A Verem absztrakt adattípus
|
|
- Árpád Bognár
- 8 évvel ezelőtt
- Látták:
Átírás
1 A Verem absztrakt adattípus Értékhalmaz: E Verem = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: V : Verem, x : E {Igaz} Letesit(V) {V = []} {V = V } Megszuntet(V) {Igaz} {V = V } Uresit(V) {V = []} {V = [a 1,...,a n ]} VeremBe(V,x) {V = [a 1,...,a n,x]} {V = [a 1,...,a n ],n > 0} VeremBol(V,x) {V = [a 1,...,a n 1 ],x = a n } {V = V } NemUres(V) {NemUres = (Pre(V ) [])} {V = [a 1,...,a n ],n > 0} Teteje(V,x) {x = a n,v = Pre(V )} {V = [a 1,...,a n ],n > 0} Torol(V) {V = [a 1,...,a n 1 ]} Megvalósítás: tömb, lánc, kombinált. Megvalósítás tömbbel A tömb az első elemétől kezdve tartalmazza a veremben szereplő értékeket, adott egy teto változó, amely megadja a verem tetején levő tömbelem indexét, továbbá egy meret érték, ami megadja a tömb méretét. A verem műveletek hatékonyan megvalósíthatóak. Hátránya: előre rögzített méretű memóriát kell foglalni. Tegyük fel, hogy a vermet egy T tömbbel valósítjuk meg. Ekkor Verembol(V,x) If teto=0 then {print "Ures verem" Return False} {x:=t[teto] teto:=teto-1 return True} Verembe(V,x) If teto=meret Then {Print "Tele a verem" Return T {teto:=teto+1 T[teto]:=x return T} Ha nem akarjuk korlátozni a méret változóval a tömb méretét, akkor lehet dinamikusan növelni ezt az értéket. 1
2 Verembe(V,x) If teto=meret Then {Letesit(T2:Tomb) for i=1 to meret T2[i]:=T[i] teto:=teto+1 T2[teto]:=x return T2} {teto:=teto+1 T[teto]:=x return T} Megvalósítás lánccal A láncban az elemek egy elem.csat mutatót tartalmaznak a következő elemre és elem.adat tartalmazza a verembe rakott adatot. A láncot a legelső cellára mutató fej értékkel adjuk meg. A lánccal történő megvalósítás esetén nem kell előre lefoglalni az egész veremnek a memóriát. Verembe(V,x) Letesit(E: lancelem) E.adat:=x E.csat:=fej fej:=e Verembol(V,x) If fej=nil Then Print "Ures Verem" {x:=fej.adat fej:=fej.csat} Megvalósítás Kombinált adatszerkezettel A kombinált adatszerkezetben az elemek tárolására adott méretű tömböket használunk, és ezen tömböket egy láncba fűzve tároljuk el. Sor Értékhalmaz: E Sor = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: S: Sor, x : E {Igaz} Letesit(S) {S = []} {S = S} Megszuntet(S) {Igaz} {S = S} Uresit(S) {S = []} {S = [a 1,...,a n } SorBa(S,x) {S = [a 1,...,a n,x]} {S = [a 1,...,a n ],n > 0} SorBol(S,x) {S = [a 2,...,a n ],x = a 1 } {S = [a 1,...,a n ]} Elemszam(S) {Elemszam = n} 2
3 {S = [a 1,...,a n ],n > 0} Elso(S,x) {x = a 1,S = Pre(S)} {S = [a 1,...,a n ],n > 0} Torol(S) {S = [a 2,...,a n ]} Megvalósítás: tömb, lánc kombinált. Megvalósítás cirkuláris tömbbel Az elemeket egy meret méretű tömbben tároljuk, a sor első elemének és utolsó elemének indexét megjegyezve. A létrehozott sor esetén az eleje érték 0, a vége érték 0. Az elemek a két érték között helyezkednek el (a tömb vége a tömb elejénél folytatódik). Elemszam(S) if (elso<=utolso) then return utolso-elso; else return meret-(elso-utolso) SorBa(S,x) if (Elemszam(S)=meret) Then Print "Megtelt" {utolso:=utolso+1 If utolso>meret Then utolso:=utolso-meret T[utolso]:=x} Megvalósítás lánccal A láncban az elemek egy elem.csat mutatót tartalmaznak a következő elemre és elem.adat tartalmazza a verembe rakott adatot. A láncot a legelső cellára mutató fej értékkel és az utolsó cellára mutató vege értékkel adjuk meg. Továbbá számon kell tartani egy változóban az elmszám értéket. A lánccal történő megvalósítás esetén nem kell előre lefoglalni az egész veremnek a memóriát. Sorba(S,x) Letesit(E: lancelem) E.adat:=x E.csat:=Nil vege.csat:=e vege:=e eszam:=eszam+1 Megvalósítás Kombinált adatszerkezettel A kombinált adatszerkezetben az elemek tárolására adott méretű tömböket használunk, és ezen tömböket egy láncba fűzve tároljuk el. Az első tömbhöz tároljuk a sor első elemének indexét, az utolsóhoz a tömb utolsó elemének indexét. Sorozat adattípus Értékhalmaz: E Sor = [a 1,...,a n : a i E,i = 1,...,n,] Műveletek: S: Sor, x : E {Igaz} Letesit(S) {S = []} {S = S} Megszuntet(S) {Igaz} 3
4 {S = S} Uresit(S) {S = []} {S = [a 1,...,a n ]} Elemszam(S) {Elemszam = n} {S = [a 1,...,a n ] 1 i n} Kiolvas(S, i,x) {x = a i S = Pre(S)} {S = [a 1,...,a i,...,a n ] 1 i n} Modosit(S, i,x) {S = [a 1,...,x,...,a n ]} {S = [a 1,...,a i,a i+1,...,a n ] 0 i n} Bovit(S, i,x) {S = [a 1,...,a i,x,a i+1,...,a n ]} {S = [a 1,...,a i 1,a i,a i+1,...,a n ] 1 i n} Torol(S, i) {S = [a 1,...,a i 1,a i+1,...,a n ]} {S = S} IterKezd(S, I) {} {I = I} IterAd(I,x) {} {I = I} IterVege(I) {} Megvalósítás: kiegyensúlyozott bináris keresőfával. Tároljuk az S = {a 1,...,a n } sorozatot egy F bináris fában úgy, hogy F inorder bejárása az S sorozatot adja. Ekkor F egy bináris keresőfa lesz a sorozat indexeire nézve. A fa minden p pontjában tároljuk még extra információként a bal-részfájában levő pontok számánál 1-el nagyobb értéket s(p). Ekkor s(p) a p pontra végrehajtott inorder bejárás során p sorszáma. Ezen s(p) értékek alapján a fa gyökeréből indulva megtalálható minden i-re az i-edik elem. Bővítés esetén ha a keresőút balra halad egy p ponttól, akkor s(p) értékéhez egyet kell adni. Törlés esetén, ha a keresőút balra halad egy p ponttól, akkor s(p) értékéből egyet le kell vonni. Interaktív medián keresése Adott n tárgy, melyeket 1-től n-ig számozunk, ahol n páratlan. Minden tárgy különböző súlyú (természetes számok), de magukat a súlyokat nem ismerjük. Minden y súlyra igaz, hogy 1 y n. Mediánnak nevezzük azt a tárgyat, amelyiknél ugyanannyi könnyebb, mint nehezebb tárgy van. Írjunk programot, amely meghatározza a mediánt! A tárgyak súlyát egy olyan eszközzel hasonlíthatjuk össze, amely három tárgy közül megadja a mediánt. Hagymahámozó algoritmus: Határozzuk meg a legnagyobb és legkisebb elemeket, hagyjuk el őket a maradék halmaz mediánja ugyanaz, mint az eredeti halmazé. Egy elem akkor és csak akkor szélső elem, ha nem mediánja egyetlen hármasnak sem. Így minden lekérdezéssel ki tudunk zárni egy elemet, tehát n 2 kérdéssel meghatározhatjuk a szélső elemeket. Következésképpen a halmaz mediánja (n 2) + (n 4) + (n 6) = O(n 2 ) kérdéssel meghatározható a hagymahámozó algoritmussal. Számjáték: Egy játéktábla pozitív egész számok sorozata, ami 2n számot tartalmaz. Két játékos felváltva lép, egy lépésnem a játékos a számsorozat bal vagy jobb végéről elvesz egy számot. A játék akkor ér véget, ha a számok elfogytak. Az a játékos nyer, akinél az elvett számok összege több. Adjunk egy eljárást, amivel az első játékos legalább döntetlen elér. A második játékos lépéseit egy már adott számítógépes program szolgáltatja. Megoldás Az első játékos kényszerítheti a másodikat, hogy csak a páratlan vagy csak a páros indexű számokat vegye el, így könnyen elérheti, hoyg ne veszítsen. Maxszámjáték A játék csak a céljaiban különbözik az előző játéktól. Most a játékos célja a lehető legnagyobb érték összegyűjtése. Az optimális stratégia dinamikus programozással meghatározható. Legyen minden i j-re OPT (i, j) az a i,...,a j számsorozatból az első játékos által összegyűjthető összeg. Ha i = j, akkor ez az érték 0 mivel az utolsó elemet a második játékos veszi el. 4
5 Ha i + j páratlan, akkor az első játékos jön, és a két szélső elem közül a neki jobbat választja, tehát ekkor OPT (i, j) = max{a i + OPT (i + 1, j),a j + OPT (i, j 1)}. Ha i + j páros, akkor a második játékos jön, ő azt választja, ami az elsőnek rosszabb, azaz ekkor az érték OPT (i, j) = min{opt (i + 1, j),opt (i, j 1)}. Ezen összefüggésekkel dinamikus programozással minden állásra kiszámítható a maximálisan nyerhető összeg és az ehhez szükséges lépés. Adatszerkezet meghatározása Adott egy adatszerkezet, amelyről nem tudjuk, hogy lista vagy nyalóka (egy lista végére illesztve egy körlánc). Van két bélyeg. Az adatszerkezettel a következő lépéseket tehetjük. - egy bélyeget a helyéről felvehetünk -egy bélyeget a helyéről a rákövetkező helyre továbbmozdíthatunk -egy bélyeg helyére mellé a másikat is odatehetjük -a legelső elemre bélyeget tehetünk. Határozzuk meg a méretben lineáris időben, melyik adatszerkezetről van szó! Megoldás A nyalóka adatszerkezetet úgy ismerhetjük fel, ha találunk kört. Kört pedig úgy találhatunk, hogy egy bélyeg helyétől elindulva a másik bélyeggel mindig továbblépve újra megtaláljuk a bélyeget. Két módszer lehetséges: Próbálgatós Minden k-ra megnézzük, hogy van -e a kiindulási ponttól 2 k lépésre levő pontot tartalmazó legfeljebb 2 k hosszú kör. Ezt úgy tehetjük meg, hogy a 2 k lépésnyire levő bélyeg helyéről elindulunk a másik bélyeggel, teszünk 2 k lépést. Ha újra látjuk az első bélyeget van kör, ha nem, akkor áthelyezzük az első bélyeget is a második mellé, és rátérünk a 2 k+1 hosszú kör ellenőrzésére. Ötletes Elinditjuk a két bélyegzőt, az egyiket kétszer olyan gyorsan. (Időegységenként 2-t lép, mig a lassabb csak egyet). Ha nyalóka adatszerkezet van, lineáris időben lekörözi a gyors a lassút, és megtaláljuk, hogy van kör, egyébként pedig nyilvánvalóan lineáris időben eljutunk a lista végére. Tortafelosztás A feladat n felhasználó között felosztani igazságosan az erőforrásokat. A probléma az, hogy minden résztvevőnek saját mérőszáma van. Adott a torta (általában a [0,1] intervallum). A résztvevőket felkérhetjük valamely rész adott arányban történő felosztására két rész összehasonlítására, hogy szerintük melyik a nagyobb. Igazságos felosztás: mindenki úgy gondolja, hogy megkapta a torta 1/n-ed részét (a saját mércéje szerint). Irigységmentes felosztás: mindenki úgy gondolja, hogy senki sem kapott nála többet (a saját mércéje szerint). Mozgókéses eljárás Mozgatunk egy kést, és mindenkinek akkor kell szólni, amikor szerinte elérte a torta 1/n-ed részét. Mindenkit igazmondásra ösztönöz és egy igazságos felosztást eredményez. A probléma, hogy végtelen sok kiértékelést kell a résztvevőknek végrehajtani. Két ember, egyik felez másik választ. Fink eljárása Ha 3 ember van, akkor A felez, B kiválasztja a nagyobbikat. Majd A és B is felharmadolja a saját szeletét. C mindkét részből választhat egyet. 5
6 Általánosabban elsőként az első n-1 résztvevő rekurzívan igazságosan elosztja a tortát. Majd minden résztvevőt megkérünk, hogy vágja n részre a saját tortáját. Az n-edik személy mindenkitől választ egy részt. Banach és Knaster eljárása Az első ember levág egy 1/n nagyságú darabot majd továbbadja 2-nek. 2 vagy továbbadja 3-nak vagy ha nagyobbnak találja, mint 1/n, akkor levág belőle és úgy adja tovább. 3 is igazíthat rajta, majd továbbadja, és így tovább egészen addig, amíg el nem jut az n-edik személyig. Ha n elfogadja elviszi, egyébként annak kell elvinni, aki utoljára belevágott. Utána az n-1 személy újra végrehajtja az eljárást. Mindenkit igazmondásra ösztönöz. Nagyobbat nem hagyhat, mert esetleg elvisznek egy 1/n-nél nagyobb szeletet. Kisebbet sem, mert esetleg neki kell elvinni. Legfeljebb n(n-1)/2 vágás kell. Even és Paz eljárása(4 ember) Kérjük fel ez első 3 embert, hogy felezzék meg a tortát (feltesszük, hogy a torta a 0,1 intervallum). Középső vágó, aki a másik kettő között jelölte be a felét. A negyedik ember kiválasztja a jobbik részt a középső vágó által adott két fél közül, és azt osztja tovább azzal az emberrel, akinek a felezőpontja oda esett. Vizsgaleírás A vizsgán elérhető maximális pontszám: 100. A vizsgán 10 kérdés lesz a honlapon található kérdéssorból. Lesz olyan kérdés, ami algoritmus végrehajtásáról szól, és egy kérdés lesz, amiben bizonyítás van (pl. futási idő vagy helyesség igazolása). 6
Bináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció,
Bináris keresőfák Az F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha F bináris fa, R = {bal, jobb, apa}, bal, jobb, apa : M M, Adat : M Elemtip és Elemtip-on értelmezett egy lineáris
Rakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=-
Kombinatorikus feladatok Ládák: Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje ezeket A, B és C. Minden láda a felső oldalán
Rakov(34125)= Rakov(12543)= Rakov(14532)= Rakov(54321)=-
Kombinatorikus feladatok Ládák: Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje ezeket A, B és C. Minden láda a felső oldalán
Számláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
Megoldás meghatározása Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.
Leghosszabb közös részsorozat Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két sorozat X = (x 1,...,x m ) és Y = (y 1,...,y n ) leghosszabb közös
Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.
Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.
Hátizsák feladat. Példa: A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.
Hátizsák feladat Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke ( f [i]), és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk.
Az absztrakt adattípus egy (E,M) párral adható meg, ahol E az értékhalmaz, M a műveletek halmaza. Fő tulajdonságok. Verem
Előadás részvétel igazolása Az előadáson való részvételt az előadáson kapott kódnak az alábbi oldalra való feltöltésével lehet igazolni. http://www.inf.u-szeged.hu/~tnemeth/alg1ics/ Az adatkezelés szintjei
Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó
Algoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 0.1. Az algoritmikus tudás szintjei Ismeri (a megoldó algoritmust) Érti Le tudja pontosan
1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
3. Absztrakt adattípusok
3. Absztrakt adattípusok Az adatkezelés szintjei: 1. Probléma szintje. 2. Modell szintje. 3. Absztrakt adattípus szintje. 4. Absztrakt adatszerkezet szintje. 5. Adatszerkezet szintje. 6. Gépi szint. Absztrakt
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 5. Vágható-egyesíthető Halmaz adattípus megvalósítása önszervező
Egyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
10. előadás Speciális többágú fák
10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.
Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).
Edényrendezés Tegyük fel, hogy a rendezendő H = {a 1,...,a n } halmaz elemei a [0,1) intervallumba eső valós számok. Vegyünk m db vödröt, V [0],...,V [m 1] és osszuk szét a rendezendő halmaz elemeit a
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)
6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:
Összetett programozási tételek Rendezések Keresések PT egymásra építése. 10. előadás. Programozás-elmélet. Programozás-elmélet 10.
Összetett programozási tételek Sorozathoz sorozatot relő feladatokkal foglalkozunk. A bemenő sorozatot le kell másolni, s közben az elemekre vonatkozó átalakításokat lehet végezni rajta: Input : n N 0,
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Kupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
A programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:
A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.
Programozási segédlet
Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
7 7, ,22 13,22 13, ,28
Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
Algoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Keresés és rendezés. A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Keresés Rendezés Feladat Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán 2016. november 7. Farkas B., Fiala
Információs Technológia
Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió
Felvételi vizsga mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív
Ugrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
5. SOR. Üres: S Sorba: S E S Sorból: S S E Első: S E
5. SOR A sor adatszerkezet is ismerős a mindennapokból, például a várakozási sornak számos előfordulásával van dolgunk, akár emberekről akár tárgyakról (pl. munkadarabokról) legyen szó. A sor adattípus
Számjegyes vagy radix rendezés
Számláló rendezés Amennyiben a rendezendő elemek által felvehető értékek halmazának számossága kicsi, akkor megadható lineáris időigényű algoritmus. A bemenet a rendezendő elemek egy n méretű A tömbben
A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány
2. Milyen értéket határoz meg az alábbi algoritmus, ha A egy vektor?. (2 pont)
A Név: l 2017.04.06 Neptun kód: Gyakorlat vezet : HG BP l 1. Az A vektor tartalmát az alábbi KUPACOL eljárással rendezzük át maximum kupaccá. A={28, 87, 96, 65, 55, 32, 51, 69} Mi lesz az értéke az A vektor
end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..
A Név: l 2014.04.09 Neptun kód: Gyakorlat vezető: HG BP MN l 1. Adott egy (12 nem nulla értékû elemmel rendelkezõ) 6x7 méretû ritka mátrix hiányos 4+2 soros reprezentációja. SOR: 1 1 2 2 2 3 3 4 4 5 6
Algoritmusok és adatszerkezetek I. 1. előadás
Algoritmusok és adatszerkezetek I 1 előadás Típusok osztályozása Összetettség (strukturáltság) szempontjából: elemi (vagy skalár, vagy strukturálatlan) összetett (más szóval strukturált) Strukturálási
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Adatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A
1. numere.txt n (1 n 10000) n növekvő kilenc a) Pascal/C++ Például: NUMERE.TXT
Az informatika érettségi harmadik tételsora tartalmaz egy feladatot, melyet hatékonyan kell megoldani. A program megírása mellett követelmény a megoldásban használt módszer rövid leírása, kitérve a módszer
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
14. Mediánok és rendezett minták
14. Mediánok és rendezett minták Kiválasztási probléma Bemenet: Azonos típusú (különböző) elemek H = {a 1,...,a n } halmaza, amelyeken értelmezett egy lineáris rendezési reláció és egy i (1 i n) index.
Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat
PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07
Algoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
BABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - minta Informatika írásbeli
BABEŞ-BOLYAI TUDOMÁNYEGYETEM MATEMATIKA-INFORMATIKA KAR Felvételi verseny - minta Informatika írásbeli A versenyzők figyelmébe: 1. Minden tömböt 1-től kezdődően indexelünk. 2. A rácstesztekre (A rész)
Egyirányban láncolt lista
Egyirányban láncolt lista A tárhely (listaelem) az adatelem értékén kívül egy mutatót tartalmaz, amely a következő listaelem címét tartalmazza. A láncolt lista első elemének címét egy, a láncszerkezeten
Korlátozás és szétválasztás elve. ADAGOLO adattípus
Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}
Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter
Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot
Rendezettminta-fa [2] [2]
Rendezettminta-fa Minden p ponthoz tároljuk a p gyökerű fa belső pontjainak számát (méretét) Adott elem rangja: az elem sorszáma (sorrendben hányadik az adatszekezetben) Adott rangú elem keresése - T[r]
A programozás alapjai 1 Rekurzió
A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Véletlen sorozatok ellenőrzésének módszerei. dolgozat
Eötvös Loránd Tudományegyetem Informatikai Kar Komputeralgebra Tanszék Véletlen sorozatok ellenőrzésének módszerei dolgozat Témavezető: Dr. Iványi Antal Miklós egyetemi tanár Készítette: Potempski Dániel
Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
Elemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj. Nagy
Algoritmusok és adatszerkezetek gyakorlat 03 Oszd meg és uralkodj Divide & Conquer (,,Oszd meg és uralkodj ) paradigma Divide: Osszuk fel az adott problémát kisebb problémákra. Conquer: Oldjuk meg a kisebb
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Önszervező bináris keresőfák
Önszervező bináris keresőfák Vágható-egyesíthető halmaz adattípus H={2,5,7,11,23,45,75} Vag(H,23) Egyesit(H1,H2) H1= {2,5,7,11} H2= {23,45,75} Vágás A keresési útvonal mentén feldaraboljuk a fát, majd
Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat
PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Adatszerkezet - műveletek
Adatszerkezet - műveletek adatszerkezet létrehozása adat felvétele adat keresése adat módosítása adat törlése elemszám visszaadása minden adat törlése (üresít) adatszerkezet felszámolása (megszüntet) +
Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.
Bevezetés 1. Definíció. Az alsó egészrész függvény minden valós számhoz egy egész számot rendel hozzá, éppen azt, amely a tőle nem nagyobb egészek közül a legnagyobb. Az alsó egészrész függvény jele:,
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
A lista adatszerkezet A lista elemek egymásutániságát jelenti. Fajtái: statikus, dinamikus lista.
Lista adatszerkezet A lista adatszerkezet jellemzői 1 Különböző problémák számítógépes megoldása során gyakran van szükség olyan adatszerkezetre, amely nagyszámú, azonos típusú elem tárolására alkalmas,
Adatszerkezetek 1. Dr. Iványi Péter
Adatszerkezetek 1. Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot kódoltan tároljuk
Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása
Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként
RSA algoritmus. P(M) = M e mod n. S(C) = C d mod n. A helyesség igazoláshoz szükséges számelméleti háttér. a φ(n) = 1 mod n, a (a 1,a 2,...
RSA algoritmus 1. Vegyünk véletlenszerűen két különböző nagy prímszámot, p-t és q-t. 2. Legyen n = pq. 3. Vegyünk egy olyan kis páratlan e számot, amely relatív prím φ(n) = (p 1)(q 1)-hez. 4. Keressünk
A MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Érdekes informatika feladatok
A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket
1. ábra. Számláló rendezés
1:2 2:3 1:3 1,2,3 1:3 1,3,2 3,1,2 2,1,3 2:3 2,3,1 3,2,1 1. ábra. Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással
Adatszerkezetek Hasító táblák. Dr. Iványi Péter
Adatszerkezetek Hasító táblák Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a
7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet
7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát
1. Jelölje meg az összes igaz állítást a következők közül!
1. Jelölje meg az összes igaz állítást a következők közül! a) A while ciklusban a feltétel teljesülése esetén végrehajtódik a ciklusmag. b) A do while ciklusban a ciklusmag után egy kilépési feltétel van.
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Gyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
Mohó algoritmusok. Példa:
Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális
Elmaradó óra A jövő heti, november 0-dikei óra elmarad. Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v)
Algoritmusok helyességének bizonyítása. A Floyd-módszer
Algoritmusok helyességének bizonyítása A Floyd-módszer Algoritmusok végrehajtása Egy A algoritmus esetében a változókat három változótípusról beszélhetünk, melyeket az X, Y és Z vektorokba csoportosítjuk
Algoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 6. Ugrólista (Skiplist) Definíció. Olyan adatszerkezet, amelyre
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Mutatók és címek (ism.) Programozás alapjai C nyelv 8. gyakorlat. Indirekció (ism) Néhány dolog érthetőbb (ism.) Változók a memóriában
Programozás alapjai C nyelv 8. gyakorlat Szeberényi mre BME T Programozás alapjai. (C nyelv, gyakorlat) BME-T Sz.. 2005.11.07. -1- Mutatók és címek (ism.) Minden változó és függvény
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli. A versenyzők figyelmébe:
BABEŞ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR BBTE Matek-Infó verseny 1. tételsor INFORMATIKA írásbeli A versenyzők figyelmébe: 1. A tömböket 1-től kezdődően indexeljük. 2. A rácstesztekre
i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.
1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr
Algoritmusok vektorokkal keresések 1
Algoritmusok vektorokkal keresések 1 function TELJES_KERES1(A, érték) - - teljes keresés while ciklussal 1. i 1 2. while i méret(a) és A[i] érték do 3. i i + 1 4. end while 5. if i > méret(a) then 6. KIVÉTEL