Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.

Hasonló dokumentumok
Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok. Verem

Partíció probléma rekurzíómemorizálással

Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar

Fibonacci számok. Dinamikus programozással

3. Absztrakt adattípusok

A Verem absztrakt adattípus

Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció,

Egyesíthető prioritási sor

Számláló rendezés. Példa

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Egyesíthető prioritási sor

1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás

Mohó algoritmusok. Példa:

Korlátozás és szétválasztás elve. ADAGOLO adattípus

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Programozási módszertan. Mohó algoritmusok

A félév során előkerülő témakörök

Az B sorozatban a pontok helyes preorder sorrendben vannak. A preorder bejárásban p k -t közvetlenül q m követi.

Amortizációs költségelemzés

Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?

Kupac adatszerkezet. 1. ábra.

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat

A kurzus teljesítésének feltételei. Az I404 kódú kurzus teljesítéséhez meg kell oldani egy otthoni feladatot, határidő április 30.

Adatszerkezet - műveletek

Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12

INFORMATIKA javítókulcs 2016

Algoritmusok és adatszerkezetek II.

Dinamikus programozás II.

Adatszerkezetek 7a. Dr. IványiPéter

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Általános algoritmustervezési módszerek

Programozás alapjai II. (7. ea) C++

Algoritmusok helyességének bizonyítása. A Floyd-módszer

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.

Dinamikus programozás vagy Oszd meg, és uralkodj!

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek

Algoritmuselmélet 1. előadás

Algoritmusok és adatszerkezetek gyakorlat 07

Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök

A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai. INFORMATIKA II. (programozás) kategória

Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.

7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.

Rendezések. A rendezési probléma: Bemenet: Kimenet: n számot tartalmazó (a 1,a 2,,a n ) sorozat

10. Gráf absztrakt adattípus, gráfok ábrázolása

Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása

Gráfelméleti feladatok. c f

Tuesday, March 6, 12. Hasító táblázatok

Algoritmuselmélet 12. előadás

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

Neumann János Tehetséggondozó Program Gráfalgoritmusok II.

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).

2018, Diszkrét matematika

A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1

Diszkrét matematika 2. estis képzés

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Algoritmuselmélet 2. előadás

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.

7 7, ,22 13,22 13, ,28

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális

Térinformatikai algoritmusok Elemi algoritmusok

Algoritmusok és adatszerkezetek I. 1. előadás

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Önszervező bináris keresőfák

2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

22. GRÁFOK ÁBRÁZOLÁSA

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában

Térinformatikai algoritmusok Elemi algoritmusok

Analízis I. beugró vizsgakérdések

Elemi adatszerkezetek

Számjegyes vagy radix rendezés

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.

Láncolt listák Témakörök. Lista alapfogalmak

KOVÁCS BÉLA, MATEMATIKA I.

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

FUNKCIONÁLIS PROGRAMOZÁS

Felvételi tematika INFORMATIKA

Diszkrét matematika 2.C szakirány

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

Láncolt Listák. Adat1 Adat2 Adat3 ø. Adat1 Adat2 ø Adat3

Diszkrét matematika 2.C szakirány

Alkalmazott modul: Programozás. Programozási tételek, rendezések. Programozási tételek Algoritmusok és programozási tételek

1 2. gyakorlat Matematikai és nyelvi alapfogalmak. dr. Kallós Gábor

DiMat II Végtelen halmazok

A programozás alapjai 1 Rekurzió

Átírás:

Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös részsorozatának meghatározása. A továbbiakban X i az X sorozat i hosszú prefixét jelöli X i = (x 1,...,x i ) és hasonlóan jelöljük a prefixeket az Y és Z sorozatokra is. Lemma: Legyen X = (x 1,...,x m ) és Y = (y 1,...,y n ) két sorozat és Z = (z 1,...,z k ) ezek LKR-je. Ekkor: - Ha x m = y n, akkor z k = x m = y n és Z k 1 az X m 1 és Y n 1 sorozatok egy LKR-je. - Ha x m y n, akkor Z az X m 1 és Y vagy az X és Y n 1 sorozatok egy LKR-je. Megoldás dinamikus programozással: Részprobléma: X i és Y j LKR-je. Az LKR hossza legyen c[i,j]. Nyilvánvalóan c[0,j]=c[i, 0]= 0. Rekurzív összefüggés: A lemma alapján 0, ha i = 0 vagy j = 0, c[i, j] = c[i 1, j 1] + 1, ha x i = y j, max{c[i 1, j], c[i, j 1]} egyébként, Táblázatkitöltés: c[i,j]-hez használjuk az c[i,j-1] és c[i-1,j] értékeket, ezeknek kell meglenni a c[i,j] érték számításánál. Így a helyes kitöltési sorrend soronként minden sorban a nagyobb j érték felé. A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az optimális döntés c[i,j] számításakor. LKR for i:=0 to m c[i, 0]:=0 for j:=1 to n c[0,j]:= 0 for i=:1 to m {for j:=1 to n {if x[i]=y[j] then {c[i,j]:=c[i-1,j-1]+1 S[i,j]:=2} else if c[i-1,j]>= c[i,j-1] then {c[i,j]:=c[i-1,j] S[i,j]:=1} else {c[i,j]:=c[i,j-1] S[i,j]:= 0}}} Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető. KIIR(i,j) if i=0 or j=0 then return if S[i,j]=2 then {KIIR(i-1,j-1) Print "x[i]"} else if S[i,j]=1 then KIIR(i-1,j) else KIIR(i,j-1) 1

1. táblázat. Az c[i,j] értékek táblázata 1 2 3 4 5 5 6 6 6 1 2 3 4 4 5 5 5 6 1 2 3 4 4 4 5 5 5 1 2 3 3 3 4 4 4 5 1 2 2 3 3 3 4 4 4 1 1 2 2 2 3 3 3 3 1 1 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 Példa Határozzuk meg az (a,b,b,a,b,a,b,a) és (b,a,b,a,a,b,a,a,b) sorozatok leghosszabb közös részsorozatát! Tehát az LKR hossza 6. Az LKR-t megkapjuk, ha felírjuk az S táblázatot, vagy visszafejtéssel, ahol az átlós érték növekszik, ott van közös betű. Az i-edik sor j-edik elemének, az X i-edik és az Y j-edik betűje felel meg. Következésképp egy LKR (b, b, a, a, b, a). Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk. Az s[i] és S értékek egészek. Szeretnénk úgy választani tárgyakat, hogy az összfontosság maximális legyen. Tehát feladatunk, hogy kiválasszuk a tárgyaknak olyan halmazai közül, amelyekre az összsúly nem haladja meg S-t azt, amelyre maximális az összfontosság. Definiáljuk az F(i,W) függvényt, minden i = 1,...,n, W = 0,...,S értékre. Ez a függvény azon hátizsák probléma optimális függvényértékét adja meg, amelyben a tárgyak listája az első i tárgyat tartalmazza, és a hátizsák mérete W. Ekkor a kezdeti értékekre F(1,W) = f [1], ha s 1 W és 0 különben. Másrészt a következő rekurzió teljesül: F(i + 1,W) = max{f(i,w), f [i + 1] + F(i,W s[i + 1])}, ha s[i + 1] W. Továbbá F(i + 1,W) = F(i,W), ha s[i + 1] > W, A rekurzió valóban fennáll. A részprobléma optimális megoldásában vagy szerepel az i + 1-edik tárgy vagy nem, és ezen két eset maximuma adja az optimális célfüggvényértéket. Hatizsak for x:=0 to s[1]-1 F[x,1]:=0 for x:=s[1] to S F[x,1]:=f[1] for i:=2 to n {for x:=0 to S {F[x][i]:= F[x][i-1] if (s[i]<=x and F[x][i]<F[x-s[i]][i-1]+f[i]) then F[x][i]:=F[x-s[i]][i-1]+f[i]}} KIIR while(f[x][i]>0) {while (i>=1 and F[x][i]==F[x][i-1]) {i=i-1} print "i" x:=x-s[i] i:=i-1} 2

Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8. Megoldás: 4,3,1. Az adatkezelés szintjei Probléma szintje. Modell szintje. Absztrakt adattípus szintje. Absztrakt adatszerkezet szintje. Adatszerkezet szintje. Gépi szint. Absztrakt adattípus 2. táblázat. A hátizsák megoldó algoritmus teljes táblázata 0 0 3 5 6 8 9 11 12 0 0 3 5 6 8 9 11 11 0 0 0 5 6 6 6 11 11 0 0 0 0 6 6 6 6 6 Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok Nem ismert az adatokat tároló adatszerkezet. Nem ismertek a műveleteket megvalósító algoritmusok, a műveletek specifikációjukkal definiáltak. Verem Értékhalmaz: E Verem = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: V : Verem, x : E {Igaz} Letesit(V) {V = []} {V = V } Megszuntet(V) {Igaz} {V = V } Uresit(V) {V = []} {V = [a 1,...,a n ]} VeremBe(V,x) {V = [a 1,...,a n,x]} {V = [a 1,...,a n ],n > 0} VeremBol(V,x) {V = [a 1,...,a n 1 ],x = a n } {V = V } NemUres(V) {NemUres = (Pre(V ) [])} {V = [a 1,...,a n ],n > 0} Teteje(V,x) {x = a n,v = Pre(V )} {V = [a 1,...,a n ],n > 0} Torol(V) {V = [a 1,...,a n 1 ]} 3

Megvalósítás: tömb, lánc, kombinált. Sor Értékhalmaz: E Sor = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: S: Sor, x : E {Igaz} Letesit(S) {S = []} {S = S} Megszuntet(S) {Igaz} {S = S} Uresit(S) {S = []} {S = [a 1,...,a n ]} SorBa(S,x) {S = [a 1,...,a n,x]} {S = [a 1,...,a n ],n > 0} SorBol(S,x) {S = [a 2,...,a n ],x = a 1 } {S = [a 1,...,a n ]} Elemszam(S) {Elemszam = n} {S = [a 1,...,a n ],n > 0} Elso(S,x) {x = a 1,S = Pre(S)} {S = [a 1,...,a n ],n > 0} Torol(S) {S = [a 2,...,a n ]} Megvalósítás: tömb, lánc kombinált. Prioritási Sor Értékhalmaz: E, E-n értelmezett a lineáris rendezési reláció PriSor = S E. Műveletek: S : PriSor, x : E. {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {Igaz} {S = S} Uresit(S) {S = /0} {S = S} SorBa(S,x) {S = Pre(S) {x}} {S /0} SorBol(S,x) {x = min(pre(s)),pre(s) = S {x}} {S = {a 1,...,a n }} Elemszam(S) {Elemszam = n} {S /0} Elso(S,x) {x = min(pre(s)),pre(s) = S} {S /0} Torol(S) {S = Pre(S) \ {min(pre(s))}} Prioritási sor megvalósítások: PriSorT: kupac-tömb adatszerkezettel, PriSorR: kupac-tömb adatszerkezettel, a rendezési reláció konstruktor paraméter. Példa Probléma: Halmaz k-adik legkisebb elemének kiválasztása. Bemenet: H = {a 1,...,a n }, különböző egész számok, 1 k n. Kimenet: a i H, amelyre {x : x H,x a i } = k, Feltételezzük, hogy az input egy T tömbben van eltárolva. Ekkor a megoldás. 4

Valaszt Letesit S:Prisor for i:=1 to n Sorba(S,T[i]) for i=1 to k Sorbol(S,x) Return x Halmaz Értékhalmaz: E, Halmaz= H E Műveletek: H : Halmaz, x : E, I : Iterator {Igaz} Letesit(H) {H = /0} {H = H} Megszuntet(H) {Igaz} {H = H} Uresit(H) {H = /0} {H = {a 1,...,a n }} Elemszam(H) {Elemszam = n} {H = H} Eleme(H,x) {Eleme = (x Pre(H))} {H = H} Bovit(H,x) {H = Pre(H) {x}} {H = H} Torol(H,x) {H = Pre(H) \ {x}} {H = H} IterKezd(H, I) {} {I = I} IterAd(I,x) {} {I = I} IterVege(I) {} Megvalósítás: bitvektor, tömb, lánc, hasítótábla. Iterátor használata Pascal megvalósítás: IterKezd(H,I); While Not IterVege(I) Do Begin IterAd(I,x); M(x); End; java megvalósítás: Iterator<E> I=H.iterator(); //IterKezd(H,I) while (I.hasNext()){ //!IterVege(I) x=i.next(); //IterAd(I,x) M(x); } vagy kiterjesztett for-ciklussal: 5

for (E x:h) M(x); Példák további absztrakt adattípusokra Lista Kétirányú Lista Tömb Sorozat Függvény Reláció Absztrakt adatszerkezetek Absztrakt adatszerkezet egy A = (M,R,Adat) rendezett hármas, ahol M az absztrakt memóriahelyek, cellák halmaza. R = {r 1,...,r k } a cellák közötti szerkezeti kapcsolatok. Adat a cellák adattartalmát megadó (parciális) függvény, c M esetén Adat(c) a c cellában lévő adat. f : A B parciális függvény esetén, ha x A elemre f nem értelmezett, akkor az f (x) = jelölést alkalmazzuk, tehát mint ha f : A B { } mindenütt értelmezett (totális) függvény lenne. Lánc A = (M,R,Adat) lánc, ha R = {kovet}, ahol kovet M M parciális függvény, amelyre teljesül: ( fej M)( x M)(!k 0)(x = kovet k ( f e j)) Nyilvánvalóan pontosan egy olyan c M cella van, amelyre kovet(c) =, ezt láncvégnek nevezzük. A lánc hosszán a cellák n számát értjük. Ha n > 0, akkor kovet (n 1) ( f e j) =láncvég. Az A = (M,R,Adat) lánc rendezett lánc a relációra nézve, ha ( x M)(Adat(x) Adat(kovet(x))) Az A = (M,R,Adat) körlánc, ha R = {kovet}, ahol kovet M M (totális) függvény, amelyre teljesül: ( x,y M)( k 0)(y = kovet k (x)) Kétirányú lánc Az A = (M,R,Adat) kétirányú lánc, ha R = {kovet, eloz}, ahol kovet, eloz M M parciális függvények, hogy: (M,{kovet,},Adat) és (M,{eloz},Adat) mindegyike lánc, és ( x M)(x = eloz(kovet(x)) = kovet(eloz(x))) Az A = (M,R,Adat) kétirányú körlánc, ha R = {kovet, eloz}, ahol kovet, eloz M M (teljesen értelmezett) függvények, hogy: (M,{kovet,},Adat) és (M,{eloz},Adat) mindegyike körlánc, és ( x M)(x = eloz(kovet(x)) = kovet(eloz(x))) Fa 6

... 1 2 3 n-1 n... 1 2 3 n-1 n 1. ábra.... 1 2 3 n-1 n... 1 2 3 n-1 n 2. ábra. 7

A = (M,R,Adat) nem-rendezett fa, ha R = {r}, r M M bináris reláció, és van olyan g M, hogy a G = (M,r) irányított gráfban bármely x M-re pontosan egy (g,x) út vezet. g-t a fa gyökerének nevezzük. Vegyük észre, hogy ha minden él irányát megfordítjuk, akkor egy olyan f : M M parciális függvény gráfját kapjuk, amely csak g-re nincs értelmezve, és f körmentes. Tehát minden nem-rendezett fa egyértelműen megadható egy olyan Apa : M M parciális függvénnyel, amelyre teljesül a következő feltétel. ( g M)((Apa(g) = ) ( x M)(!k 0)(Apa k (x) = g)) Rendezett fa Legyen A=(M,R,Adat) olyan absztrakt adatszerkezet, hogy R = { f }, f : M (M { }). Tehát x M, f (x) = (y 1,...,y k ), ahol y i (M { }), i = 1,...,k. Minden i > 0 természetes számra és x M-re legyen f i (x) az f (x) i-edik komponense. Tehát f i (x) az x i-edik fiát adja. Ha f i (x) =, akkor hiányzik az i-edik fiú. Az A adatszerkezetet fának nevezzük, ha van olyan g M, hogy teljesül az alábbi négy feltétel: ( x M)( i)(g f i (x)) a gyökér nem fia senkinek, ( y g M)( x M)( i)( f i (x) = y) minden pont, ami nem gyökér fia valakinek ( x,y M)( i, j)( f i (x) = f j (y)) (x = y i = j)) minden pontnak legfeljebb egy apja van ( x g M)( i 1,...,i k )(x = f ik... f i1 (g)) minden pontba vezet út a gyökérből. Fa megadása elsőfiú-testvér kapcsolattal Legyen A = (M,R,Adat) olyan absztrakt adatszerkezet, hogy R = {e,t}, e,t : M M { }). Legyen f i (x) = t i 1 (e(x)) i > 0. Az A adatszerkezet fa, ha az f i függvények teljesítik a megfelelő feltételeket. Fák algebrai definíciója Legyen E tetszőleges adathalmaz. Az E-feletti fák Fa(E) halmaza az a legszűkebb halmaz, amelyre teljesül az alábbi három feltétel: Fa(E) ( a E)a Fa(E) ( a E)( t 1,...,t k Fa(E))(a(t 1,...,t k ) Fa(E)) Leghosszabb Közös Részsorozat (KIIR is) Hátizsák feladat (KIIR is) Kiskérdések Hátizsák feladat táblázatkitöltés végrehajtása adott inputra Lánc, körlánc, kétirányú lánc, körlánc definíciója fa algebrai definíciója 8