE, TEK, TTK Biokémiai Tanszék

Bevezetés a bioinformatikába. Harangi János DE, TEK, TTK Biokémiai Tanszék Bevezetés a bioinformatikába Harangi János DE, TEK, TTK Biokémiai Tanszék Bioinformatika Interdiszciplináris tudomány, amely magába foglalja a biológiai adatok gyűjtésének,feldolgozásának, tárolásának,

Részletesebben

A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet

A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet *Levelezési cím: Dr. Sasvári-Székely Mária, Semmelweis Egyetem, Orvosi

Részletesebben

Természetes szelekció és adaptáció

Természetes szelekció és adaptáció Természetes szelekció és adaptáció Amiről szó lesz öröklődő és variábilis fenotípus természetes szelekció adaptáció evolúció 2. Természetes szelekció Miért fontos a természetes szelekció (TSZ)? 1. C.R.

Részletesebben

CLUSTALW Multiple Sequence Alignment

CLUSTALW Multiple Sequence Alignment Version 3.2 CLUSTALW Multiple Sequence Alignment Selected Sequences) FETA_GORGO FETA_HORSE FETA_HUMAN FETA_MOUSE FETA_PANTR FETA_RAT Import Alignments) Return Help Report Bugs Fasta label *) Workbench

Részletesebben

Az NMR és a bizonytalansági elv rejtélyes találkozása

Az NMR és a bizonytalansági elv rejtélyes találkozása Az NMR és a bizonytalansági elv rejtélyes találkozása ifj. Szántay Csaba MTA Kémiai Tudományok Osztálya 2012. február 21. a magspínek pulzus-gerjesztésének értelmezési paradigmája GLOBÁLISAN ELTERJEDT

Részletesebben

Bioinformatika 2 6. előadás

Bioinformatika 2 6. előadás 6. előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2018.10.08. PDBj: http://www.pdbj.org/ Fehérjék 3D szerkezeti adatbázisai - PDBj 2 2018.10.08.

Részletesebben

IRODALOMJEGYZÉK 67: 181: 97: 229: 190: 39: 48: 32: 16: 103: 17: 25: 12:

IRODALOMJEGYZÉK 67: 181: 97: 229: 190: 39: 48: 32: 16: 103: 17: 25: 12: 108 IRODALOMJEGYZÉK Adachi, J. & Hasegawa, M. (1990) Amino acid substitution of proteins coded for in mithocondrial DNA during mammalian evolution. Jpn. J. Genet. 67:187-197. Anfinsen, C.D. (1973) Principles

Részletesebben

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm

Phenotype. Genotype. It is like any other experiment! What is a bioinformatics experiment? Remember the Goal. Infectious Disease Paradigm It is like any other experiment! What is a bioinformatics experiment? You need to know your data/input sources You need to understand your methods and their assumptions You need a plan to get from point

Részletesebben

Gerinces és növényi ortológ promóter adatbázisok fejlesztése és elemzése. Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Doktori Iskola

Gerinces és növényi ortológ promóter adatbázisok fejlesztése és elemzése. Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Doktori Iskola Doktori értekezés tézisei Gerinces és növényi ortológ promóter adatbázisok fejlesztése és elemzése Sebestyén Endre Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Doktori Iskola Vezetője:

Részletesebben

BIOINFORMATIKA Ungvári Ildikó

BIOINFORMATIKA Ungvári Ildikó 1 BIOINFORMATIKA Ungvári Ildikó Az elmúlt évtizedekben a molekuláris biológiai, genomikai technológiák robbanásszerű fejlődése a biológiai adatok mennyiségének exponenciális növekedéséhez vezetett. Ebben

Részletesebben

ADATBÁNYÁSZAT I. ÉS OMICS

ADATBÁNYÁSZAT I. ÉS OMICS Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 ADATBÁNYÁSZAT

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Bioinformatika 2 10.el

Bioinformatika 2 10.el 10.el őadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 04. 24. Genomikavs. proteomika A genomika módszereivel nem a tényleges fehérjéket

Részletesebben

Evolúcióbiológia. Biológus B.Sc tavaszi félév

Evolúcióbiológia. Biológus B.Sc tavaszi félév Evolúcióbiológia Biológus B.Sc. 2011. tavaszi félév A biológiában minden csak az evolúció fényében válik érthetővé Theodosius Dobzhansky : Nothing in biology makes sense except in the light of evolution.

Részletesebben

A MOLEKULÁRIS BIOLÓGIA ISMERETÁBRÁZOLÁSI PROBLÉMÁI

A MOLEKULÁRIS BIOLÓGIA ISMERETÁBRÁZOLÁSI PROBLÉMÁI Magyar Tudomány 2005/4 A MOLEKULÁRIS BIOLÓGIA ISMERETÁBRÁZOLÁSI PROBLÉMÁI Pongor Sándor a biológiai tudomány doktora, MTA Biológiai Központ, Szeged International Centre of Genetic Engineering and Biotechnology,

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

III. ATK Tudományos Nap

III. ATK Tudományos Nap Magyar Tudományos Akadémia Agrártudományi Kutatóközpont III. ATK Tudományos Nap Összefoglalók Szerkesztette JANDA TIBOR 2014. november 13. Martonvásár Kiadja a Magyar Tudományos Akadémia Agrártudományi

Részletesebben

Biomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium

Biomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium Biomolekuláris nanotechnológia Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium Az élő szervezetek példája azt mutatja, hogy a fehérjék és nukleinsavak kiválóan alkalmasak önszerveződő molekuláris

Részletesebben

PROGRAMFÜZET. "GENETIKAI MŰHELYEK MAGYARORSZÁGON" XIII. Minikonferencia SZEPTEMBER 12.

PROGRAMFÜZET. GENETIKAI MŰHELYEK MAGYARORSZÁGON XIII. Minikonferencia SZEPTEMBER 12. PROGRAMFÜZET "GENETIKAI MŰHELYEK MAGYARORSZÁGON" XIII. Minikonferencia 2014. SZEPTEMBER 12. MTA Szegedi Biológiai Kutatóközpont Szeged, Temesvári krt. 62. Az előadások helye: SZBK nagyelőadó Az előadások

Részletesebben

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

Bioinformatika előadás

Bioinformatika előadás Bioinformatika 2 11. előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2016.11.28. Bioinformatics Szerkezeti genomika, proteomika, biológia

Részletesebben

Biológiai rendszerek modellellenőrzése bayesi megközelítésben

Biológiai rendszerek modellellenőrzése bayesi megközelítésben Biológiai rendszerek modellellenőrzése bayesi megközelítésben Gál Tamás Zoltán Szoftver verifikáció és validáció kiselőadás, 2013. ősz Forrás: Sumit K. Jha et al.: A Bayesian Approach to Model Checking

Részletesebben

EXKLUZÍV AJÁNDÉKANYAGOD A Phrasal Verb hadsereg! 2. rész

EXKLUZÍV AJÁNDÉKANYAGOD A Phrasal Verb hadsereg! 2. rész A Phrasal Verb hadsereg! 2. rész FONTOS! Ha ennek az ajándékanyag sorozatnak nem láttad az 1. részét, akkor mindenképpen azzal kezdd! Fekete Gábor www.goangol.hu A sorozat 1. részét itt éred el: www.goangol.hu/ajandekok/phrasalverbs

Részletesebben

TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek

TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok

Részletesebben

0. Kurzusok tudnivalók 1. Az anyag - csak az írott anyagban 2. Az élet molekulái - csak az írott anyagban 3. Mi az Élet? 4. A Világ keletkezése 5.

0. Kurzusok tudnivalók 1. Az anyag - csak az írott anyagban 2. Az élet molekulái - csak az írott anyagban 3. Mi az Élet? 4. A Világ keletkezése 5. 0. Kurzusok tudnivalók 1. Az anyag - csak az írott anyagban 2. Az élet molekulái - csak az írott anyagban 3. Mi az Élet? 4. A Világ keletkezése 5. Az Élet keletkezése 6. Modellek a biológiában - csak az

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4

Részletesebben

Robusztusság és génkölcsönhatások rendszerbiológiája. Papp Balázs

Robusztusság és génkölcsönhatások rendszerbiológiája. Papp Balázs Robusztusság és génkölcsönhatások rendszerbiológiája Papp Balázs www.brc.hu/sysbiol MTA Szegedi Biológiai Központ Biokémiai Intézet Evolúciós rendszerbiológia Genomika és bioinformatika: genomi adatok

Részletesebben

Bioinformatics: Blending. Biology and Computer Science

Bioinformatics: Blending. Biology and Computer Science Bioinformatics: Blending Biology and Computer Science MDNMSITNTPTSNDACLSIVHSLMCHRQ GGESETFAKRAIESLVKKLKEKKDELDSL ITAITTNGAHPSKCVTIQRTLDGRLQVAG RKGFPHVIYARLWRWPDLHKNELKHVK YCQYAFDLKCDSVCVNPYHYERVVSPGI DLSGLTLQSNAPSSMMVKDEYVHDFEG

Részletesebben

Genetika. Tartárgyi adatlap: tantárgy adatai

Genetika. Tartárgyi adatlap: tantárgy adatai Genetika Előadás a I. éves Génsebészet szakos hallgatók számára Tartárgyi adatlap: tantárgy adatai 2.1. Tantárgy címe Genetika 2.2. Előadás felelőse Dr. Mara Gyöngyvér, docens 2.3. Egyéb oktatási tevékenységek

Részletesebben

Semmelweis Egyetem / Élettani Intézet / Budapest. Bioinformatika és genomanalízis az orvostudományban. Bioinformatikai modellek. Cserző Miklós 2017

Semmelweis Egyetem / Élettani Intézet / Budapest. Bioinformatika és genomanalízis az orvostudományban. Bioinformatikai modellek. Cserző Miklós 2017 Bioinformatika és genomanalízis az orvostudományban Bioinformatikai modellek Cserző Miklós 2017 A mai előadás A predikció jelentősége a biológiában Egyszerű statisztikai modellek Kyte-Doolittle hidrofóbicitás

Részletesebben

Egy új DNS motívum típus in silico jellemzése és szerepe a génszabályozásban Zárójelentés - OTKA # PD73575, BIOIN Cserző Miklós

Egy új DNS motívum típus in silico jellemzése és szerepe a génszabályozásban Zárójelentés - OTKA # PD73575, BIOIN Cserző Miklós Egy új DNS motívum típus in silico jellemzése és szerepe a génszabályozásban Zárójelentés - OTKA # PD73575, BIOIN Cserző Miklós A kutatás első évében az előzetes tervnek megfelelően tudtunk haladni. Kidolgoztunk

Részletesebben

Etológia. a viselkedés biológiája. Barta Zoltán.

Etológia. a viselkedés biológiája. Barta Zoltán. Etológia a viselkedés biológiája Barta Zoltán zbarta@delfin.unideb.hu Interdiszciplináris és komplex megközelítésű tananyag fejlesztés a természettudományi képzési terület alapszakjaihoz Debrecen 2010.

Részletesebben

A funkcionális genomikai eszköztár szerepe az onkológiai kutatásokban

A funkcionális genomikai eszköztár szerepe az onkológiai kutatásokban Összefoglaló közlemény 21 A funkcionális genomikai eszköztár szerepe az onkológiai kutatásokban Bálint Bálint L. 1, Nagy László 1,2 1 Debreceni Egyetem Orvos- és Egészségtudományi Centrum, Biokémiai és

Részletesebben

Humán genom variációk single nucleotide polymorphism (SNP)

Humán genom variációk single nucleotide polymorphism (SNP) Humán genom variációk single nucleotide polymorphism (SNP) A genom ~ 97 %-a két különböző egyedben teljesen azonos ~ 1% különbség: SNP miatt ~2% különbség: kópiaszámbeli eltérés, deléciók miatt 11-12 millió

Részletesebben

Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis

Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis Szerkezet Protein Data Bank (PDB) http://www.rcsb.org/pdb ~ 35 701 szerkezet közepes felbontás 1552 szerkezet d 1.5 Å 160 szerkezet d 1.0 Å 10 szerkezet d 0.8 Å (atomi felbontás) E globális minimum? funkció

Részletesebben

Bioinformatika az élelmiszergyártásban és a táplálkozástudományban

Bioinformatika az élelmiszergyártásban és a táplálkozástudományban ÉLELMISZERIPARI BIOTECHNOLÓGIÁK Bioinformatika az élelmiszergyártásban és a táplálkozástudományban Tárgyszavak: bioinformatika; genomika; proteomika; polimorfizmus; táplálkozástudomány; élelmiszer-minőség.

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Tipizálási módszerek alkalmazása methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek molekuláris epidemiológiai vizsgálatai során

Tipizálási módszerek alkalmazása methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek molekuláris epidemiológiai vizsgálatai során Tipizálási módszerek alkalmazása methicillin-rezisztens Staphylococcus aureus (MRSA) törzsek molekuláris epidemiológiai vizsgálatai során Ungvári Erika, Tóth Ákos Magyar Infektológiai és Klinikai Mikrobiológiai

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

Klaszterezés, 2. rész

Klaszterezés, 2. rész Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket

Részletesebben

A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások. Egyed Balázs ELTE Genetikai Tanszék

A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások. Egyed Balázs ELTE Genetikai Tanszék A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások Egyed Balázs ELTE Genetikai Tanszék Endoszimbiotikus gén-transzfer (Timmis et al., 2004, Nat Rev Gen) Endoszimbiotikus

Részletesebben

Human Genome Project, 1990-2005 5 évvel a tervezett befezés előtt The race is over, victory for Craig Venter. The genome is mapped* - now what?

Human Genome Project, 1990-2005 5 évvel a tervezett befezés előtt The race is over, victory for Craig Venter. The genome is mapped* - now what? 2000 június 26 Új út kezdete, vagy egy út vége? Human Genome Project, 1990-2005 5 évvel a tervezett befezés előtt The race is over, victory for Craig Venter. The genome is mapped* - now what? 2000 június

Részletesebben

Searching in an Unsorted Database

Searching in an Unsorted Database Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching

Részletesebben

Rendezetlen fehérjék kölcsönhatásainak vizsgálata: elmélet, predikciók és alkalmazások

Rendezetlen fehérjék kölcsönhatásainak vizsgálata: elmélet, predikciók és alkalmazások Rendezetlen fehérjék kölcsönhatásainak vizsgálata: elmélet, predikciók és alkalmazások Doktori (PhD) értekezés tézisei Mészáros Bálint Témavezetők: Dr. Dosztányi Zsuzsanna, PhD és Prof. Simon István, PhD,

Részletesebben

Bozóki Sándor. MTA SZTAKI, Budapesti Corvinus Egyetem. Vitaliy Tsyganok

Bozóki Sándor. MTA SZTAKI, Budapesti Corvinus Egyetem. Vitaliy Tsyganok A feszítőfákból számolt súlyvektorok mértani közepének optimalitása a logaritmikus legkisebb négyzetes célfüggvényre nézve Bozóki Sándor MTA SZTAKI, Budapesti Corvinus Egyetem Vitaliy Tsyganok Laboratory

Részletesebben

Tudományközi beszélgetések

Tudományközi beszélgetések VILÁGOSSÁG 2003/9 10. Tudományrendszer Tudományközi beszélgetések Molekuláris biológia A XXI. század tudományrendszere című nagyprojektje keretében tudományközti beszélgetések sorozatát indította el az

Részletesebben

LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN

LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp. 11-20. LOGISZTIKA A TUDOMÁNYBAN ÉS A GAZDASÁGBAN Illés Béla tanszékvezető egyetemi tanár Miskolci Egyetem, Anyagmozgatási

Részletesebben

A felgyorsult fehérje körforgás szerepe a transzlációs hibákkal szembeni alkalmazkodási folyamatokban

A felgyorsult fehérje körforgás szerepe a transzlációs hibákkal szembeni alkalmazkodási folyamatokban A felgyorsult fehérje körforgás szerepe a transzlációs hibákkal szembeni alkalmazkodási folyamatokban Ph.D. értekezés tézisei Kalapis Dorottya Témavezető: Dr. Pál Csaba tudományos főmunkatárs Biológia

Részletesebben

Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK

Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK Fehérjét kódol? Tulajdonságai? -Hol lokalizálódik? -Oldható? -3D szerkezete? -Accession #? -Annotációja elérhető? Már benne

Részletesebben

Ph.D. értekezés tézisei. Bioinformatikai analízis és digitális jelfeldolgozás. génexpressziós adatokon

Ph.D. értekezés tézisei. Bioinformatikai analízis és digitális jelfeldolgozás. génexpressziós adatokon Ph.D. értekezés tézisei Bioinformatikai analízis és digitális jelfeldolgozás génexpressziós adatokon Készítette: Kelemen János-Zsigmond Témavezető: Dr. Puskás László MTA Szegedi Biológiai Központ Funkcionális

Részletesebben

Ahol a kvantum mechanika és az Internet találkozik

Ahol a kvantum mechanika és az Internet találkozik Ahol a kvantum mechanika és az Internet találkozik Imre Sándor BME Híradástechnikai Tanszék Imre Sándor "The fastest algorithm can frequently be replaced by one that is almost as fast and much easier to

Részletesebben

Etológia Emelt A viselkedés mérése. Miklósi Ádám egyetemi tanár ELTE TTK Etológia Tanszék 2018

Etológia Emelt A viselkedés mérése. Miklósi Ádám egyetemi tanár ELTE TTK Etológia Tanszék 2018 Etológia Emelt A viselkedés mérése Miklósi Ádám egyetemi tanár ELTE TTK Etológia Tanszék 2018 amiklosi62@gmail.com A viselkedés leírása: A viselkedés, mint fenotipikus jellemző Viselkedés: Élő szervezetek

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

Az új érettségi rendszer bevezetésének tapasztalatai

Az új érettségi rendszer bevezetésének tapasztalatai Középiskolai biológiatanárok szaktárgyi továbbképzése Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar Budapest, 2017.10. 06 Kleininger Tamás Az új érettségi rendszer bevezetésének

Részletesebben

Cserző Miklós Bioinformatika és genomanalízis az orvostudományban. Integrált biológiai adatbázisok

Cserző Miklós Bioinformatika és genomanalízis az orvostudományban. Integrált biológiai adatbázisok Bioinformatika és genomanalízis az orvostudományban Integrált biológiai adatbázisok Cserző Miklós 2018 A mai előadás A genom annotálás jelentősége Genome Reference Consortium Gene Ontology Az ensembl pipeline

Részletesebben

A DNS szerkezete. Genom kromoszóma gén DNS genotípus - allél. Pontos méretek Watson genomja. J. D. Watson F. H. C. Crick. 2 nm C G.

A DNS szerkezete. Genom kromoszóma gén DNS genotípus - allél. Pontos méretek Watson genomja. J. D. Watson F. H. C. Crick. 2 nm C G. 1955: 46 emberi kromoszóma van 1961: mrns 1975: DNS szekvenálás 1982: gén-bank adatbázisok 1983: R (polymerase chain reaction) Mérföldkövek 1 J. D. Watson F. H.. rick 2008 1953 2003 Watson genomja DNS

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

A bioinformatika mint oktatási feladat

A bioinformatika mint oktatási feladat A bioinformatika mint oktatási feladat Bioinformatics as a task in education Pongor Sándor Pongor, S. Mezôgazdasági Biotechnológiai Kutatóközpont, 2100 Gödöllô, Pf 170 és International Centre of Genetic

Részletesebben

Témák Tudományos DiákKöri munkákhoz

Témák Tudományos DiákKöri munkákhoz Témák Tudományos DiákKöri munkákhoz Kovács György Debreceni Egyetem December 8, Áttekintés 1 2 3 4 5 6 7 Pozitron Emissziós Tomográfia Témák Tudományos DiákKöri munkákhoz 2/12 A PNG képformátum metaadatainak

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

Big Data az adattárházban

Big Data az adattárházban Big Data az adattárházban A párbaj folytatódik? Néhány fontos Big Data projekt Cég Téma Adat Újfajta Mennyiség Saját adat? Típus Google Influenza Google I big I Előjelzés előjelzés Farecast Xoom Chicagoi

Részletesebben

Hidraulikus hálózatok robusztusságának növelése

Hidraulikus hálózatok robusztusságának növelése Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás

Részletesebben

Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. www.meetthescientist.hu 1 26

Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. www.meetthescientist.hu 1 26 Hamar Péter RNS világ Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. 1 26 Főszereplők: DNS -> RNS -> fehérje A kód lefordítása Dezoxy-ribo-Nuklein-Sav: DNS az élet kódja megkettőződés (replikáció)

Részletesebben

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA 5 8. ALAPELVEK, CÉLOK MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Supporting Information

Supporting Information Supporting Information Cell-free GFP simulations Cell-free simulations of degfp production were consistent with experimental measurements (Fig. S1). Dual emmission GFP was produced under a P70a promoter

Részletesebben

A NIMROD SZUPERGÉNCSALÁD EVOLÚCIÓJA

A NIMROD SZUPERGÉNCSALÁD EVOLÚCIÓJA A NIMROD SZUPERGÉNCSALÁD EVOLÚCIÓJA Ph.D. értekezés tézisei Sipos Botond Témavezető: Dr. Pénzes Zsolt Konzulens: Dr. Somogyi Kálmán Szegedi Tudományegyetem Biológia Doktori Iskola MTA Szegedi Biológiai

Részletesebben

2. Ismert térszerkezetű transzmembrán fehérjék adatbázisa: a PDBTM adatbázis. 3. A transzmembrán fehérje topológiai adatbázis, a TOPDB szerver

2. Ismert térszerkezetű transzmembrán fehérjék adatbázisa: a PDBTM adatbázis. 3. A transzmembrán fehérje topológiai adatbázis, a TOPDB szerver A 2005 és 2007 között megvalósított project célja transzmembrán fehérjék vizsgálata és az ehhez szükséges eljárások kifejlesztése volt. Ez utóbbi magába foglalta új adatbázisok és szerkezet becslő módszerek

Részletesebben

STATISZTIKUS TÖRVÉNYSZERŰSÉGEK EGYSZERŰ DEMONSTRÁLÁSA GALTON-DESZKÁVAL SIMPLE DEMONSTRATION OF STATISTICAL LAWS WITH GALTON-BOARD

STATISZTIKUS TÖRVÉNYSZERŰSÉGEK EGYSZERŰ DEMONSTRÁLÁSA GALTON-DESZKÁVAL SIMPLE DEMONSTRATION OF STATISTICAL LAWS WITH GALTON-BOARD STATISZTIKUS TÖRVÉNYSZERŰSÉGEK EGYSZERŰ DEMONSTRÁLÁSA GALTON-DESZKÁVAL SIMPLE DEMONSTRATION OF STATISTICAL LAWS WITH GALTON-BOARD Gyertyán Attila 1, Dr. Juhász András 2 1 ELTE Apáczai Csere János Gyakorlóiskola,

Részletesebben

Szakmai zárójelentés OTKA azonosító: NN 75255

Szakmai zárójelentés OTKA azonosító: NN 75255 ZÁRÓ SZAKMAI BESZÁMOLÓ A A MORTIERELLALES REND (FUNGI, ZYGOMYCETES) ÁTFOGÓ FILOGENETIKAI ÉS TAXONÓMIAI REVÍZIÓJA MORFOLÓGIAI, FIZIOLÓGIAI ÉS MOLEKULÁRIS ELJÁRÁSOKKAL CÍMŰ NEMZETKÖZI EGYÜTTMŰKÖDÉSI (NN)

Részletesebben