Bioinformatika előadás

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bioinformatika előadás"

Átírás

1 Bioinformatika előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat Bioinformatics

2 Szerkezeti genomika, proteomika, biológia A biológia forradalma (új kutatási módszerek, új szemlélet): teljes genomok biomolekulák szerkezetmeghatározása bioinformatika nagy áteresztőképességű eljárások a biológiai minták jellemzésére (microarray technikák) Hajtóerők: Genomszekvenálási projektek (>60 teljes genom ismert, továbbiak vannak folyamatban) Automatizált szerkezethozzárendelési projektek (Protein Structure Initiative, PSI) Genomok előtti korszak ("klasszikus bioinformatika"): a bioinformatika főként a homológián alapuló módszereket alkalmazta (BLAST, PSI BLAST, felfűzés, stb.) Genomok utáni korszak: egész sor új, nem homológián alapuló eljárás! Új bioinformatika Bioinformatics

3 Szerkezeti genomika, proteomika, biológia ÚJ TUDOMÁNYÁGAK Genomika Genom: egy adott faj teljes gén, ill. DNS készlete. Genomika: a genom megismerése, ill. vizsgálata: a teljes genetikai információ felhasználása (nem csak egyes gének vagy géncsoportok tanulmányozása) Funkcionális genomika: funkció hozzárendelése a génekhez genomikai módszerekkel (kísérleti és számítógépes [in silico] eljárások) Szerkezeti genomika: a genomban kódolt fehérjék térszerkezetének kiderítése (számítógépes és kísérleti) és ezek felhasználása (pl. a funkcionális genomikában) 3 További biológiai információkkal kapcsolatos fogalmak és tudományágak Proteom: egy sejtben (és annak adott állapotában) található, ill. expresszált fehérjék összessége Proteomika: a proteom vizsgálata (főleg kísérleti) Transzkriptom, transzkriptomika: az mrns állomány, ill. vizsgálata Metabolom, metabolomika: az anyagcserehálózat, ill. vizsgálata Az "omikák forradalma" egyéb összetett biológiai rendszerek vizsgálatai Bioinformatics

4 Szerkezeti genomika, proteomika, biológia Bioinformatics

5 A biológiai funkció A funkció klasszikus jelentése: a molekuláris funkció (pl. milyen reakciót katalizál vagy milyen más molekulát köt az adott fehérje) A funkció bővített ("posztgenomi ) jelentése: a kontextuális v. celluláris funkció (hol helyezkedik el az adott fehérje a sejt kölcsönhatásainak hálózatában) Bioinformatics

6 Szerkezeti genomika 6 Genomok előtti korszak Genomok utáni korszak Bioinformatics

7 Szerkezeti genomika Posztgenomiális bioinformatikai módszerek: Tisztán számítógépes: Filogenetikai profilok Rosetta kő módszer Szomszédos gének Kísérleti, de számítógépesen kiértékelt: Korrelált génexpresszió Bioinformatics

8 Huynen MA, Bork P, Proc Natl Acad Sci U S A. 1998, 95(11), Pellegrini M, et al, Proc Natl Acad Sci U S A. 1999, 96(8), Szerkezeti genomika Filogenetikai profilok Filogenetikai profil: adott gének előfordulásának vizsgálata különböző organizmusokban (teljes genomok ismerete szükséges). Az azonos vagy nagyon hasonló (illetve a teljesen vagy majdnem komplementer) filogenetikai profil a gének között funkcionális kapcsolatot valószínűsíti (ez azt jelenti, hogy az adott gének mindenhol együtt fordulnak elő). Minél több teljes genom áll rendelkezésre az elemzéshez, annál megbízhatóbb az eredmény. DE: bizonyos evolúciós jelenségek megzavarják az elemzést: - Génfunkciók redundanciája (több gén ugyazzal a funkcióval); - Gén felváltása egy másik génnel, ami nem ortológja az eredeti gén ortológjainak; - Horizontális géntranszfer (mikroorganizmusok közötti DNS transzfer); Gének elvesztése egyes organizmusokban Bioinformatics

9 Enright AJ, et al., Nature 1999, 402(6757), Marcotte EM, et al., Nature 1999, 402(6757), Yanai I, et al., Proc Natl Acad Sci U S A. 2001, 98(14), Szerkezeti genomika Rosetta-kő módszer Domén-fúziók módszere Egy adott szervezet két elkülönült fehérjéje más szervezetben fúziós fehérjeként (egyetlen polipeptidláncként) fordulhat elő. Ha két fehérje fúziós fehérjeként is előfordul, akkor közöttük valószínűleg funkcionális kapcsolat van (a közeli funkciójú fehérjék fúziója egyes szervezetekben azért fordulhat elő, mert közelségük előnyös a funkció szempontjából.) A fúziós fehérjék egyfajta Rosetta kövek: a bennük lévő, ismert funkciójú domén alapján a másik, ismeretlen funkciójú domén funkciójára lehet következtetni. DE: vannak "promiszkuita" domének, amelyek nagyon sok más fehérjével fuzionálnak A rosette-i kő (ismert még rosetta kő néven is) egy ősi szöveg három fordítását nyújtotta a kutatóknak: egyiptomi démotikus írással, görög nyelven és egyiptomi hieroglifákkal. Bioinformatics Mivel a görög nyelv jól ismert, e kő volt a kulcs a hieroglifák megfejtéséhez.

10 DeRisi JL, et al., Science 1997, 278(5338), Wu LF, et al., Nat Genet. 2002, 31(3), Szerkezeti genomika Szomszédos gének Ha két gén az organizmusok nagy részében egymás mellett található a kromoszómán, akkor valószínûsíthetően funkcionális kapcsolat van közöttük. Prokariótáknál gyakoriak az operonok (több, rokon funkciójú gén egymás után található, egy közös promoter alatt). Eukariótáknál az operonok ritkábbak, de a génszomszédság mégis jellemző. DE: a szomszédság nem mindig jelent funkcionális kapcsolatot Bioinformatics

11 Szerkezeti genomika, proteomika, biológia A szerkezeti genomika céljai - A genomban kódolt összes fehérje térszerkezetének meghatározása - A funkciók azonosítása a térszerkezeti információk felhasználásával (ebben az értelemben a funkcionális genomika illetve a szerkezeti biológia része) A térszerkezetek meghatározása - Klasszikus megközelítés: az adott fehérje funkciójának azonosítása, majd a térszerkezet kísérleti (röntgenkrisztallográfia / NMR) meghatározása - Szerkezeti genomikai megközelítés: először a térszerkezet (lehetőleg az összes fehérjé) meghatározása, majd a funkció (épp a térszerkezet segítségével is) vizsgálata Bioinformatics

12 DNS microchip Szerkezeti genomika Korrelált génexpresszió Az azonos körülmények között mindig együtt, azonos mintázat szerint expresszálódó gének között funkcionális kapcsolat valószínűsíthető -> microarray adatok elemzése, kiértékelése Pl.: (a) Élesztősejtek szinkronizálása (azonos sejtciklus) - Két ciklus során tízpercenként mintavétel, az mrns állományból cdns készítése, majd a minták hibridizálása az összes (6000) élesztő gént tartalmazó microchip-en -> minden gén expressziós szintjének meghatározása - (b) Az expressziós szintben jelentős ingadozást mutató gének (6000-ből 409) klaszterezése (csoportosítás) az idõbeli expressziós mintázataik korrelációi szerint (piros: nagy expresszió, kék: kis expresszió). A fastruktúra (dendrogram) ezt a hierarchikus csoportosítást mutatja. - Időbeli expressziós viselkedésük (d) szerint a 409 gént 5 nagy csoportba sorolták (c) Bioinformatics Egyszerű klaszterezés Hierarchikus klaszterezés

13 Szerkezeti genomika Kombinált módszerek A tisztán számítógépes (in silico) funkcionális genomikai módszerek és a kísérleti adatokon nyugvó korrelált génexpressziós adatok kombinálása a legeredményesebb Bioinformatics

14 Kísérleti szerkezeti genomika, biológia A fehérjeszerkezetek sokfélesége - A különböző fold ("tekeredés") becslések szerint 1000 és között van. - A PDB jelenleg kb szerkezetet tartalmaz, de ezek szerkezetileg erősen redundánsak, kb tekeredést képviselnek. Az újonnan meghatározott szerkezetek többsége is már ismert tekeredésű. - A teljes genomokban lévõ gének által kódolt fehérjéknek csak kb % a mutat homológiát már ismert térszerkezetû fehérjével. Kísérleti szerkezeti genomika - Szerkezeti genomika célja: a genomokból kiválasztani azokat a célfehérjéket, amelyeknek a térszerkezetét kísérletileg meghatározva az összes többi fehérje homológiamodellezési távolságon belül lesz (kb. 20% szekvenciaazonosság), így minden fehérje szerkezete homológiamodellezéssel megjósolható lesz. - Szisztematikus szerkezetazonosító projektek folynak, pl. Protein Structure Initiative: DE: Nem expresszálható fehérjék, membránfehérjék, nehezen kristályosítható fehérjék problémát jelentenek. Bioinformatics

15 Szerkezeti genomika, biológia Kötőhelyi szekvencia mintázatok Adott helyi szerkezetnek megfelelő szekvencia mintázatok azonosítása: 15 Pl. Számos ATP- ill. GTP-kötő protein (pl. ATP szintáz, miozin nehéz lánc, helikázok, timidin kináz, G-protein alfa alegység, stb.) tartalmazza a következő konszenzus szekvenciát: [A or G]XXXXGK[S or T]. Ez a szekvencia egy mozgékony hurkot alkot a kérdéses fehérje alfa-helikális és béta-redő doménjei között, a fehérje általános tekeredésétől függetlenül. Ld. (a) GTP a H-Ras szignál protein (PDB 1qra) P hurkában; (b) ATP egy protein kináz (PDB 1aq2) P hurkában Bioinformatics

16 Szerkezeti genomika, biológia Konvergens és divergens evolúció A homológia sokszor nehezen azonosítható csak a szekvencia alapján, mivel a szekvencia sokkal gyorsabban változhat, mint a 3D szerkezet, emiatt a konvergens ill. divergens evolúciót néha nehéz megkülönböztetni. Egyes esetekben, térbeli egyezőség figyelhető meg a funkcionális helyen, míg a funkcionálisan fontos aminosavak csak kis ill. semmilyen szekvencia azonosságot mutatnak. Ilyenkor a konvergens és divergens evolúció megkülönböztetése nehéz lehet. Például, a benzoilformát dekarboxiláz (BFD) és a piruvát dekarboxiláz (PDC) csak kb. 21% szekvencia azonosságot mutatnak, de gyakorlatilag azonos tekeredésűek. A katalítikus aminosavoldalláncok a 3D szerkezetben térben konzerválódtak, de szekvenciában nem. Lehetséges, hogy a két fehérje függetlenül fejlődött és konvergált az alfaketosav dekarboxilezésének hasonló kémiai megoldása révén. A tekeredésükben megfigyelhető nagy hasonlóság azt is jelentheti azonban, hogy közös ősfehérjéből származnak és a funkciójuk divergált. A szekvenciaazonosság alacsony foka itt nem teszi lehetővé e két lehetőség megkülönböztetését. Bioinformatics

17 HAL Szerkezeti genomika, biológia Szerkezeti családok PAL TAL A szerkezeti szuper-családok tagjai gyakran rokon biokémiai funkciójúak Egy szuper-család nem szigorű definíció szerint olyan hasonló 3D szerkezetű homológ proteinek készlete, melyek hasonló, de nem feltétlenül azonos biokémiai funkciójúak. Majdnem minden szuper-család mutat valamelyest funkcionális diverzitást, amely helyi szekvencia különbségekből és/vagy domén kicserélődésből ered. Az enzim szuper-családokon belül például gyakori a szubsztrát diverzitás, míg a reakció kémiája erősen konzerválódott (ld. MIO tartalmú ammónia-liázok: HAL, PAL, TAL). Sok enzim szupercsaládban a katalítikus csoportok szekvenciabéli helyzete tagról tagra eltérő lehet, annak ellenére, hogy a fehérjén belül azonos funkciójúak. E variációk esetenként megnehezithetik vagy akár lehetetlenné is teszik egy fehérje egyedül szekvencia összerendelésen alapuló, adott szuper-családba sorolását. Bár a szuper-család egyes tagjai szekvenciájukban is hasonlóak lehetnek, a szerkezeti és funkcionális hasonlóság az aminek alapján egy fehérje egy adott szuper-családba sorolható. Minden szuper-családon belül vannak családok, amely tagjai között közeli funkcionális rokonság és szignifikáns szekvencia azonosság (>50%) áll fenn. Bioinformatics

18 Szerkezeti genomika, biológia Konvergens evolúció Kimotripszin A szerin proteázok négy szuper-családja a konvergens evolúció példája A szerin proteázok több szerkezeti szuper-családba tartoznak, melyek jelentősen eltérnek szekvenciájukban és általános tekeredésükben, azonban igen hasonlóak a katalítikus triád aminosavainak (Ser His Glu/Asp) aktív centrumbeli relatív helyzetében. Szubtilizin Mindegyik szerin proteáz szuper-család sok taggal rendelkezik, de a szuper-családok közt sem szekvencia, sem szerkezeti hasonlóság nem áll fenn. Az egyes szuper-családokban a katalítikus triád aminosavainak szekvenciabeli sorrendje eltérő lehet, míg a tercier szerkezetbeli elhelyezkedésük igen hasonló. Feltehetően a hasonló aktív hely kialakulása a konvergens evolúció eredménye, míg asz egyes szuper-családokon belül a divergens evolúció eredményezett kölönböző proteázokat, melyek igen hasonló szerkezetűek, ám eltérő szubsztrát-specifitással rendelkeznek A szerin proteázok két szuper-családjának reprezentánsai Bioinformatics

19 Christianson,CV, et al., J Am Chem Soc. 2007, 129, Szerkezeti genomika, biológia Aktív hely azonosítása szubsztát analogonokkal A tirozin aminomutáz inhíbitorral kristályosított szerkezete példája az aktív hely kísérleti meghatározásának Bioinformatics

20 Szerkezeti genomika, biológia Aktív hely azonosítása oldószer kristályba épülésével 20 Szubtilizin szekezete 100% acetonitrilben A szerves oldószer (zöld) csak néhány helyre köt a fehérje felszínén, beleértve az aktív helyet is (kb. az ábra bal közepe). A piros gömbök vizek, melyek még a vízzel elegyedó oldószer 100% koncentrációja ellenére is kötve merednek (ezek a fehérje aktív szerkezetének elemi részeként foghatóak fel szerkezeti vizek) Termotilizin szekezete különböző oldószerekkel A termolizin kötőhelyei különböző oldószerekkel nedvesített kristályok szerkezete alapján. A különböző oldőszerek által elfoglalt hasonló hely jól azonosítja a kötőhelyet. Az aktív centrum kötött cink (szürke) és kálcium (fekete) ionokat is tartalmaz. Bioinformatics

21 Röther D, et al., Eur. J. Biochem. 2001, 268, Szerkezeti genomika, biológia Aktív hely vizsgálata pontmutációkkal Pl.: a hisztidin ammónia-liáz (HAL) enzim aktív hely aminosavainak pontmutációi alapján következtetni lehet az egyes aminosavak katílítikus fontosságára Bioinformatics

22 Expasy Tools: Proteomikai programgyűjtemény - ExPASy Bioinformatics

23 Expasy Tools: ExPASy proteomikai programok Bioinformatics

24 Expasy Tools: ExPASy fehérje azonosítás Bioinformatics

25 ProtParam: Fehérjetulajdonságok becslése - ProtParam Bioinformatics

26 ProtParam: Fehérjetulajdonságok becslése - ProtParam Bioinformatics

27 ProtParam: Fehérjetulajdonságok becslése - ProtParam Bioinformatics

28 ProtParam: Fehérjetulajdonságok becslése - ProtParam Bioinformatics

29 Expasy Tools: org/proteomics/protein_sequences_and_identification ExPASy protein szekvencia Bioinformatics

30 Expasy Tools: org/proteomics/similarity_search_alignment ExPASy szekvencia keresés / illesztés Bioinformatics

31 Expasy Tools: org/proteomics/protein_structure ExPASy protein szerkezet Bioinformatics

32 Expasy Tools: org/proteomics/families patterns_and_profiles ExPASy protein szerkezeti családok Bioinformatics

33 GQuery: Bioinformatikai programgyűjtemény - GQuery Bioinformatics

34 GQuery: Bioinformatikai programgyűjtemény - GQuery Bioinformatics

35 GQuery: NCBI - Gene Bioinformatics

36 Genome: NCBI - Genome Bioinformatics

37 Genome: NCBI Genome (E. coli) Bioinformatics

38 GOLD: GOLD Genome project database Bioinformatics

39 NCBI Structure: NCBI - Structure Bioinformatics

40 NCBI Taxonomy: NCBI - Taxonomy Bioinformatics

41 NCBI Taxonomy: NCBI - Taxonomy Bioinformatics

42 NCBI: NCBI - BioSystems Bioinformatics

Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.)

Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.) Genomika Új korszak, paradigmaváltás, forradalom: a teljes genomok ismeretében a biológia adatokban gazdag tudománnyá válik. Új kutatási módszerek, új szemlélet. Hajtóerõk: Genomszekvenálási projektek

Részletesebben

10. Genomika 2. Microarrayek és típusaik

10. Genomika 2. Microarrayek és típusaik 10. Genomika 2. 1. Microarray technikák és bioinformatikai vonatkozásaik Microarrayek és típusaik Korrelált génexpresszió mint a funkcionális genomika eszköze 2. Kombinált megközelítés a funkcionális genomikában

Részletesebben

Bioinformatika 2 5.. előad

Bioinformatika 2 5.. előad 5.. előad adás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 03. 21. Fehérje térszerkezet t megjelenítése A fehérjék meglehetősen összetett

Részletesebben

Fehérje-fehérje kölcsönhatások és kölcsönhatási hálózatok. Szilágyi András

Fehérje-fehérje kölcsönhatások és kölcsönhatási hálózatok. Szilágyi András Fehérje-fehérje kölcsönhatások és kölcsönhatási hálózatok Szilágyi András Vázlat Fehérje-fehérje kölcsönhatások Kölcsönhatási hálózatok Kísérleti módszerek Bioinformatikai vonatkozások adatbázisok szerkezetfüggetlen

Részletesebben

Bioinformatika 2 10.el

Bioinformatika 2 10.el 10.el őadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 04. 24. Genomikavs. proteomika A genomika módszereivel nem a tényleges fehérjéket

Részletesebben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben

TDK lehetőségek az MTA TTK Enzimológiai Intézetben TDK lehetőségek az MTA TTK Enzimológiai Intézetben Vértessy G. Beáta egyetemi tanár TDK mind 1-3 helyezettek OTDK Pro Scientia különdíj 1 második díj Diákjaink Eredményei Zsűri különdíj 2 első díj OTDK

Részletesebben

BIOINFORMATIKA Ungvári Ildikó

BIOINFORMATIKA Ungvári Ildikó 1 BIOINFORMATIKA Ungvári Ildikó Az elmúlt évtizedekben a molekuláris biológiai, genomikai technológiák robbanásszerű fejlődése a biológiai adatok mennyiségének exponenciális növekedéséhez vezetett. Ebben

Részletesebben

Bioinformatika előad

Bioinformatika előad 7.. előad adás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 04. 03. Térszerkezet előrejelz rejelzés s főf módszerei Homológia modellezés

Részletesebben

8. A fehérjék térszerkezetének jóslása

8. A fehérjék térszerkezetének jóslása 8. A fehérjék térszerkezetének jóslása A probléma bonyolultsága Általánosságban: találjuk meg egy tetszõleges szekvencia azon konformációját, amely a szabadentalpia globális minimumát adja. Egyszerû modellekben

Részletesebben

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi

Részletesebben

Humán genom variációk single nucleotide polymorphism (SNP)

Humán genom variációk single nucleotide polymorphism (SNP) Humán genom variációk single nucleotide polymorphism (SNP) A genom ~ 97 %-a két különböző egyedben teljesen azonos ~ 1% különbség: SNP miatt ~2% különbség: kópiaszámbeli eltérés, deléciók miatt 11-12 millió

Részletesebben

2. Ismert térszerkezetű transzmembrán fehérjék adatbázisa: a PDBTM adatbázis. 3. A transzmembrán fehérje topológiai adatbázis, a TOPDB szerver

2. Ismert térszerkezetű transzmembrán fehérjék adatbázisa: a PDBTM adatbázis. 3. A transzmembrán fehérje topológiai adatbázis, a TOPDB szerver A 2005 és 2007 között megvalósított project célja transzmembrán fehérjék vizsgálata és az ehhez szükséges eljárások kifejlesztése volt. Ez utóbbi magába foglalta új adatbázisok és szerkezet becslő módszerek

Részletesebben

Genetikai panel kialakítása a hazai tejhasznú szarvasmarha állományok hasznos élettartamának növelésére

Genetikai panel kialakítása a hazai tejhasznú szarvasmarha állományok hasznos élettartamának növelésére Genetikai panel kialakítása a hazai tejhasznú szarvasmarha állományok hasznos élettartamának növelésére Dr. Czeglédi Levente Dr. Béri Béla Kutatás-fejlesztés támogatása a megújuló energiaforrások és agrár

Részletesebben

A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése. Kiss Erzsébet Kovács László

A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése. Kiss Erzsébet Kovács László A szamóca érése során izolált Spiral és Spermidin-szintáz gén jellemzése Kiss Erzsébet Kovács László Bevezetés Nagy gazdasági gi jelentıségük k miatt a gyümölcs lcsök, termések fejlıdésének mechanizmusát

Részletesebben

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra

Részletesebben

Receptorok és szignalizációs mechanizmusok

Receptorok és szignalizációs mechanizmusok Molekuláris sejtbiológia: Receptorok és szignalizációs mechanizmusok Dr. habil Kőhidai László Semmelweis Egyetem Genetikai, Sejt- és Immunbiológiai Intézet Sejtek szignalizációs kapcsolatai Sejtek szignalizációs

Részletesebben

A fehérjék térszerkezetének jóslása

A fehérjék térszerkezetének jóslása A fehérjék térszerkezetének jóslása 1. A probléma bonyolultsága 2. A predikció szintjei 3. 1D predikciók (másodlagos szerkezet, hozzáférhetõség, transzmembrán hélixek 4. 2D predikciók (oldallánc kontaktusok,

Részletesebben

A tárgy címe: Bioinformatika

A tárgy címe: Bioinformatika A tárgy címe: Bioinformatika Kötelezően választható tárgy IV. és V. évfolyamos biológus hallgatók számára; heti 2+3 óra Előkövetelmény: Biokémia főkollégium; genetika főkollégium; alapszintű számítógépes

Részletesebben

A genomikai oktatás helyzete a Debreceni Egyetemen

A genomikai oktatás helyzete a Debreceni Egyetemen A genomikai oktatás helyzete a Debreceni Egyetemen Bálint Bálint L. GNTP Oktatás és Tudásmenedzsment Munkabizottság, 2009. június 10. Tények Debreceni Egyetemről 21000 nappali és 33000 összes hallgató

Részletesebben

Enzimek. Enzimek! IUBMB: szisztematikus nevek. Enzimek jellemzése! acetilkolin-észteráz! legalább 10 nagyságrend gyorsulás. szubsztrát-specificitás

Enzimek. Enzimek! IUBMB: szisztematikus nevek. Enzimek jellemzése! acetilkolin-észteráz! legalább 10 nagyságrend gyorsulás. szubsztrát-specificitás Enzimek acetilkolin-észteráz! Enzimek! [s -1 ] enzim víz carbonic anhydrase 6x10 5 10-9 karbonikus anhidráz acetylcholine esterase 2x10 4 8x10-10 acetilkolin észteráz staphylococcal nuclease 10 2 2x10-14

Részletesebben

Norvég Finanszírozási Mechanizmus által támogatott projekt HU-0115/NA/2008-3/ÖP-9 ÚJ TERÁPIÁS CÉLPONTOK AZONOSÍTÁSA GENOMIKAI MÓDSZEREKKEL

Norvég Finanszírozási Mechanizmus által támogatott projekt HU-0115/NA/2008-3/ÖP-9 ÚJ TERÁPIÁS CÉLPONTOK AZONOSÍTÁSA GENOMIKAI MÓDSZEREKKEL Norvég Finanszírozási Mechanizmus által támogatott projekt HU-0115/NA/2008-3/ÖP-9 ÚJ TERÁPIÁS CÉLPONTOK AZONOSÍTÁSA GENOMIKAI MÓDSZEREKKEL KÖZÖS STRATÉGIA KIFEJLESZTÉSE MOLEKULÁRIS MÓDSZEREK ALKALMAZÁSÁVAL

Részletesebben

A fehérjék térszerkezetének jóslása (Szilágyi András, MTA Enzimológiai Intézete)

A fehérjék térszerkezetének jóslása (Szilágyi András, MTA Enzimológiai Intézete) A fehérjék térszerkezetének jóslása (Szilágyi András, MTA Enzimológiai Intézete) A probléma bonyolultsága Általánosságban: találjuk meg egy tetszőleges szekvencia azon konformációját, amely a szabadentalpia

Részletesebben

A proteomika új tudománya és alkalmazása a rákdiagnosztikában

A proteomika új tudománya és alkalmazása a rákdiagnosztikában BIOTECHNOLÓGIAI FEJLESZTÉSI POLITIKA, KUTATÁSI IRÁNYOK A proteomika új tudománya és alkalmazása a rákdiagnosztikában Tárgyszavak: proteom; proteomika; rák; diagnosztika; molekuláris gyógyászat; biomarker;

Részletesebben

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,

Részletesebben

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással

Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Biomassza alapú bioalkohol előállítási technológia fejlesztése metagenomikai eljárással Kovács Zoltán ügyvezető DEKUT Debreceni Kutatásfejlesztési Közhasznú Nonprofit Kft. Problémadefiníció Első generációs

Részletesebben

I. A sejttől a génekig

I. A sejttől a génekig Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.

Részletesebben

Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis

Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis. Fehérjeszerkezet analízis Szerkezet Protein Data Bank (PDB) http://www.rcsb.org/pdb ~ 35 701 szerkezet közepes felbontás 1552 szerkezet d 1.5 Å 160 szerkezet d 1.0 Å 10 szerkezet d 0.8 Å (atomi felbontás) E globális minimum? funkció

Részletesebben

Evolúcióelmélet és az evolúció mechanizmusai

Evolúcióelmélet és az evolúció mechanizmusai Evolúcióelmélet és az evolúció mechanizmusai Az élet Darwini szemlélete Melyek az evolúció bizonyítékai a világban? EVOLÚCIÓ: VÁLTOZATOSSÁG Mutáció Horizontális géntranszfer Genetikai rekombináció Rekombináció

Részletesebben

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi

Részletesebben

Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK

Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK Fehérjét kódol? Tulajdonságai? -Hol lokalizálódik? -Oldható? -3D szerkezete? -Accession #? -Annotációja elérhető? Már benne

Részletesebben

Proteomkutatás egy új tudományág születése

Proteomkutatás egy új tudományág születése BIOTECHNOLÓGIAI FEJLESZTÉSI POLITIKA, KUTATÁSI IRÁNYOK Proteomkutatás egy új tudományág születése Tárgyszavak: humán genom; genomika; proteomika; kutatás; fehérjeszerkezet; háromdimenziós szerkezet; gyógyszeripar.

Részletesebben

A preventív vakcináció lényege :

A preventív vakcináció lényege : Vakcináció Célja: antigénspecifkus immunválasz kiváltása a szervezetben A vakcina egy olyan készítmény, amely fokozza az immunitást egy adott betegséggel szemben (aktiválja az immunrendszert). A preventív

Részletesebben

ADATBÁNYÁSZAT I. ÉS OMICS

ADATBÁNYÁSZAT I. ÉS OMICS Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 ADATBÁNYÁSZAT

Részletesebben

Fehérjeszerkezet, és tekeredés

Fehérjeszerkezet, és tekeredés Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983

Részletesebben

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest, FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino

Részletesebben

Fehérjék rövid bevezetés

Fehérjék rövid bevezetés Receptorfehérj rjék szerkezetének felderítése Homológia modellezés Fehérjék rövid bevezetés makromolekulák számos biológiai funkció hordozói: enzimatikus katalízis, molekula transzport, immunválaszok,

Részletesebben

Szerkesztette: Vizkievicz András

Szerkesztette: Vizkievicz András Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.

Részletesebben

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!!

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!! Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció 1859 1865 1869 1952 Hershey & Chase 1953!!! 1879 1903 1951 1950 1944 1928 1911 1 1. DNS szerkezete Mi az örökítő anyag? Friedrich Miescher

Részletesebben

BIOMOLEKULÁK KÉMIÁJA. Novák-Nyitrai-Hazai

BIOMOLEKULÁK KÉMIÁJA. Novák-Nyitrai-Hazai BIOMOLEKULÁK KÉMIÁJA Novák-Nyitrai-Hazai A tankönyv elsısorban szerves kémiai szempontok alapján tárgyalja az élı szervezetek felépítésében és mőködésében kulcsfontosságú szerves vegyületeket. A tárgyalás-

Részletesebben

NÖVÉNYI GENOMIKA JÓRI BALÁZS

NÖVÉNYI GENOMIKA JÓRI BALÁZS NÖVÉNYI GENOMIKA JÓRI BALÁZS Eötvös Loránd Tudományegyetem, Növényélettani és Molekuláris Növénybiológia Tanszék, 1117 Budapest, Pázmány P. sétány 1/c. Elfogadva: 2004. december 29. Bot. Közlem. 91(1 2):

Részletesebben

TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben

TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben esirna mirtron BEVEZETÉS TÉMAKÖRÖK Ősi RNS világ RNS-ek tradicionális szerepben bevezetés BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén Dr. Dallmann Klára A molekuláris biológia célja az élőlények és sejtek működésének molekuláris szintű

Részletesebben

A polipeptidlánc szabályozott lebontása: mit mondanak a fehérjekristályok? Harmat Veronika ELTE Kémiai Intézet, Szerkezeti Kémia és Biológia Laboratórium MTA-ELTE Fehérjemodellező Kutatócsoport A magyar

Részletesebben

Gerinces és növényi ortológ promóter adatbázisok fejlesztése és elemzése. Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Doktori Iskola

Gerinces és növényi ortológ promóter adatbázisok fejlesztése és elemzése. Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Doktori Iskola Doktori értekezés tézisei Gerinces és növényi ortológ promóter adatbázisok fejlesztése és elemzése Sebestyén Endre Eötvös Loránd Tudományegyetem Természettudományi Kar Biológia Doktori Iskola Vezetője:

Részletesebben

7. Fehérjeszekvenciák és térszerkezetek analízise.

7. Fehérjeszekvenciák és térszerkezetek analízise. 7. Fehérjeszekvenciák és térszerkezetek analízise. 1. Egyszerû elemzések 2. Térszerkezet predikció 2.1. A probléma bonyolultsága 2.2. A predikció szintjei 2.3. 1D predikciók (másodlagos szerkezet, hozzáférhetõség,

Részletesebben

Kémiai biológia avagy mit nyújt(hat) a kémia az élettudományoknak

Kémiai biológia avagy mit nyújt(hat) a kémia az élettudományoknak A Magyar Tudomány Ünnepe 2007 Kémiai biológia avagy mit nyújt(hat) a kémia az élettudományoknak Tudományos ülésszak A Debreceni Egyetem Természettudományi Karának Kémiai Intézete és A Debreceni Akadémiai

Részletesebben

Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May

Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May Orvosi Genomtudomány 2014 Medical Genomics 2014 Április 8 Május 22 8th April 22nd May Hét / 1st week (9. kalendariumi het) Takács László / Fehér Zsigmond Magyar kurzus Datum/ido Ápr. 8 Apr. 9 10:00 10:45

Részletesebben

A géntechnológia genetikai alapjai (I./3.)

A géntechnológia genetikai alapjai (I./3.) Az I./2. rész (Gének és funkciójuk) rövid összefoglalója A gének a DNS információt hordozó szakaszai, melyekben a 4 betű (ATCG) néhány ezerszer, vagy százezerszer ismétlődik. A gének önálló programcsomagként

Részletesebben

Természetes szelekció és adaptáció

Természetes szelekció és adaptáció Természetes szelekció és adaptáció Amiről szó lesz öröklődő és variábilis fenotípus természetes szelekció adaptáció evolúció 2. Természetes szelekció Miért fontos a természetes szelekció (TSZ)? 1. C.R.

Részletesebben

Záróbeszámoló. A pályázat címe: Wnt fehérjék és Wnt receptorok. OTKA azonosító: A kutatási téma ismertetése: előzmények és a kutatás célja

Záróbeszámoló. A pályázat címe: Wnt fehérjék és Wnt receptorok. OTKA azonosító: A kutatási téma ismertetése: előzmények és a kutatás célja Záróbeszámoló A pályázat címe: Wnt fehérjék és Wnt receptorok OTKA azonosító: 75836 A kutatási téma ismertetése: előzmények és a kutatás célja Bevezetés: A Wnt család fehérjéi kulcsszerepet játszanak az

Részletesebben

Genetikai kölcsönhatások rendszerbiológiája

Genetikai kölcsönhatások rendszerbiológiája Genetikai kölcsönhatások rendszerbiológiája Papp Balázs www.brc.hu/sysbiol MTA Szegedi Biológiai Kutatóközpont Biokémiai Intézet Szintetikus és Rendszerbiológiai Egység Mikrobiális rendszerbiológia főbb

Részletesebben

Rendezetlen fehérjék kölcsönhatásainak vizsgálata: elmélet, predikciók és alkalmazások

Rendezetlen fehérjék kölcsönhatásainak vizsgálata: elmélet, predikciók és alkalmazások Rendezetlen fehérjék kölcsönhatásainak vizsgálata: elmélet, predikciók és alkalmazások Doktori (PhD) értekezés tézisei Mészáros Bálint Témavezetők: Dr. Dosztányi Zsuzsanna, PhD és Prof. Simon István, PhD,

Részletesebben

RNS SZINTÉZIS ÉS ÉRÉS

RNS SZINTÉZIS ÉS ÉRÉS RNS SZINTÉZIS ÉS ÉRÉS A genom alapvetõ funkciója, hogy a sejt mûködéséhez esszenciális gépek (fehérjék) elõállí tására vonatkozó információt tartalmazza. A DNS-ben rejlõ információ egy kétlépéses folyamatban

Részletesebben

A DNS szerkezete. Genom kromoszóma gén DNS genotípus - allél. Pontos méretek Watson genomja. J. D. Watson F. H. C. Crick. 2 nm C G.

A DNS szerkezete. Genom kromoszóma gén DNS genotípus - allél. Pontos méretek Watson genomja. J. D. Watson F. H. C. Crick. 2 nm C G. 1955: 46 emberi kromoszóma van 1961: mrns 1975: DNS szekvenálás 1982: gén-bank adatbázisok 1983: R (polymerase chain reaction) Mérföldkövek 1 J. D. Watson F. H.. rick 2008 1953 2003 Watson genomja DNS

Részletesebben

Bakteriális identifikáció 16S rrns gén szekvencia alapján

Bakteriális identifikáció 16S rrns gén szekvencia alapján Bakteriális identifikáció 16S rrns gén szekvencia alapján MOHR ANITA SIPOS RITA, SZÁNTÓ-EGÉSZ RÉKA, MICSINAI ADRIENN 2100 Gödöllő, Szent-Györgyi Albert út 4. info@biomi.hu, www.biomi.hu TÖRZS AZONOSÍTÁS

Részletesebben

A glükóz reszintézise.

A glükóz reszintézise. A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt

Részletesebben

A Caskin1 állványfehérje vizsgálata

A Caskin1 állványfehérje vizsgálata A Caskin1 állványfehérje vizsgálata Doktori tézisek Balázs Annamária Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola Témavezeto: Dr. Buday László egyetemi tanár, az orvostudományok doktora

Részletesebben

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK Dr. Pécs Miklós Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Glikozilálás A rekombináns fehérjék

Részletesebben

Bioinformatika 2 1. előadás

Bioinformatika 2 1. előadás 1. előadás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat Bioinformatika Mi az? Bioinformatika: Tágabb értelemben: biológiai információ tárolása,

Részletesebben

Natív antigének felismerése. B sejt receptorok, immunglobulinok

Natív antigének felismerése. B sejt receptorok, immunglobulinok Natív antigének felismerése B sejt receptorok, immunglobulinok B és T sejt receptorok A B és T sejt receptorok is az immunglobulin fehérje család tagjai A TCR nem ismeri fel az antigéneket, kizárólag az

Részletesebben

Az élő sejt fizikai Biológiája:

Az élő sejt fizikai Biológiája: Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai

Részletesebben

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció Ősi

Részletesebben

PROKARIÓTA GENOMOK ÖSSZEHASONLÍTÓ ANALÍZISE BIOINFORMATIKAI MÓDSZEREKKEL. Doktori (Ph.D.) értekezés tézisei. Kassainé Jáger Edit Andrea

PROKARIÓTA GENOMOK ÖSSZEHASONLÍTÓ ANALÍZISE BIOINFORMATIKAI MÓDSZEREKKEL. Doktori (Ph.D.) értekezés tézisei. Kassainé Jáger Edit Andrea PROKARIÓTA GENOMOK ÖSSZEHASONLÍTÓ ANALÍZISE BIOINFORMATIKAI MÓDSZEREKKEL Doktori (Ph.D.) értekezés tézisei Kassainé Jáger Edit Andrea Biológia Doktori Iskola Vezetője: Dr. Erdei Anna egyetemi tanár, az

Részletesebben

7. Rendszerszemléletű biológia a kémikus szemével. Genomika, proteomika, metabolomika

7. Rendszerszemléletű biológia a kémikus szemével. Genomika, proteomika, metabolomika 7. Rendszerszemléletű biológia a kémikus szemével Genomika, proteomika, metabolomika 7. Rendszerszemléletű biológia Redukcionista vs. Holisztikus szemlélet A rendszerszemléletű biológia (systems biology)

Részletesebben

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest Iparilag alkalmazható szekvenciák, avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest Neutrokin α - jelentős kereskedelmi érdekek

Részletesebben

A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet

A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet *Levelezési cím: Dr. Sasvári-Székely Mária, Semmelweis Egyetem, Orvosi

Részletesebben

TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?

TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis,

Részletesebben

Természetvédelmi biológia

Természetvédelmi biológia Természetvédelmi biológia 1. A természetvédelmi biológia meghatározása, a biológiai sokféleség értelmezése A természetvédelmi biológia (konzervációbiológia) fı céljai 1. Az emberi tevékenység fajok populációra,

Részletesebben

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A NÖVÉNYGENETIKA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYI TÁPANYAG TRANSZPORTEREK az előadás áttekintése A tápionok útja a növényben Növényi tápionok passzív és

Részletesebben

A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin.

A fehérjék szerkezeti hierarchiája. Fehérje-szerkezetek! Klasszikus szerkezet-funkció paradigma. szekvencia. funkció. szerkezet! Myoglobin. Myoglobin Fehérje-szerkezetek! MGLSDGEWQLVLNVWGKVEADIPGGQEVLIRLFK GPETLEKFDKFKLKSEDEMKASE DLKKGATVLTALGGILKKKGEAEIKPLAQSA TKKIPVKYLEFISECIIQVLQSK PGDFGADAQGAMNKALELFRKDMASNYKELGFQG Fuxreiter Mónika! Debreceni

Részletesebben

Biomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium

Biomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium Biomolekuláris nanotechnológia Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium Az élő szervezetek példája azt mutatja, hogy a fehérjék és nukleinsavak kiválóan alkalmasak önszerveződő molekuláris

Részletesebben

Génkifejeződési vizsgálatok. Kocsy Gábor

Génkifejeződési vizsgálatok. Kocsy Gábor Génkifejeződési vizsgálatok MTA Mezőgazdasági Kutatóintézete Növényi Molekuláris Biológia Osztály A génkifejeződés A sejtmag géneket tartalmaz; (fehérjéket, RNSeket kódoló); A gének átíródnak mrns; Pre-mRNS

Részletesebben

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár. Az endoplazmatikus membránrendszer Részei: DER /durva (szemcsés) endoplazmatikus retikulum/ SER /sima felszínű endoplazmatikus retikulum/ Golgi készülék Lizoszómák Peroxiszómák Szekréciós granulumok (váladékszemcsék)

Részletesebben

Molekuláris terápiák

Molekuláris terápiák Molekuláris terápiák Aradi, János Balajthy, Zoltán Csősz, Éva Scholtz, Beáta Szatmári, István Tőzsér, József Varga, Tamás Szerkesztette Balajthy, Zoltán és Tőzsér, József, Debreceni Egyetem Molekuláris

Részletesebben

CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI

CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI A GENETIKAI INFORMÁCI CIÓ TÁROLÁSA ÉS S KIFEJEZŐDÉSE A DNS SZERKEZETE Két antiparalel (ellentétes lefutású) polinukleotid láncból álló kettős helix A két lánc egy képzeletbeli közös tengely körül van feltekeredve,

Részletesebben

A minimális sejt. Avagy hogyan alkalmazzuk a biológia több területét egy kérdés megválaszolására

A minimális sejt. Avagy hogyan alkalmazzuk a biológia több területét egy kérdés megválaszolására A minimális sejt Avagy hogyan alkalmazzuk a biológia több területét egy kérdés megválaszolására Anyagcsere Gánti kemoton elmélete Minimum sejt Top down: Meglevő szervezetek genomjából indulunk ki Bottom

Részletesebben

Gáspári Zoltán. Élő molekulák az élet molekulái

Gáspári Zoltán. Élő molekulák az élet molekulái Gáspári Zoltán Élő molekulák az élet molekulái Invokáció Kajtár Márton 1929-1991 www.eotvoskiado.hu Élő és élettelen? Élő és élettelen: a kemoton Élő kémiai rendszer, de nem élőlény (Gánti, 1975) Autokatalitikus

Részletesebben

NMR a peptid- és fehérje-kutatásban

NMR a peptid- és fehérje-kutatásban NMR a peptid- és fehérje-kutatásban A PDB adatbázisban megtalálható NMR alapú fehérjeszerkezetek számának alakulása az elmúlt évek során 4000 3500 3000 2500 2000 1500 1000 500 0 1987 1988 1989 1990 1991

Részletesebben

AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE

AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE AZ ÉLET KÉMIÁJA... ÉLŐ ANYAG SZERVEZETI ALAPEGYSÉGE A biológia az élet tanulmányozásával foglalkozik, az élő szervezetekre viszont vonatkoznak a fizika és kémia törvényei MI ÉPÍTI FEL AZ ÉLŐ ANYAGOT? HOGYAN

Részletesebben

Hazai méhészeti genomikai és genetikai vizsgálatok

Hazai méhészeti genomikai és genetikai vizsgálatok AKÁCKÖRÚTON Hazai méhészeti genomikai és genetikai vizsgálatok Előző cikkünkben arról írtunk, milyen új eszköztárral rendelkezünk a XXI. században a genetikai vizsgálatok területén, és mit adhat a molekuláris

Részletesebben

A fehérjék hierarchikus szerkezete

A fehérjék hierarchikus szerkezete Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék

Részletesebben

Kutatási eredményeim a 2014 február 1- augusztus 31. a Varga József Alapítvány Pungor Ernő doktorjelölti ösztöndíjas időszak során

Kutatási eredményeim a 2014 február 1- augusztus 31. a Varga József Alapítvány Pungor Ernő doktorjelölti ösztöndíjas időszak során Kutatási eredményeim a 2014 február 1- augusztus 31. a Varga József Alapítvány Pungor Ernő doktorjelölti ösztöndíjas időszak során 1. projekt Kvaterner ammónium ligandot használó enzimek ligand kötőhelyének

Részletesebben

A KALPAIN ÉS A PROTEIN KINÁZ/FOSZFATÁZ RENDSZEREK VIZSGÁLATA

A KALPAIN ÉS A PROTEIN KINÁZ/FOSZFATÁZ RENDSZEREK VIZSGÁLATA EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS TÉZISEI A KALPAIN ÉS A PROTEIN KINÁZ/FOSZFATÁZ RENDSZEREK VIZSGÁLATA Kölcsönhatás a posztszintetikus fehérje módosító rendszerek között Kovács László DEBRECENI EGYETEM

Részletesebben

MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére

MedInProt Szinergia IV. program. Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére MedInProt Szinergia IV. program Szerkezetvizsgáló módszer a rendezetlen fehérjék szerkezetének és kölcsönhatásainak jellemzésére Tantos Ágnes MTA TTK Enzimológiai Intézet, Rendezetlen fehérje kutatócsoport

Részletesebben

A növény inváziójában szerepet játszó bakteriális gének

A növény inváziójában szerepet játszó bakteriális gének A növény inváziójában szerepet játszó bakteriális gének merisztéma korai szimbiotikus zóna késői szimbiotikus zóna öregedési zóna gyökér keresztmetszet NODULÁCIÓ növényi jel Rhizobium meliloti rhizobium

Részletesebben

Gyakorlati bioinformatika

Gyakorlati bioinformatika Gyakorlati bioinformatika Szekvenciaillesztés PhD kurzus 2. Szekvenciaillesztés Bagossi Péter Fajtái: - egyszer ill. többszörös illesztés - globális ill. lokális illesztés Alkalmazása: - adatbázisokban

Részletesebben

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH

folsav, (a pteroil-glutaminsav vagy B 10 vitamin) dihidrofolsav tetrahidrofolsav N CH 2 N H H 2 N COOH folsav, (a pteroil-glutaminsav vagy B 10 vitamin) 2 2 2 2 pirimidin rész pirazin rész aminobenzoesav rész glutaminsav rész pteridin rész dihidrofolsav 2 2 2 2 tetrahidrofolsav 2 2 2 2 A dihidrofolát-reduktáz

Részletesebben

kutatás során legfőbb eredményeinket a szerin proteázok aktiválódásának mechanizmusával és az aktiválódás fiziológiai következményeinek

kutatás során legfőbb eredményeinket a szerin proteázok aktiválódásának mechanizmusával és az aktiválódás fiziológiai következményeinek Fehérjék konformációs flexibilitása mint a biomolekuláris felismerés és a jeltovábbítás alapvető eleme (OTKA NK 77978) Zárójelentés (2009. ápr. 1-től 2013. márc. 31-ig) A biológiai rendszerek önszerveződésének

Részletesebben

~ 1 ~ Ezek alapján a következő célokat valósítottuk meg a Ph.D. munkám során:

~ 1 ~ Ezek alapján a következő célokat valósítottuk meg a Ph.D. munkám során: ~ 1 ~ Bevezetés és célkitűzések A sejtekben egy adott időpillanatban expresszált fehérjék összessége a proteom. A kvantitatív proteomika célja a proteom, egy adott kezelés vagy stimulus hatására bekövetkező

Részletesebben

A TATA-kötő fehérje asszociált faktor 3 (TAF3) p53-mal való kölcsönhatásának funkcionális vizsgálata

A TATA-kötő fehérje asszociált faktor 3 (TAF3) p53-mal való kölcsönhatásának funkcionális vizsgálata Ph.D. ÉRTEKEZÉS TÉZISEI A TATA-kötő fehérje asszociált faktor 3 (TAF3) p53-mal való kölcsönhatásának funkcionális vizsgálata Buzás-Bereczki Orsolya Témavezetők: Dr. Bálint Éva Dr. Boros Imre Miklós Biológia

Részletesebben

Escherichia coli aminosav-transzporterek vizsgálata

Escherichia coli aminosav-transzporterek vizsgálata Doktori (Ph.D) értekezés tézisei Escherichia coli aminosav-transzporterek vizsgálata Készítette: Szvetnik Attila Témavezetı: Dr. Kálmán Miklós egyetemi docens Biológia Doktori Iskola Szegedi Tudományegyetem

Részletesebben

Németh Anikó 1,2, Kosáry Judit 1, Fodor Péter 1, Dernovics Mihály 1

Németh Anikó 1,2, Kosáry Judit 1, Fodor Péter 1, Dernovics Mihály 1 Németh Anikó 1,2, Kosáry Judit 1, Fodor Péter 1, Dernovics Mihály 1 1 Budapesti Corvinus Egyetem Élelmiszertudomány Kar, Alkalmazott Kémia Tanszék 2 Wessling Hungary Kft., Élelmiszervizsgáló Laboratórium

Részletesebben

A felépítő és lebontó folyamatok. Biológiai alapismeretek

A felépítő és lebontó folyamatok. Biológiai alapismeretek A felépítő és lebontó folyamatok Biológiai alapismeretek Anyagforgalom: Lebontó Felépítő Lebontó folyamatok csoportosítása: Biológiai oxidáció Erjedés Lebontó folyamatok összehasonlítása Szénhidrátok

Részletesebben

EGYSEJTŰ REAKTOROK BIOKATALÍZIS:

EGYSEJTŰ REAKTOROK BIOKATALÍZIS: EGYSEJTŰ REAKTOROK BIOKATALÍZIS: A GÉNMÓDOSÍTÁSTÓL AZ IPARI FERMENTÁCIÓIG SZAMECZ BÉLA BIOKATALÍZIS - DEFINÍCIÓ szerves vegyületek átalakítása biológiai rendszer a katalizátor Enzim: élő sejt vagy tisztított

Részletesebben

Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék

Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék Bio-nanorendszerek Vonderviszt Ferenc Pannon Egyetem Nanotechnológia Tanszék Technológia: képesség az anyag szerkezetének, az anyagot felépítő részecskék elrendeződésének befolyásolására. A technológiai

Részletesebben

A fehérjék hierarchikus szerkezete

A fehérjék hierarchikus szerkezete Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék

Részletesebben

3. Általános egészségügyi ismeretek az egyes témákhoz kapcsolódóan

3. Általános egészségügyi ismeretek az egyes témákhoz kapcsolódóan 11. évfolyam BIOLÓGIA 1. Az emberi test szabályozása Idegi szabályozás Hormonális szabályozás 2. Az érzékelés Szaglás, tapintás, látás, íz érzéklés, 3. Általános egészségügyi ismeretek az egyes témákhoz

Részletesebben

CzB 2010. Élettan: a sejt

CzB 2010. Élettan: a sejt CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal

Részletesebben