Boros Ildikó 2016.04.21. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i)
Az előző rész tartalmából. Fémfelület korróziója: felületről kiinduló, kémiai vagy fizikai kémiai elváltozás környezeti hatás miatt Az energetikai berendezések korróziója hatásmechanizmus: áramlási, termikus, (elektro)kémiai igénybevétel hatására bekövetkező károsodás környezet: különböző hőmérsékletű, áramlási sebességű víz és a vízben lévő anyagok A korróziós folyamat mechanizmusa szerint: elektrokémiai, kémiai és áramlás által támogatott. Határoló felület szerkezeti anyaga általános korróziótermék a munkaközegben üzem Korrózió lokális lyukadás a berendezésben Munkaközeg és szennyezôdései állás determinisztikus sztochasztikus 2
Az előző rész tartalmából. Primer köri vízüzem célja: magnetit oldhatóságának minimuma A magnetit oldhatóság minimuma 25 oc-on pho>9,0 tartományban van. Aktivitástranszport minimalizálása Elektrokémiai korrózió minimalizálása Primer köri anyagok: Szerkezeti anyagok (ausztenites acél, ZrNb1% pálca burkolat) Hűtőközeg (nagy tisztaságú H2O) Vegyszerek Kondicionáló vegyszerek: KOH (+Li) Hidrazin Egyéb (pl. ODA) C Ni Cr Fe Co 08H18N10T összetétel tömeg%-ban 0,08 9-11 17-19 egyensúlyi - 3
4
Szekunder kör vízüzeme Konstrukció, szerkezeti anyag és vízkémia harmóniája Primer körtől jelentősen eltérő anyaghasználat, hűtőközeg paraméterek (forrás, bórsav hiánya) Jellemző korróziós folyamatok az eróziós korrózió, a nedvesgőz erózió és a feszültségkorrózió Üzemidő-hosszabbítás szempontjából kritikus terület Korábbi enyhén lúgos helyett magas ph-jú vízkémia (eróziós korrózió csökkentésére) GF-ek cseréje gazdaságtalanná tenné az ÜH-t A víz ph o -értéke alapján enyhén lúgos (ph o =7,5-8,5), lúgos (ph o =9,1-9,3), magas ph-jú (ph o =9,6-10) vízkémia különböztethető meg. Meg kell akadályozni a korlát feletti hőátadó cső dugózást, illetve GF lyukadást Szekunderköri vízüzem feladata: GF feszültségkorrózió minimalizálása 5
Szekunder köri szerkezeti anyagok - VVER Ausztenites acél (08H18N10T) Ötvözött / ötvözetlen acél (utóbbi csak a túlhevítők cső- és köpenytéri felületén) Réz kondenzátorcsövek lecserélve (magas ph bevezetésekor) 6
Szekunder köri munkaközeg Magas ph-jú (9,6-9,8) tápvíz Adagolt vegyszerek: hidrazin, ammónia EDTA (etilén-diamin-tetraacetát): Komplexon, mely a diszperz vas korróziótermékeket oldott állapotba viszi, s a gőzfejlesztő vízből a leiszapolással eltávolítható (Margulova). ODA: a vízcseppek méretének csökkentése, s ezzel az eróziós hatás mérséklése (Povarov). Mindkét vegyszer negatív hatása a munkaközeg nagyobb szennyezőanyag koncentrációja volt. 7
Feszültségkorrózió GF tipikus jelensége A feszültségkorróziós repedés kialakulásának négy feltétele van: A szerkezeti anyag feszültségkorróziós hajlama Korrozív környezet A feszültségkorróziós aktivátorok (egyes ionok Cl -, SO 4 2-, OH - stb.) jelenléte a közegben megfelelő koncentrációban. Magas hőmérséklet A kritikusnál nagyobb húzófeszültség. Elegendő inkubációs idő (10-15 év) a korrózió kialakulására. 8
Feszültségkorrózió inkubációs idő: repedések mikroszkópos szintű nukleációja A repedések terjedése gyakran magától is leáll, látszólag a mechanikai feszültségek lokális csillapodása miatt. klorid-ionok hatása: jelentős hatás feszültségkorrózióra a 18-8-as ausztenites acélok esetén Extra szerep : azok a helyek, ahol a klorid-ionok betöményedhetnek pl. rések Lerakódások (vízkő, vas-oxidok) szintén betöményedéshez vezethetnek. Hőmérséklettel a fém feszültségkorróziós hajlama nő, csökken az inkubációs idő, valamint a küszöbfeszültség értéke, repedés terjedési sebessége minimális hőmérséklet (küszöb) -> kloridot és oxigént tartalmazó vizes oldatokban 18/8-as acélokra ez az érték 55-65 o C. Nagy húzófeszültségek mellett, a feszültségkorrózió szobahőmérsékleten is előfordulhat. Húzófeszültség A repedések kialakulásához küszöbfeszültség szükséges ~ 50-80 MPa. A feszültségkorróziós törés olyan folyamat, amely egy képlékeny anyagban lejátszódó ridegtörésnek tekinthető. Máig sem tisztázott kérdés, hogyan lehet megmagyarázni az anyag képlékenysége (szívóssága) és a töret rideg volta közötti ellentmondást. 9
Feszültségkorróziós repedések A repedések jellege Interkrisztallin Transzkrisztallin a repedések morfológiai vizsgálatával állapítható meg. interkrisztallin (intergranuláris) repedés: a repedés a fém szemcséinek határfelülete mentén hatol be az anyagba Ok: rácshibák (gyakoribbak a szemcsehatáron), szennyező anyagok is itt dúsulnak fel transzkrisztallin (transzgranuláris) repedés: szemcsehatároknak nincsen kitüntetett szerepük a korrózió szempontjából, a repedés a kristályokon keresztül terjed tovább. Források: www.corrosion-club.org, www.swri.org 10
Feszültségkorrózió -GF VVER-440 A 08H18N10T anyagminőség 9-11 % Ni-tartalommal érzékeny a transzkrisztallin feszültségkorrózióra. A csövekben ébredő lokális húzófeszültségeket nem ismerjük, lokálisan meghaladhatják a kritikus értéket. A holt áramlási zónákban, résekben a feszültségkorróziós aktivátorok koncentrációja a gőzfejlesztő vízben meghaladta a kiváltó értékeket. Az inkubációs idő (10-15 év) eltelt. PWR-ek: Inconel-600 csöves GF-ket cserélni kell. A 08H18N10T csövek megfelelőek (egyetlenegy VVER-440 GF cseréje sem merült fel, bár több dugózás a 9,0-9,5 % Nitartalmú csöveknél, mint a 11,0-11,5 %-nál). 11
Cső anyagminőségek érzékenysége a feszültségkorrózióra [Riess] 12
Szerkezeti anyagok Anyagminőség VVER PWR Hőátadó csövek 08H18N10T 08H18N12T Inconel-600, -690, Incolloy-800 Csőfal / kollektor Feszültségkorróziós hajlam Jellemző feszültségkorróziós helyek 08H18N10T 10GN2MFA (gyengén ötvözött acél VVER-1000) transzkrisztallin csőmegfogások alatt kollektor-cső megfogás környezete (-1000) gyengén ötvözött acél mindkét oldalról csőanyagminőséggel plattírozva interkrisztallin (Inconel- 600) minimális (Incolloy-800) csőfal-cső közti rés csőmegfogások környezete 13
GF-ekvízüzeme Gf-ek felépítése, szerkezeti anyagok, áramlás: ld. 3. ea! Követelmények: Konstrukció: ne legyenek nagy feszültségű elemek, holt áramlási zónák, rendezetlen áramlások, egyenetlen eloszlások és nagy hőáram-sűrűségű felületek. Szerkezeti anyag: átlagos korróziósebessége minél kisebb legyen, és ne legyen érzékeny a lokális korrózióra. Vízkémia: a szennyezőanyagok koncentrációja minimális legyen, és az adagolt kondicionáló vegyszerek a választott szerkezeti anyagok minimális korrózióját eredményezzék. Konstrukciós hibák (VVER): régi tápvízelosztó Szt20 gyengén ötvözött acélból Nem hatékony leiszapolás diszperz korróziótermékre Rések a megfogó lemezeknél -> feszültségkorrózió! Nem elég hatékony zsalus cseppleválasztó (teljesítménynövelés!) Kollektorfedél csavarok fáradásos korróziója Kollektorfal feszültségkorróziós meghibásodása 16 29,5 PA geometriai rés 1993-ig 33 db VVER-1000 GF-et cseréltek 5 24 3 14
GF-ekvízüzeme Forrás: PA 15
VVER-1200 gőzfejlesztő PGV-1000MKP típus 60 év tervezett élettartam Új leiszapolási technológia Magasabb primerköri paraméterek -> azonos hőátadó felület Belső átmérő 200 mm-rel nőtt Gidropressz kísérleti berendezés hőátadás és üzem közbeni feszültségkorrózió vizsgálatára -> módosított HE cső elrendezés A Novovoronyezs-2 2. blokkjára küldött GF vasúti átrakása A VVER-1000/1200 primer köri elrendezése 16
VVER-1200 gőzfejlesztő Balra a PGV-1000M, jobbra a PGV-1000MKP gőzfejlesztő [58] 17
PWR gőzfejlesztő korróziós problémák 18
PWR gőzfejlesztő korróziós problémák 19
Szekunderkör vízüzeme A feszültségkorrózió mechanizmusában meghatározó a szennyezőanyagok jelenléte vízkémia. A GF csövek feszültségkorrózióját kiváltó szennyezőanyagok: diszperz vas korróziótermékek, feszültségkorróziós aktivátorok (Cl és SO 4 -ionok), oxidáló anyagok (oldott oxigén és réz korróziótermékek). A gőzfejlesztő víz szennyezőanyagai a tápvíz és gőz rendszerből származnak: korróziótermékek a felületekről, feszültségkorróziós aktivátorok a pótvízből, a kondenzátorban a bekerülő hűtővízből, és más nyersvíz betörésekből, oxigén a levegőből és a bekerülő vizekből. Ezért a gőzfejlesztő vízkémiáját a szekunderkör vízüzeme határozza meg. 20
Feszültségkorróziós aktivátorok Póttápvíz: teljesen sótalanított víz (κ<0,1 µs/cm, Cl -, Na + <1-2 µg/kg SiO 2 <5-10 µg/kg), 2004-től nagy tisztaságú pótvíz (κ 0,05 µs/cm, Cl -, Na + 0,1-0,2 µg/kg SiO 2 <3-5 µg/kg); Rézcsöves kondenzátorok nem tömörek (hűtővíz (κ=10 2-10 3 µs/cm) szivárgás m hv /m mk <10-4, VVER-440 75 kg/h, κ max =0,1 µs/cm ); Egyéb források (pl. nyersvíz, fűtési forróvíz, oldalági csapadékvizek). 21
Lokális koncentrálódás A gőzfejlesztők szennyezőanyag koncentrációit üzem közben a leiszapolásban mérik (ez a GF víz áramlási magjának koncentrációit jellemzi) Hide-out jelensége: nem illékony szennyezők töményedése pórusokban Leálláskor elbújt ionok visszaoldódása A GF víz maximális aktivátor koncentrációját a mikrokörnyezetekben alapvetően az oldott anyag megoszlási tényezője határozza meg. A koncentrátumok változatosak, általában lúgos (Na-felesleg), vagy savas (Cl, SO 4 -felesleg). A paksi gőzfejlesztőkben a koncentrátumok egyértelműen savas kémhatásúak voltak. A hide-out (lehűlő GF vízbe) visszaoldódás mérések alkalmasak a lokális ionkoncentrációk meghatározására: A víz hőmérsékletének csökkenésével az ionok oldhatósága megnő. A visszaoldódó ionok: Ca, Mg, Na; Cl, F, SO4, NO3, SiO2; Ha a koncentrációjuk a hideg vízben 1-10 mg/kg vagy nagyobb, akkor a fesz.korr. kockázat az üzemi periódusban fennállt. 22
Az aktivátorok koncentrációjának csökkentése Hűtővíz-tömör kondenzátor (ausztenites acél, titán), Kondenzátum tisztító KI leállítása, mert meghatározza a gőzfejlesztő víz ionkoncentrációját mert a gyanta is tartalmaz ionokat; A kondicionáló vegyszer ionjait is eltávolítja nagy adagolt mennyiség, ezért a tápvíz ph=7,5-8,5, vagy a KI periodikus (hűtővíz betörés alatti) üzemeltetése. Póttápvíz ionkoncentrációjának csökkentése: Nagy tisztaságú pótvíz (Triobed ioncserélő), GF-k tisztított leiszapolása (kt-szűrő és kidobós kevertágy), Oldalági csapadékvizek (kiadott gőz) mennyiségének csökkentése, vagy visszatérő kondenzátum mennyiségének növelése. Oxigén: a vákuumos rendszerben kerül be beoldódás a főkondenzátumba termikus gáztalanítás a kondenzátorban és a GTT-ban, majd kémiai gáztalanítás N 2 H 4 -al. Légtömörebb vákuumos rendszer, nem szükséges a GTT termikus gáztalanító funkciója). Rézmentes szekunderkör. 23
Teljesáramúkondenzátum tisztító (VVER-440) Elektromágneses szűrő EM tekerccsel körülvett tartály Benne ferromágneses golyók Vasoxid részecskék kiszűrésére Regenerálható Két kevertágyas ioncserélő gyanta Vegyi szennyeződések eltávolítására 24
A gőzfejlesztő csövek integritása Primerköri hűtővíz szivárgás < 5 l/h. A csövek falvastagságának (ekvivalens) csökkenése különböző: 50, 60 és 80 % (regisztrált, dugózott kategória). Különböző, eltérő érzékenységű vizsgálati technikák. 2004-ig dugózott csövek száma (100%-os átvizsgálás): Indikáció miatt: 1200 Egyéb ok: 157 Magas ph-jú vízüzem első 4 éve alatt: 16 db új dugózott cső Minimális vízkémiai kockázat: Lerakódásmentes hőátadó csövek Feszültségkorróziós aktivátorok koncentrációja alacsony legyen Hide-out határértékek Oxigén és réz korróziótermékek minimalizálása 25
Az áramlás által támogatott korrózió Szekunder oldalon nagy vízoldali áramlási sebességek (w>w kr ) -> a felületek elektrokémiai korróziója helyett az áramlás által támogatott (eróziós-) korrózió a meghatározó Vízoldali rendezetlen áramlások a felületek lokális eróziója (kavitációs-korróziója). Nedvesgőz áramlása (ω=0,25-12 %, megcsapolási gőzvezetékekben (8-12 %) az érintkező felületek eróziója (vízcsepp-erózió). VVER-1000 GF vas korróziótermék felhalmozódás Következmény: munkaközeg nagy diszperz vas korróziótermék koncentrációja munkaközeg a GF-be szállítja (a KT EMF-jének helye nem hatékony), ahol lerakódik a melegoldali hőátadó csöveken és a geometriai résekben, felhalmozódik a köpeny alján, kialakítja a pangó lokális környezetet, ahol az aktivátorok és az oxidáló anyagok koncentrálódnak. 26
Az áramlás által támogatott korrózió csökkentése ötvözetlen acél berendezések cseréje ausztenites vagy nagy krómtartalmú acél csövesre Az acél-réz kombináció mellett nem lehet elérni mindkét felület minimális korrózióját, ezért a szekunderkört rézmentesíteni kell homogén acél szekunderkör, és az általános eróziós-korrózió mérséklése magas ph-jú tápvízzel. Rendezetlen áramlás megszüntetése: U-csöves nagynyomású előmelegítők. Nagyobb nedvesség-tartalmú gőzvezetékbe szeparátorok beépítése (pl. PA ABB könyökszeparátor). A gőzfejlesztőkbe lépő tápvíz diszperz korróziótermék koncentrációja 5-10 µg/kg Ez a korróziótermék-áram hatékony leiszapolással még eltávolítható. PA vízüzem módosítás után (46GF melegoldal) 27
Gőzturbinák vízüzeme A gőzturbinákban történik a gőz termikus (belső) energiájának átalakítása mechanikai (forgási) energiává. A gőzturbinába lépő gőz nagy nyomása, nagy hőmérséklete a turbinafokozatokban fokozatosan csökken a végnyomásig, -hőmérsékletig, miközben számos elvétel van a tápvíz-előmelegítők (fűtési hőcserélők) fűtésére. A vízüzem feladatai: lapátfelületek (profil) épsége, a lokális korróziós meghibásodások elkerülése. 28
Típusok A belépő gőz nyomása szerint: szuperkritikus (p 1 >p kr =221,2 bar), szubkritikus (p 1 <p kr =221,2 bar). A belépő gőz nedvesség-tartalma szerint: Túlhevített-gőzös (gőz ω=(1-x)=0 a legtöbb fokozatban, az utolsó fokozatokban ω max =0,08-0,1), Telített-gőzös (gőz a belépő ω max =0,005-től fokozatosan nő ω max =0,13-0,15-ig, cseppleválasztás-újrahevítés, csak egy-két fokozatban túlhevített), A gőz végnyomása szerint: kondenzációs, ellennyomású. Szerkezeti anyagok: Lapátok: Ház: ausztenites acél, króm-nikkel acél. ötvözetlen és gyengén ötvözött acél. K-220-44 gőzturbina 29
PA szekunderkör (K-220-44 gőzturbina) kapcsolása 30
Üzemviszonyok (nem (csak) atomerőműben) p= 320(240)-0,04 bar, t= 600(540)-30 o C A jól oldódó sóknak (NaCl, NaOH) szilikát vegyületeknek lehet olyan p és t tartománya, ahol az oldhatósági tényező változása negatív, azaz lerakódhatnak a lapátokon. A turbinalapátok lerakódása, elsózódása csökkenti a fokozat hatásfokát. Ma már teljesen sótalanított póttápvíznél nem jellemző. 31
Finom hálós ernyő a gőzturbinába való belépés előtt: túlhevítő csövekről levált vas korróziótermékek [NALCO Boiler] Lerakódás gőzturbina állólapáton (7,5-szeres nagyítás) [NALCO Boiler] 32
Károsodások Ma a gőzturbinák szerkezeti anyagának károsodását a feszültségkorrózió és a nedvesgőz eróziós hatása okozza. A feszültségkorrózióhoz szükséges lokális vízkémiai környezetet az ún. korai kondenzátum biztosítja. Az első vízcseppekben a nem illékony feszültségkorróziós aktivátorok (Na+,Cl-, SO 2-4 -ionok) igen nagy koncentrációban vannak jelen: c ikk δ ( p) mert beoldódnak az első vízcseppekbe, agresszív lúgos (Na+-ionok) vagy savas (Cl-, SO42--ionok) lokális környezetet létrehozva. = c i ig Erősen korrodált turbina forgólapát nagynyomású kondenzációs gőzturbinában [NALCO Boiler] 33
Nedvesgőzeróziós hatása A nagy sebességgel (100 m/s) áramló gőzben levő vízcseppek okozzák nekiütődve a fémfelületnek. Telített-gőzös (atomerőművi) gőzturbinákban jellemző, de túlhevített-gőzös gőzturbinák utolsó fokozataiban is előfordul. A megcsapolások belső nedvességleválasztása miatt a megcsapolások nedvesség-tartalma nagyobb, mint ami az expanzióból adódik. K-220-44 gőzturbina (PA) jellemző eróziós helyei 34
Vízcsepp kiváltotta erózió az utolsó fokozat lapátjain [NALCO Boiler] 35
Erózió mérséklése Nagyobb nedvességtartalomnál ausztenites acél csővezeték. Cseppleválasztók (pl. könyökszeparátor) beépítése a nagy nedvesség-tartalmú csővezetékbe. Cseppméret csökkentése (ODA) 0,2 mm átmérőjű vízcsepp ütközése acéllemezzel (B-0,4 g/kg ODA) [Povarov] 36
Kondenzátor Feladata: expandált, termikus-mechanikai energiaátalakításra már alkalmatlan gőz kondenzációja, a gőz kondenzációs hőjének elvonása a környezetbe (általában hűtővízzel). A kondenzátorok konstrukciója alapján felületi (csőköteges, hűtővíz-kondenzálódó gőz felületen keresztül érintkezik), keverő (hűtővíz-kondenzálódó gőz közvetlenül érintkezik) Fekvő csőkötegen lecsurgó vízcseppek 37
Kondenzátor Szerkezeti anyagok: nincs mód a nagy tömegáramú, kis felmelegedésű hűtővíz agresszivitásának csökkentésére -> a csövek korrózióálló anyagból készültek: rézötvözetek (CuZn28Sn, Cu(5-10%)Ni), ausztenites acél (folyóvíz), titán (torkolat- és tengervíz). Üzemviszonyok: A kondenzátor felület két szakaszra osztható: Intenzív kondenzációs zóna (gőz kondenzációja) Levegőhűtő zóna (a nem kondenzálódó gázok hatása a hőátadásra már jelentős, gőzlevegő keverék, páragőz elszívás). Különböző csőkiosztások, fejlődésük α gőz növelése érdekében. Hűtővíz a csőtérben felmelegszik, miközben a gőz kondenzálódik a köpenytérben. Károsodási folyamatok: A kondenzátorba lépő gőz mindig nedvesgőz eróziós hatás, különösen a szélső csősorokban (nagyobb falvastagságú csövek). A hűtővíz-oldali károsodások 38
Kondenzátor Vízüzemi problémák: hűtővíz vagy levegő bekerülés -> munkaközeg elszennyeződés Hűtővíz bekerülés Cső lyukadás, vagy cső-csőfal kapcsolat tömörtelensége miatt hűtővíz bekerülés a munkaközegbe (p hv >>p gőz ) m& hv 10 4 Rézcsöves kondenzátoroknál tömörség kritériuma: m& fk rozsdamentes acél, titán: gyakorlatilag tömör kondenzátor hozható létre + köpenytér szekciókra osztása, tömörtelen rész kizárása. Hűtővíz-tömör kondenzátor: Hűtővíz-tömörtelenség esetén a blokk leállítása, a tömörtelen cső dugózása Következmény: nagy tisztaságú munkaközeg, kondenzátum-tisztítás nem szükséges. Levegő bekerülés: a vákuum nyomású részeken l 4 6 10 10 levegő kerül be. Légtömörnek azt a rendszert tekintik, amelyben: m& gk A bekerült levegő (nem kondenzálódó gázok) veszélyeztetik a gőz-hűtővíz hőátvitelt: 1-2 % inertgáz-tartalomnál a kondenzációs α gőz 0. A bekerült levegő (O2) beoldódhat a csapadékba. A kondenzátorból kilépő főcsapadékvíz O2 koncentrációját előírják: ma: max. 15 (5-10) μg/kg. Megoldások: jó áramlású levegőhűtő zóna, jó légelszívás, kondenzátorzsompba beépített termikus gáztalanító. m& 39
Késői gőz A magas ph-jú tápvíz-üzemnél az illékony NH 3 feldúsul a gőzben, és a későn kondenzálódó gőzben a koncentrációja: c nagy, ezzel az utolsó vízcseppekben a ph 11-12 (levegőhűtő zóna). c NH 3 kg = δ NH 3 NH g 3 40
Víztisztítás A munkaközeg szennyezőanyag koncentrációját a gőzkörfolyamatban csökkentik: Hűtővízzel bekerülő ionok mennyiségét a kondenzátum-tisztító (KT) kevertágyas ioncserélőjével (általában a kondenzátor után, t gyanta max =40-50 o C), A légkörből bekerülő gázok mennyiségét termikus gáztalanítással (a kondenzátorzsompban és a gáztalanítós táptartályban), A belső felületekről bekerülő korróziótermékeket szűréssel. 41
Kondenzátum-tisztítás Korábban: kondenzátorok hűtővíztömörsége nem biztosított -> hűtővíz bekerülés okozta többlet ionmennyiséggel tervezve. Meleg ág Hideg ág Póttápvíz Először csak tengervíz hűtésnél (NaCl), később folyóvíz és nedves hűtőtoronynál is. NX15/1 NX01 NX15/2 Hűtővíz-tömör kondenzátor új helyzet: a kevertágyas ioncserélők gyantája szennyezőforrás! EMF A gyanta (szennyező) ion koncentrációja nagyobb, mint a pótvízé -> a gyanta-víz közti egyensúly a póttápvíz nagyobb ionkoncentrációja mellett alakul ki. KI1 KI2 NX02 Kisnyomású elõmelegítõkhöz 42
GTT, korróziótermék-szűrők Gáztalanítós táptartály Termikus gáztalanítás a GTT-ben (lúgos vízkémia!) A termikus gáztalanítás után oxigénmegkötés hidrazinnal. gyakran a termikus gáztalanító elmarad, mert a kondenzátorból kilépő főcsapadékvízben az O 2 tartalom < 10 μg/kg. Korróziótermék-szűrők Az oldott korróziótermékeket a kevertágyas ioncserélő gyantája köti meg. diszperz korróziótermékre elektromágneses szűrők. Hatékony helye a gőzfejlesztő előtt lenne, de biztonság miatt nem így (meghibásodás esetén a kiszűrt korróziótermék egyszerre a GF-be kerülne). Ezért kondenzátor után (PA), vagy GTT után Főkondenzátum belépés Fűtőgőz belépés Sarjugőz kilépés Táptartály gőztér Táptartály víztér Gáztalanító oszlop Perforált tálca 43
EPR vízüzeme Igen magas primer/szekunder köri paraméterek Primer köri vízüzem: Dúsított bórsav (Enriched Boric Acid, 37%) a hosszú kampány és a magas U-dúsítás miatt Veszélyes gázok kezelése: N2 a kapcsolódó rendszerekben H2/O2 rekombinátor Hidrazin alkalmazása Lerakódások ellen Optimális ph (ph300=7,2) Koordinált lítiumos-bóros vízüzem Lítium és bór koncentráció limitálva Cink juttatás primer körbe Limitek: Ca, Mg, Al, Ni, SiO2, szilárd szennyezőkre Új, Zirkaloy-M5 ötvözet pálcaburkolatnak (Zr-Nb 1%...) Szekunder vízüzem Eróziós korrózió és GF lerakódások minimalizálása Szennyezők limitálása lokális korrózió ellen Anyag: Alloy 690TT GF csövek Kondicionálás: hidrazin 44
45