Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37
Az el adás vázlata Determináns Determináns Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 2 / 37
A A négyzetes mátrix determinánsa egy szám, amit det A vagy A -val jelölünk Fontos Csak a négyzetes mátrixoknak van determinánsa 1 1 eset Legyen A = (a 1,1 ), ekkor det A = a 1,1 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 3 / 37
2 2 eset ( Legyen A = a 1,1 a 1,2 a 2,1 a 2,2 ) ekkor det A = a 1,1 a 2,2 a 1,2 a 2,1 vagyis a 1,1 a 1,2 a 2,1 a 2,2 = a 1,1a 2,2 a 1,2 a 2,1 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 4 / 37
3 3 eset (Sarrus-szabály ) a 1,1 a 1,2 a 1,3 a 1,1 a 1,2 a 2,1 a 2,2 a 2,3 a 2,1 a 2,2 = a 3,1 a 3,2 a 3,3 a 3,1 a 3,2 =a 1,1 a 2,2 a 3,3 + a 2,1 a 3,2 a 1,3 + a 3,1 a 1,2 a 2,3 a 3,1 a 3,2 a 1,3 a 3,2 a 2,3 a 1,1 a 3,3 a 2,1 a 1,2 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 5 / 37
n n eset, ahol n 2 a 11 a 12 a 1n a 21 a 22 a 2n a 31 a 32 a 3n a n1 a n2 a nn = a i1 A i1 + a i2 A i2 + a in A in ahol A ij az a ij elemhez tartozó el jeles aldetermináns, aminek az értékét úgy kapjuk, hogy az eredeti mátrix i-edik sorát és j-edik oszlopát elhagyjuk és a kapott (n 1) (n 1)-es mátrix determinánsának értékét szorozzuk ( 1) i+j -vel Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 6 / 37
n n eset, ahol n 2 Az a ij elemhez tartozó A ij el jeles aldetermináns el jelenek megjegyzését megkönnyíti a séma + + + + + + + + Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 7 / 37
Determináns tulajdonságai: Legyen A egy n n-es mátrix Az A determináns tetsz leges sora, vagy oszlopa szerint kifejthet Az A mátrix determinánsa egyenl az A transzponáltjának determinánsával: A = A T Megjegyzés: A determinánsra vonatkozó tulajdonságok mindegyike érvényes akkor is, ha azok megfogalmazásában a "sor " és "oszlop" szavakat helyettesítjük egymással Ha az A mátrix valamely sorának (oszlopának) minden eleme 0, akkor A = 0 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 8 / 37
Determináns tulajdonságai: Ha az A mátrixban a f átló felett (vagy alatt) minden elem 0, akkor a A egyenl a f átlón lév elemek szorzatával a 11 0 0 0 a 22 0 0 0 a 33 = a 11a 22 a 33 Ha a determinánsban két sort (oszlopot) felcserélünk, akkor az el jele megváltozik Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 9 / 37
Determináns tulajdonságai: Ha a determináns valamely sorának (oszlopának) minden elemét szorozzuk c 0 számmal, akkor a determináns értéke c-szeresére változik a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = 1 c ca 11 ca 12 ca 13 a 21 a 22 a 23 a 31 a 32 a 33 Ha a determinánsban van két egyforma sor (oszlop), akkor A = 0 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 10 / 37
Determináns tulajdonságai: A determináns tetsz leges sorának (oszlopának) többszörösét hozzáadva a determináns tetsz leges másik sorához (oszlopához), a determináns értéke nem változik a 11 a 12 a 13 a a 21 a 22 a 23 a 31 a 32 a 33 = 11 + ca 31 a 12 + ca 32 a 13 + ca 33 a 21 a 22 a 23 a 31 a 32 a 33 Ha a determinánsban valamely sor (oszlop) többszöröse egy másik sornak (oszlopnak), akkor A = 0 A B = A B Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 11 / 37
Deníció: Az A négyzetes mátrix inverzének azt az A 1 mátrixot nevezzük, melyre AA 1 = I Amennyiben ilyen A 1 mátrix létezik, akkor az A mátrixot regulárisnak, ellenkez esetben szingulárisnak nevezzük Tétel: Az A négyzetes mátrix akkor és csakis akkor reguláris, ha A 0 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 12 / 37
meghatározása Adjungált mátrix Egy négyzetes mátrix adjungáltjának nevezzük a mátrix el jeles aldeterminánsaiból alkotott mátrix transzponáltját Tehát adj A = A 1,1 A 1,2 A 1,n A 2,1 A 2,2 A 2,n A 3,1 A 3,2 A 3,n T = A 1,1 A 2,1 A n,1 A 1,2 A 2,2 A n,2 A 1,3 A 2,3 A n,3 A n,1 A n,2 A n,n A 1,n A 2,n A n,n Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 13 / 37
meghatározása Könnyen belátható, hogy A adj A = adj A A = Innét A 0 0 0 0 A 0 0 0 0 A 0 0 0 0 A A 1 = 1 A adj A Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 14 / 37
Az a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b n egyenletrendszert m egyenletb l álló n ismeretlenes lineáris egyenletrendszernek nevezzük Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 15 / 37
Az a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a m2 x 2 + + a mn x n = 0 egyenletrendszert homogén lineáris egyenletrendszernek nevezzük, ha a jobboldalon szerepl konstansok közül csak egy is különbözik 0-tól, akkor inhomogén lineáris egyenletrendszerr l beszelünk nevezzük Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 16 / 37
Konkrét megoldás A lineáris egyenletrendszer egy konkrét megoldásán egy olyan x = (x 1, x 2,, x n ) szám n-est értünk, amelyet behelyettesítve az egyenletrendszerbe, minden egyenl ség teljesül A homogén egyenletrendszereknek mindig van legalább egy konkrét megoldása, mégpedig a x = (0, 0,, 0) szám n-es Általános megoldás A lineáris egyenletrendszer általános megoldásán az összes konkrét megoldás megadását értjük (ha van egyáltalán megoldás) Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 17 / 37
Együtthatómátrix A = a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n a m,1 a m,2 a m,n Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 18 / 37
Kib vített mátrix [A, b] = a 1,1 a 1,2 a 1,n b 1 a 2,1 a 2,2 a 2,n b 2 a m,1 a m,2 a m,n b m Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 19 / 37
Egyenletrendszer mátrix szorzásos alakja a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n x 1 x 2 = b 1 b 2 a m,1 a m,2 a m,n x n b m Tömör írásmódban illetve homogén esetben Ax = b Ax = 0 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 20 / 37
Megoldás inverz mátrix segítségével Ekkor az egyenletrendszer ugyanannyi ismeretlent tartalmaz mint ahány egyenletet (n = m), Az együttható mátrix reguláris Ax = b A 1 Ax = A 1 b I x = A 1 b x = A 1 b Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 21 / 37
Cramer-szabály az egyenletrendszer ugyanannyi ismeretlent tartalmaz mint ahány egyenletet (n = m), Az együttható mátrix reguláris Jelöljük B i -vel jelöljük azokat az A-ból képzett mátrixokat, melyek i-edik oszlopa helyén a b vektor áll, azaz a 1,1 a 1,i 1 b 1 a 1,i+1 a 1,n a 2,1 a 2,i 1 b 2 a 2,i+1 a 2,n B i = Ekkor a n,1 a n,i 1 b n a n,i+1 a n,n x i = B i A i = 1, 2,, n Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 22 / 37
Cramer-szabály az egyenletrendszer ugyanannyi ismeretlent tartalmaz mint ahány egyenletet (n = m), Az együttható mátrix reguláris Jelöljük B i -vel jelöljük azokat az A-ból képzett mátrixokat, melyek i-edik oszlopa helyén a b vektor áll, azaz a 1,1 a 1,i 1 b 1 a 1,i+1 a 1,n a 2,1 a 2,i 1 b 2 a 2,i+1 a 2,n B i = Ekkor a n,1 a n,i 1 b n a n,i+1 a n,n x i = B i A i = 1, 2,, n Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 23 / 37
Ekvivalens egyenletrendszerek Két lineáris egyenletrendszert ekvivalensnek mondunk, ha megoldáshalmazaik megegyeznek Az alábbi átalakítások egy lineáris egyenletrendszert vele ekvivalens lineáris egyenletrendszerbe visznek át: egyenlet szorzása nullától különböz konstanssal egy egyenlethez egy másik egyenlet konstans szorosának hozzáadása, egyenletek sorrendjének felcserélése Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 24 / 37
B vített mátrix elemei átalakításai A lineáris egyenletrendszer elemi átalakításainak a b vített mátrixa alábbi átalakításai felelnek meg: mátrix bármely sorának szorzása 0-tól különböz valós számmal, mátrix egyik sorához másik sora tetsz leges többszörösének hozzáadása, mátrix két sorának felcserélése Cél az egyenletrendszert ekvivalens átalakításokkal egyszer bb alakra hozni Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 25 / 37
Lépcs s alak Determináns B vített mátrix elemei átalakításai Egy mátrixot lépcs s alakúnak nevezünk, ha fentr l lefele haladva a sorok els nem-0 elemei egyre kés bb jelennek meg Példa: 3 2 0 7 0 0 2 1 0 0 0 1 0 0 0 0 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 26 / 37
Lépcs s alak Determináns B vített mátrix elemei átalakításai Egy mátrixot lépcs s alakúnak nevezünk, ha fentr l lefele haladva a sorok els nem-0 elemei egyre kés bb jelennek meg Példa: 3 2 0 7 0 0 2 1 0 0 0 1 0 0 0 0 3 2 0 7 0 0 2 1 0 1 0 0 lépcs s nem lépcs s Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 27 / 37
Mátrix rangja Determináns Tétel: Elemi átalakításokkal bármely mátrix lépcs s alakra hozható Deníció: Egy mátrix rangja megegyezik egy vele ekvivalens lépcs s mátrix nem nulla sorainak a számával Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 28 / 37
Gauss elimináció Determináns A egyenletrendszer b vített mátrixát ekvivalens átalakításokkal lépcs s mátrixá alakítjuk Megoldjuk az így kapott lépcs s mátrixhoz tartozó egyenletrendszert Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 29 / 37
Az együttható mátrix rangja kisebb mint a b vített mátrix rangja Ebben az esetben az egyenletrendszernek nincs megoldása Példa: 3 2 0 7 2 0 0 2 1 0 0 0 0 0 5 A mátrix utolsó sorához tartozó egyenlet ekkor 0x 1 + 0x 2 + 0x 3 + 0x 4 = 5 melyet semmilyen szám négyes sem elégit ki Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 30 / 37
Az együttható mátrix rangja megegyezik a b vített mátrix rangjával, és a rang megegyezik az ismeretlenek számával Ebben az esetben az egyenletrendszernek pontosan egy megoldása van Példa: 3 2 0 7 0 1 2 1 0 0 3 2 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 31 / 37
Az együttható mátrix rangja megegyezik a b vített mátrix rangjával, és a rang kisebb az ismeretlenek számánál Ebben az esetben az egyenletrendszernek végtelen sok megoldása van Az ismeretlenek számának és a rangnak a különbsége megadja, hogy hány ismeretlent választhatunk meg szabadon Példa: 3 2 0 7 2 5 0 1 2 1 0 7 0 0 0 2 1 3 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 32 / 37
GaussJordan-elimináció Hasonló a Gauss eliminációhoz, de itt az együttható mátrix f átló fölötti tagjait is kinullázzuk Példa: 1 2 0 7 1 1 2 1 2 0 1 3 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 33 / 37
Homogen linearis egyenletrenszer A homogén egyenletrendszereknek mindig van legalább egy konkrét megoldása, mégpedig a x = (0, 0,, 0) szám n-es (triviális megoldás) Tehát az együttható mátrix rangja ebben az esetben mindig megegyezik a b vített mátrix rangjával Egy homogén egyenletrendszereknek akkor és csakis akkor van pontosan egy megoldása, ha együtthatómátrixának a rangja megegyezik az ismeretlenek számával Egy homogén egyenletrendszereknek akkor és csakis akkor van a triviálistól különböz megoldása is, ha együtthatómátrixának a rangja kisebb az ismeretlenek számánál Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 34 / 37
Sajátvektor és sajátérték Legyen adott egy A négyzetes mátrix Azt mondjuk, hogy a λ szám az A mátrix sajátértéke, ha létezik olyan nem nulla x vektor, melyre Ax = λx Az ilyen x vektorokat az A mátrix λ sajátértékhez tartozó sajátvektorainak nevezzük Példa: ( ) 2 2 Mutassuk meg, hogy a mátrixnak a 1 sajátértéke es 2 3 ( ) 2 a az egyik hozzátartozó sajátvektora 1 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 35 / 37
A sajátérték meghatározása Az egységmátrix felhasználásával Ax = λx Ax = λi x Ax λi x = 0 (A λi ) x = 0 egyenletrendszerhez jutunk Ennek csak akkor lesz a triviálistól különböz megoldása, ha det(a λi ) = 0 (1) Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 36 / 37
A sajátérték meghatározása Ez tehát azt jelenti, hogyλ pontosan akkor sajátérték, ha kielégíti az (1) egyenletet Ezt az egyenletet az A mátrix karakterisztikus egyenletének nevezzük Ha A egy n n-es mátrix, akkor az egyenlet bal oldala a determináns kifejtése után egy n-edfokú polinom, melyet karakterisztikus polinomnak nevezünk Példa: Határozzuk meg a ( ) 2 2 2 3 mátrix sajátértékeit és sajátvektorait! Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 37 / 37