Tartalom. Fémek korróziója

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tartalom. Fémek korróziója"

Átírás

1 Tartalom Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Vízkémia, vízüzem Korróziós folyamatok Atomerőműben felhasznált anyagok (berendezések, hűtőközeg, szennyeződések, vegyszerek) Primer kör vízüzeme Vegyészeti üzemállapotok Szekunder kör vízüzeme 2 Fémek korróziója A fémek korróziója Az energetikai berendezések korróziója (többféle definíció!): a szerkezeti anyag felületének áramlási, termikus, (elektro)kémiai igénybevétel hatására bekövetkező károsodása, amely a különböző hőmérsékletű, áramlási sebességű víz és a vízben lévő anyagok szerkezeti anyaggal való érintkezésének a következménye. A korróziós folyamat mechanizmusa szerint: elektrokémiai, kémiai és áramlás által támogatott

2 Kémiai és elektrokémiai korrózió Kémiai: a fémion és az elektron kilépés térbelileg nem elválasztva, hanem molekuláris határon belül (0,4 nm), elektromos áram keletkezése nélkül megy végbe (t g > o C hőmérsékletű túlhevített gőzzel való érintkezésnél). Elektrokémiai: a fémion és az elektron kilépés térbelileg elválasztva (0,4 nm-nél nagyobb távolságban), elektromos áram keletkezésével megy végbe (a fémfelület vizes oldattal (elektrolittal) való érintkezésénél fordul elő, tehát az energiarendszerek nagy részére ez a jellemző). Elektrokémiai korrózió Elektrokémiai korrózió lezajlása két összefüggő, egyidejűleg lezajló, de bizonyos mértékig önálló részfolyamat eredménye: Az anódról a fémionok oldatba mennek, miközben egyenértékű elektronmennyiség a fémben marad. A katódon a depolarizátorok (H +, OH -, O 2, Cl -, SO 4 2-, Fe-, Cu-, más fémionok, stb) asszimilálják az anódos részfolyamat során felszabadult többletelektronokat. Bármelyik részfolyamat lelassulása az elektrokémiai korrózió lelassulásához vezet. 5 6 A korrózió csoportosítása Határoló felület szerkezeti anyaga általános korróziótermék a munkaközegben üzem Korrózió lokális lyukadás a berendezésben Munkaközeg és szennyezôdései állás A korrózió csoportosítása Általános (egyenletes) korrózió: a felület többé-kevésbé egyenletes elvékonyodását okozza. Általában a korróziósebességgel (w k, mg/m 2 h, μm/év) adják meg. Döntő mértékben meghatározza a korróziótermékek vízbe került mennyiségét (w k F). Előre tervezhető korróziós pótlék. Gyakran telítésbe megy determinisztikus sztochasztikus 7 8 2

3 A korrózió csoportosítása Lokális (helyi) korrózió: a fémfelületnek csak meghatározott részére terjed ki, és a szerkezeti anyag lokális komplex igénybevételének következménye, melynek összetevői: térfogati (mechanikai feszültségek, deformáció), felületi (víz és szennyezőanyagai: áramlás, lerakódás, koncentrálódás a pórusokban), térfogati és felületi (hőátvitel: hőmérséklet, hőáramsűrűség; üzemvitel: teljesítmény, nyomás, hőmérsékletváltozások és sebességük). A korrózió csoportosítása Üzemi és állás alatti korrózió megkülönböztetését az eltérő környezet indokolja. Üzemi környezet a nagy hőmérsékletek ellenére kevésbé agresszív (tisztított, kondicionált víz), lényegesen kisebb korróziósebességek. Állás alatti környezet a közel környezeti hőmérséklet ellenére agresszív, számolni kell a légkör szennyezőanyagaival, üzeminél nagyobb korróziósebességek. Az utóbbi időben felértékelődött az indulás (állásból üzemi állapotba) vízüzeme, hiszen befolyásolja a következő időszak/ok/ komplex igénybevételét 9 10 Felhasznált szerkezeti anyagok Berendezés Szerkezeti anyag Korróziótermék alkotók Kondenzátorcsövek Hűtőtorony hőcserélő elemek Tápvízelőmelegítők, hőcserélők csövei Gőzturbinák Gőzfejlesztőcsövek, hurok vezetékek rézötvözetek ausztenites acél titán aluminium monel ötvözetlen, ötvözött, ausztenites acél króm-nikkel ötvözet ötvözetlen, ötvözött, ausztenites acél ötvözetlen, ötvözött, ausztenites acél króm-nikkel ötvözet Cu (Zn,Ni) Fe (Cr, Ni) Ti Al Ni, Cu Fe, Fe(Cr) Fe(Cr,Ni) Cr,Ni(Fe) Fe, Fe(Cr) Fe(Cr,Ni) Fe, Fe(Cr) Fe(Cr,Ni) Cr,Ni(Fe) Fűtőelem burkolatok zirkónium ötvözet Zr Fém-víz fázisérintkezés (ötvözetlen acél)

4 Az acél védő oxidrétegei A fém elektrokémiai korrózióját alapvetően a védő oxidréteg oldódása határozza meg, ha a víz áramlási sebessége kisebb a kritikusnál: w < wkr = f ( anyag minőség) ötvözetlen acél ([Cr+Mo]<0,25 %): w kr =1,5-1,7 m/s, ötvözött acél: ([Cr+Mo]=1-12 %): w kr =2,0-4 m/s, ausztenites acél: w kr =4-7 m/s, rézötvözetek: w kr 2-2,5 m/s A védő oxidréteg képződés mechanizmusa Oxigénmentes vízben a topotaktikus magnetit a fémfelületen lejátszódó reakcióból képződik: 3Fe + 4H + 2O Fe3O4 + 8H + 8e amelyhez a vízmolekulák a határrétegben rendelkezésre állnak. A vasionok reakciója a határrétegben : Fe OH Fe( OH ) Oxigénmentes vízben Nem áramló víznél a határrétegben megnő a Fe 2+ - ionok koncentrációja, valamint a ph az egyensúly beálltáig, és a víz Fe(OH) 2 -re telítődik. A képződött Fe(OH) 2 a Schikorr-reakció szerint A magnetit képződése 3Fe ( OH ) 2 Fe O + 2H O + H magnetitté alakul. A reakció sebessége o C felett rendkívül gyors

5 Oxigéntartalmú vízben Oxigéntartalmú vízben az O 2 a Fe 2+ -ionok egy részét Fe 3+ - ionokká oxidálja, s az Fe(OH) 2 -nél is rosszabbul oldódó Fe(OH) 3 jelenlétében magnetit képződik: 2 Fe( OH) 3 + Fe( OH) 2 Fe3O4 + 4H 2O A védőréteg-képződés előre haladtával egyre kevesebb Fe(OH) 2 áll rendelkezésre a reakcióhoz, lelassul a transzport a magnetit rétegen keresztül, így változatlan O 2 koncentráció mellett O 2 -felesleg jön létre a vízzel érintkező oxidréteg felületén. Ezért az oxidrétegen keresztül diffundáló Fe 2+ -ionokból magnetit helyett hematit (Fe2O3) képződik 17 A védő oxidréteg lúgos vízkémiánál (oxigénmentes víz) Az ötvözetlen acélon kialakuló védő oxidréteg spinell magnetit: Fe Fe1 O4 Ötvözött acél védő oxidrétegében a Cr (és a Mo?) az acélnál nagyobb mértékben feldúsul: Fe ycry Fe1 O4 Ausztenites acél védő oxidrétegében a Cr és a Ni az acélnál nagyobb mértékben feldúsul vegyes spinell magnetit: Fe Cry Fe1 x Nix O4 y 18 Spinell magnetit szerkezete Az oxidréteg vastagsága Ötvözetlen, gyengén ötvözött acélon a védő (belső) oxidréteg μm vastag, ötvözött acélon kisebb. Ausztenites acélon a védő oxidréteg 0,05-1,0 μm vastag. A további vastagságnövekedés már nem védő hatású, mert döntően a vízből, s nem a felületről építkezik

6 A magnetit oldhatóság minimuma a ph T függvényében A magnetit oldhatósága [Margulova] (1-285 o C, o C) A magnetit oldhatóság minimális tartománya a pht függvényében 0,16 Fe-koncentráció [mikromol/kg] 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 t=295 [oc] t=265 [oc] t=155 [oc] t=50 [oc] 6,5 6,8 7,1 7,4 7,7 8 8,3 8,6 8,9 9,2 9,5 9,8 10,1 10,4 pht A magnetit tényleges oldhatósága A magnetit oldhatóság minimuma 25 o C-on (minta hőmérsékletén) ph o >9,0 tartományban van. Ezen alapszik a lúgos vízkémia. Az ausztenitesacélon kapott oldhatósági számítás eredményei kvalitatív megfontolásokkal átvihetők az ötvözetlen és ötvözött acélokra is. A cirkónium-ötvözetek korróziója A cirkónium ötvözetek metastabil kétfázisú, újrakristályosodott struktúrájú szerkezeti anyag. A cirkónium és ötvözetei o C-on könnyen passziválódnak, így a rozsdamentes acélokéhoz hasonlóan, a felületükön képződő passzív oxidfilm biztosítja jó korrózióállóságukat. 20 o C hőmérsékleten, levegővel telített sótalan vízben, a passzív állapotban lévő Zr-Nb ötvözetek korróziójának sebessége igen kicsi: az anódos fémoldódás áramsűrűsége 10-8 A/cm 2. nagytisztaságú vízben a cirkónium és ötvözetei gyakorlatilag 300 o C-ig korrózióállónak tekinthetők, felületükön jól tapadó cirkónium-dioxid védőréteg képződik

7 Cirkónium-ötvözetek korróziója A cirkónium korróziója vízben: Zr + 2H 2 O ZrO 2 + 2H 2 A ZrO 2 fehér színű, monoklin kristályrácsú vegyület. Max. 4% Zr hatására színe feketévé változik, majd további oxidációval ismét fehérré válik. Nagyobb hőmérsékleteken, a cirkóniumon és ötvözetein fekete színű, cirkónium és cirkónium-dioxid szilárd oldatából álló védőréteg képződik. 300 o C fölött a vízzel, vagy gőzzel érintkező cirkónium ötvözetek felületén egyes esetekben olyan fehér oxidréteg keletkezhet, ami már nem nyújt védelmet a fém további korróziója ellen. (A nióbiummal ötvözött cirkóniumon ez nem mindig következik be, de korrózióállóságuk ezeknek az ötvözeteknek az alkalmazhatóságát is mintegy o C-ban korlátozza.) A fém felületén először fekete színű védő hatású bevonat képződik, ami a további oxidáció hatására megszürkül, majd kifehéredik, miközben fellazul, lepereg, így nem nyújt védelmet a fém korróziójával szemben. ZrO 2 oldhatósága [ mol/kg] vízben különböző hőmérsékleten [Krickij] T-vel az oldhatóság nő felfűtésnél, üzem közben a transzport iránya kedvező, kiválásuk a felületen csak lehűtésnél történhet Oldhatóságuk a minta hőmérsékletén (25 o C) olyan kicsi, hogy koncentrációjukat nem lehet megmérni, ezért csak aktivitás koncentrációjukat mérik Zircalloy-4 (PWR) A Zircalloy-4 ötvözet (Zr 98%, Sn 1,5%, Fe 0,2%, Cr 0,1%) érzékenyebb a noduláris korrózióra, nagyobb a hidrogén tartalma 30 ezer üzemóra után, nagyobb a korróziósebessége a gőzzel szemben a burkolat nagyobb ( o C) hőmérsékletén. A fűtőelem-burkolat felületén kialakuló oxidrétegben, és a hűtővízben keringő oldott ionos korróziótermékekben jelentéktelen a különbség, ezért a primerköri hűtővíz cirkónium korróziótermék transzportja lényegében azonos. ZrNb1 A ZrNb1 ötvözet kedvezőbb tulajdonságokkal rendelkezik, mint a Zircalloy-4 [VNIIAESZ]: nincs noduláris korrózió; a felületen homogén, fekete színű, védő oxidréteg van, melynek vastagsága 3-4 µm-től 7-8 µm-ig változik a fűtőelem magassága mentén, a kiégési szinttől függetlenül; jelentéktelen mennyiségű cirkónium-hidrid keletkezik, melyek mérete nem haladja meg a 100 µm-t; az oldott hidrogén mennyisége - a minta helyétől függetlenül a burkolatban nem haladja meg a mg/kg koncentrációt, és független az üzemanyag kiégési szintjétől 45 MWnap/kg U értékig

8 Áramlás által támogatott korrózió Ha a víz áramlási sebessége nagyobb a kritikus áramlási sebességnél, akkor az elektrokémiai korróziót (oxid oldódását) felerősíti az áramlás nyíró hatása: a védő oxidréteg megléte mellett az anyag fogy, akár mm/év korróziósebességgel. Ötvözetlen / gyengén ötvözött acél esetében számottevő Típusai: általános eróziós-korrózió, Áramlás keltette erózió: lokális kavitációs-erózió, lokális erózió. A magnetit oxidréteg vastagságának időbeli változása különböző anyagátvitelnél:felső: nincs konvektív anyagátvitel és t víz 100 o C; középső: a víz kritikushoz közeli áramlási sebességénél és t víz 210 o C; a víz nagy sebességű turbulens áramlásánál és t víz 210 o C [Stranbert] w=0,5-1 m/s Oxidréteg-víz között diffúzió jellemző w=1,5 m/s Nő a konvektív anyagátvitel szerepe, oxidréteg vastagsága nem nő w=1,7-2 m/s Konvektív anyagátvitel, acél fogy Az acél eróziós-korróziója folyadékfázisú vízben Az acél eróziós-korróziójának sebességére a KWU [Kastner] nagyszámú mérés alapján félempirikus formulát dolgozott ki. Az eróziós-korrózió összetevői: az acél (Cr+Mo)-tartalma, a csőrendszer geometriája, a víz: hőmérséklete, áramlási sebessége, ph-értéke, oxigén-tartalma. W k =f(t, κ, ph, w, O2, CO2, Cl -, SO4 -,.) [r,t] w k =f([cr+mo]) [THERNUCLECHIM]

9 w k =f([cr+mo]) [Kastner] w k =f(k c ) [Keller] w k =f(t)[thernuclechim] ph=9, w k =f(t) [Heitmann] p=40 bar, w=35 m/s, ph=7, O 2 =40 μg/kg, <1 μs/cm w k =f(ph) [Dörr]

10 w k =f(o 2 ) [Dörr] Az áramlás keltette erózió [Kastner] O 2 koncentráció Kavitációs erózió kavitációs erózió egyfázisú vízben lép fel Az áramló vízben képződött buborékok kis felületen, akár több száz bar nyomású, szabálytalanul változó nagy frekvenciájú ütéseket mérnek a falra Az ütések előbb a fém felületén levő védő oxidréteget károsítják, majd magát a fémet Hogyan keletkeznek a gőzbuborékok? A korábbi felfogás szerint a gőzbuborék képződés akkor indul meg az áramló vízben, amikor a helyi nyomás oly mértékben lecsökken, hogy eléri az adott hőmérséklethez tartozó telítési nyomást. Ez a fajta gőzbuborék képződés a telítési hőmérsékletű vagy a telítési hőmérséklethez közeli hőmérsékletű víz rendezetlen áramlásánál fordul elő. A kigőzölgés elkerülésére szolgál az alábbi feltétel biztosítása (p-nyomás az akadály előtt). p ps ( t p víz ) 5 Kavitációs erózió

11 Kavitációs erózió Az újabb vizsgálatok szerint a buborékképződés nem mindig a telítési nyomásnál indul meg, hanem akkor is, amikor a Reynolds-számtól és a víz tulajdonságaitól függően bizonyos léptékhatások jelentkeznek. Példa: a pillangószelep környezetében hirtelenszerűen megváltozik az áramlás, a vízrészecskék egy része robbanásszerűen kigőzölög, és a gőzbuborékok itt megmaradnak. A robbanásszerű kigőzölgés (flashing) hatására gőzbuborékok képződnek és megmaradnak, megnő a víz áramlási sebessége, megváltozik az oxigén és/vagy az illó lúgosító vegyszer eloszlása a vízben. Ha a sebesség lecsökken, a buborékok összeroppannak Kavitációs erózió A kavitációs eróziót vízkémiával nem lehet mérsékelni, csak az áramlási sebességek csökkentése, az áramlási rendezetlenségek mérséklése, ill. ellenállóbb szerkezeti anyagok (magas krómtartalmú ötvözött acélok, ausztenites acélok) alkalmazása vezet eredményre Az ütköző vízcsepp eróziós hatása A nagy sebességgel áramló nedvesgőz vízcseppjeinek felületkoptató hatása, ami a velük érintkezésben levő fém roncsolódásával jár. A vízcseppek korrozív hatásúak is lehetnek (lásd korai kondenzátum). A nedvesgőz eróziójának hatását az eróziónak jobban ellenálló szerkezeti anyagok beépítésével lehet csökkenteni. + vegyszerrel csökkenteni a vízcsepp energiáját (ODA) Ütköző vízcsepp eróziójának mechanizmusa [Kastner]

12 Vízüzem A vízüzem követelményei a berendezések szerkezeti anyagainak általános korróziója minimális legyen felaktiválódás, akadályozza meg a szerkezeti anyagok lokális korrózióját hermetikusság, csökkentse minimálisra a korróziótermékek lerakódását a fűtőelemek burkolatán hermetikusság, tartsa alacsony szinten a korróziótermékek transzportját a hűtővízben és lerakódásukat az aktív zónán kívüli felületeken aktivitás (dózisteljesítmény) szorítsa vissza a víz radiolitikus bomlását; Követelmények miközben biztosítja az üzemanyaggal berakott reaktivitástartalék kompenzálását a bórsav koncentráció csökkentésével, ill. a reaktor szubkritikusságát (az SZBV kazetták mellett) a hűtővíz nagy bórsav koncentrációjával. A feladatok megkövetelik: - egyrészt a konstrukció, a szerkezeti anyagok és a vízkémia harmóniáját, - másrészt a hűtővíz műszakilag elérhető minimális szennyezőanyag (aktivitás) koncentrációját. Vízfelhasználás Atomerőműben a kondenzáció vízigénye m3/h/mw Követelmények vízzel szemben: GF tápvíz: teljesen sótalan közeg (karbonátkeménység!), lebegő szennyezők kiszűrése Primer hőhordozó: majdnem nagy tisztaságú víz (korlát vezetőképességre, Cl, Na, SO3 tartalomra) Paks: Duna-víz az alapanyaga a kondenzátor hűtővíznek, a technológiai hűtővíz rendszernek és a biztonsági hűtővíz rendszernek

13 Primer köri közegek Hőhordozó Üzem közben változó bórsav-koncentrációjú (és változó lúgosító kation koncentrációjú), O-mentes vizes oldat, álláskor bórsavoldat Bórsavoldat Közel állandó koncentrációjú, oxigénnel telített oldat 14-17,5 g/dm3: pihmed, átrakómedence, KZÜHR, hidroakkumulátorok, sprinkler, lok. torony buborékoltató tálcák g/dm3: NZÜHR tartályok Tiszta kondenzátum Bórsav és vegyszermentes, O-nel telített víz Hűtővíz Vegyszermentes, O-nel telített, nagy tisztaságú víz Primerköri vegyszeroldatok H3Bo3, KOH, N2H4, stb. Külső technológiai közeg: pótvíz Primer és szekunder kör feltöltésére, pótlására, vegyszeroldatok készítésére Nagy tisztaságú víz, vezetőképessége közel azonos a tiszta vízével (várt érték: 0,06 µs/cm vs. 0,055 µs/cm) 49 Konstrukció: hőátvitel és hűtővíz áramlás Jellemzők VVER-440 VVER-1000 PWR Lineáris teljesítménysűrűség [W/cm] Üzemanyag kiégési szint [MWnap/kgU] Gőzfejlesztő hőátviteli tényező [kw/m 2 K] Hőátvitel ,7 6,1 6,7-8,5 A PWR teljesítménysűrűsége nagyobb, mint a VVER-eké, ezért érzékenyebb a hűtővíz áramlására. A hűtővíz 160 bar, 330 o C megközelítette a cirkónium-ötvözetek alkalmazhatóságának határát (350 o C felett jelentősen megnő a hidrogénkorróziójuk). 50/104 A hűtővíz áramlása (PA VVER-440) Fővízkör (RT, hurkok, FKSZ-k, FET-k, TK) és mellékvízkör (RVT, pótvízrendszer minden VVER-440 AE-ben eltérő!). VVER-440 adatok: Fővízkör: V= m 3, τ=18 s (aktív zóna 0,7 s), RVT: V=2x9 m 3, τ=26 min (20 t/h), Pótvízrendszer: V=11+19(PG) m 3, τ=6 h (5 t/h), Nagy áramlási sebességek a fővízkörben (2-11 m/s), szűk áramlási keresztmetszetek a RT-ban, kazettákban, érzékenység az eltömődésekre (diszperz korróziótermékek)

14 VVER-440 kazetta (zárt kazettafal) VVER-1000, PWR kazetta (nincs kazettafal) PA primerkör Pótvíz rendszer TK30 TK20 Hidrogénégető TK35B001 TK25B001 TC01D001-2 FKSZ TC21 TC21 TC21 TC20 záróvizek FET TK35W001 TK25W001 N003 N002 N001 N001 TX08B001 TX09D001-3 USZ TK36W001 TB80 TR48(58) TK41D001-3 TK42D001-3 FKSZ záróvizek FET Fővízkör YA00W001 YA32W001 YA12W001 YA42W001 YA22W001 YA52W001 YA62W001 TV20/2 TV20/1 TE02W001 TE03W001 TE01W001 TE04W001 TK52 TK54 TE03N002 TE01N001 TE03N001 TV75 TV55 TV61/1 TV61/3 TK80-82 TK84-86 Részáramú víztisztító 55 Primer kör vízüzeme Bóros szabályozású vízüzem (reaktivitásszabályozásra 0-12 g/dm3 bórsav-koncentráció) Bórsav kellemesen használható atomerőművi környezetben is (vízben oldódik, kémiailag, fizikailag stabil, stb.) ph értékét csökkenti, ennek ellensúlyozására KOH-t (vagy más lúgosító kationt) adagolnak Az össz lúgosító anyag mennyisége úgy van beállítva, hogy ph=7,1-7,3 legyen. Víz radiolízise szabad oxigén keletkezéséhez vezet, ami nagyon káros a szerkezeti anyagokra 2H 2 O radiolízis H 2 + H 2 O 2 2 H 2 O 2 = 2 H 2 O + O

15 Primer kör vízüzeme Oxigén megkötésére ammónia vagy hidrazin adagolás primerkörbe Paks: hidrazin (N2H4) Oxigént megköti: N 2 H 4 + O 2 = N 2 + 2H 2 O Emellett a felesleg ammóniává bomlik, ami radiolízist szenved Ebből H keletkezik, amivel a víz radiolízise korlátozható (így a közvetlen H-adagolás nem szükséges) 3N 2 H 4 = 4NH 3 + N 2 2NH 3 radiolízis 3H 2 + N 2 Pótvízrendszer Pótvízelőkészítő nyersvízellátása: technológiai hűtővízrendszerről Pótvíz készítése: Előlágyítás (meszes karbonátmentesítés, kavicsszűrő) Ioncserés sótalanítás (szervesanyagkötő, kationcserélő, anioncserélő) Kevertágyas utósótalanítás (finomított sótalanvíz) 3 db 1000 m3-es sótalanvíz tartály, 2 db 500 m3-es tisztakondenzátum tartály Üzemmódjai: Normál üzemi állapot Bórkivonási program Ioncsere folyamata pl. disszociált NaCl-ra: R-H + Na + R- Na + H + R-OH + Cl - R-Cl + OH - H + + OH - = H 2 O sz. víztisztító rendszer Feladata: fővízköri hőhordozó részáramú tisztítása Vízkémiai paraméterek biztosítása Szennyezőanyag-mentesség biztosítása Fővízköri forgalomnak csak töredéke (25 m3/h vs m3/h) Két víztisztító ág (1,2,6. és 3,4,5. hurkok) Egy-egy regeneratív hőcserélő, utóhűtő, ioncserélő gyantaoszlop, gyantafogó Ioncserélő: üzemi nyomás (123 bar), max. 60 o C (magasabb hőmérsékleten az anioncserélőgyanta károsodhat) 30 m3/h névleges térfogatáram, 1,2 m3 gyanta/ioncserélő TE01 ág: kevertágyas ioncserélő (K +, NH4 + és BO3 - ) + mechanikus tisztítás feladata az állandó tisztítás TE03 ág: kation és anion cserélő feladata többek közt bórsav kampány végi kivonása lenne (helyette a 2. VT-t használják) 59 További víztisztítók 2. sz. víztisztító: Eredeti funkció: bórsavoldatok fogadása, tárolása, tisztítása Új funkciói: teljesítményüzem végi (<0,5 g/dm3) bórkivonás, részvétel a primerköri hűtővíz K-ion szabályozásában, részvétel a korróziótermék szűrésben (indulás, leállás), 1 db kation- (H+), 1 db (BO3-) és 2 db (OH-) anioncserélő. Üzemi par.: nyomás: 8 bar, 65 m3/h névleges térfogatáram, 2,6 m3 gyanta/ioncserélő. Ultraszűrő (utólagos beépítés, 4VT-vel is üzemelhet): 20 m3/h névleges térfogatáram. 3. VT hulladékvíz-sűrítés, bórsavoldatok tisztítása 4. VT pihmed, ZÜHR tartályok, buborékoltató tálcák vízminősége 5. VT GF leiszapolás 6. VT bórsavoldatok további tisztítása 60 15

16 A hűtővíz áramlása p, bar hurok reaktor zóna Fõvízkör Szerkezeti anyagok a primer körben A hőhordozóval érintkező felületek: 77%-a (13750 m2): 08H18N10T ausztenites acél (gőzfejlesztő csövek, berendezések) 23% (4000 m2): cirkónium ötvözet ZrNb1 fűtőelem-pálcák ZrNb2,5 kazettafal V'reaktor, m 3 /h 08H18N10T összetétel tömeg%-ban C Ni Cr Fe Co 0, egyensúlyi Eltérések VVER / PWR Primerköri részáramú víztisztító: nyomás: üzemi (VVER-440), kisnyomású (16-25 bar); hőmérséklet: <50-55 o C (ioncserélők), üzemi (kerámia (PWR) TiO 2 - töltet (VVER-1000). Pótvíz-gáztalanító (Control volume): nyomás: atmoszférikus (1,2-1,3 bar), vagy bar; működés: folyamatos (fővízköri hűtővíz részáramú gáztalanításával) vagy szakaszos. Vegyszeradagolási helyek. Hatás a primerköri szennyezőanyag transzportra! Gőzfejlesztő csövek Gőzfejlesztő csövek (primerköri F 2/3-a): PWR: nikkelkróm-ötvözet (Inconel-600, -690, Incolloy- 800); oxidréteg: nikkel-ferritek (Ni 3-x Fe x O 4,Co 1-x Ni x Fe 3-x O 4 ); korróziótermékek: Ni, Fe, Cr, (Co). VVER: ausztenites acél (08H18N10T, 08H18N12T (DU)); oxidréteg: vegyes spinell magnetit (Fe 2-x Cr x Fe 1-y Ni y O 4 ), korróziótermékek: Fe, Ni, Cr, (Co). Meghatározó a fővízkör vízkémiájában: a jellemző oldott kt transzportra optimalizálva!

17 Oxidok oldhatósága [Krickij] Minimális korróziótermék transzport Minimális oldhatóság: a GF csövekre és üzemi hőmérsékletre optimalizálva: ph 300 6,9 (vegyes spinell magnetit), A minimum 6,9-nél 7,1 körül üzemelünk, hogy ne a zónában rakódjon ki Kampány végénél eltolás ph 300 7,4 (nikkel-ferrit), DE! Az oldott korróziótermékek kiválása a gőzfejlesztő felületen, s ne a fűtőelemeken történjen kismértékű ph T elmozdulás az optimumtól! A magnetit minimális oldhatósága GF belső és külső oxidréteg Amorphous Fe-hydroxide ( Fe(OH)or/and FeOOH) Spinel-type oxide Cr Ni Fe O x y 3-x-y 4 Cr- and Ni-rich austenitic phase d > 0.5 µ m Bulk austenitic stainless steel

18 GF belső és külső oxidréteg Alapfém: Fe 0,72 Cr 0,18 Ni 0,10. Nem dekontaminált GF csövek (primerköri F 2/3-a) [cseh]: oxidréteg vastagsága: 0,5-2,0 μm, alapfém: belső oxidréteg: Fe 0,5 Cr 0,35 Ni 0,15, külső oxidréteg: Fe 0,83 Cr 0,03 Ni 0,14. Dekontaminált gőzfejlesztő csövek (PA [Varga K.]: Oxidréteg vastagsága: 2-11 μm, belső oxidréteg: Cr 6-9-szeres, Ni 3-4-szeres feldúsulás az alapfémhez képest ( nm), külső oxidréteg: hibrid, viszonylag nagy szórással. Tehát a Cr, Ni (és Co) a belső (főleg fémből építkező) oxidrétegben feldúsul (védő hatás), a külső (hűtővízből építkező) oxidréteg az oldott kt transzport (+beavatkozások) következménye. Szerkezeti anyagok PWR és VVER egyéb szerkezeti elemek: ausztenites acél. PWR sztellit (nagy Co-tartalmú ötvözet), míg a VVERnél kopásálló ausztenitesacél. Következmény: PWR nagyságrenddel nagyobb Coaktivitás (VVER cobalt-free primerkör) Vízkémia, a víz kondicionálása Feladat Az energetikai rendszer adott szerkezeti anyag összetételénél a szerkezeti anyag-víz kölcsönhatás irányítása, a fémfelületek elvárt mértékű korróziójának biztosítása, a víz kondicionálásával történik. A víz ph-értéke alapján lúgos és semleges vízkémia különböztethető meg

19 Lúgos vízkémia A lúgos vízkémia alapja, hogy az energetikában alkalmazott acél és réz védő oxidrétegének minimális oldhatósága, így az acél és réz elektrokémiai korróziójának minimuma lúgos tartományban van. A lúgos vízkémia feltétele az energiarendszerben keringő víz minimális oxigén koncentrációja (gáztalanítás!) a víz minimális (gőzerőművek) vagy nagyobb (kazántelep, távhőrendszer) elektromos vezetőképessége mellett. A víz ph o -értéke alapján enyhén lúgos (ph o =7,5-8,5), lúgos (ph o =9,1-9,3), magas ph-jú (ph o =9,6-10) vízkémia különböztethető meg. Bórsav A nyomottvizes (PWR, VVER) atomerőművekben a hűtővíz bórsav koncentrációja : állás alatt biztosítja a reaktor szubkritikusságát, üzem közben csökkenő koncentrációja az üzemanyaggal berakott reaktivitás-tartalékot kompenzálja a neutronok elnyelésével. VVER-440 az állás alatt nagy a bórsav koncentráció (>14 g/kg), míg az indulás alatt és a kampány elején, rövid idő ( 50 h) alatt közel felére ( 7,65 g/kg) esik, majd a kampány alatt az üzemanyag reaktivitástartalékának megfelelően lineárisan csökken. A hűtővíz bórsav koncentrációjának szabályozása üzem közben (a lineárisan csökkenő tartományban) viszont eltérő a PWR és VVER atomerőművekben: PWR: termikus regenerálású ioncserélő gyantával, VVER: a hűtővíz bórsavmentes vízzel való hígításával és a kampány végén ioncserével Bórsav A bórsav koncentráció szabályozása a VVER reaktorokban a hűtővíz hígításával és ioncserével (2VT OH - ) történik. A b ó rs a v k o n c e n trá c ió vá lto zá s a k a m p á n y ü ze m a la tt 2. b lo k k, 1 5. k a m p á n y ,0 1600,0 A hűtővíz szám ított bórsav töm ege az üzemidő függvényében teljesítményüzem ben 250,000 A hűtővíz hígításához szükséges tiszta kondenzátum szám ított tömege teljesítményüzemben bórsav koncentráció [g/kg] M [kg] 1400,0 1200,0 1000,0 800,0 600,0 400,0 200,0 bórsav Mtk [t] 200, , ,000 50,000 tkondenz 2 1 0, üzem idő [h] 0, üzemidő [h] d á t u m 75/

20 Szennyezőanyag-mentesség: oxigén A gőzfejlesztő csövek feszültségkorróziós repedéseinek keletkezése (lokális korrózió) a Clionok (t>60 o C) és az oxigén (t>120 o C) együttes hatásának tulajdonítható. Forrás: Klorid-ionok: pótvízzel (vegyszerekkel). Oxigén: pótvízzel (termikus és kémiai gáztalanítás) és radiolitikus oxigén (H 2 -adagolás). Korlátozás: várt érték és határérték. Hidrogén 10 %-nál nagyobb reaktorteljesítménynél a víz radioaktív besugárzás hatására kémiailag bomlik A fűtőelem-burkolaton (Zr) a radiolitikus oxigén (O 2, H 2 O 2 ) 120 o C felett lokális korróziót okoz. A hűtővízbe a radiolízis termékek rekombinációjához hidrogén szükséges, amely feleslegével reduktívvá is teszi a hűtővizet. A PWR atomerőművek primerköri hűtővizébe tiszta hidrogén gázt adagolnak az ellenőrző tartály gázpárnájába. A VVER atomerőművek primerköri hűtővizében, a radiolízis visszaszorításához szükséges hidrogén előállítására korábban ammóniát, ma több atomerőműben (Kola, Paks) hidrazint adagolnak a pótvízbe PA VVER-440: N 2 H 4 -NH 3 -H 2 aktív zóna radiolitikus bomlás 2NH 3 3H 2 +N 2 2H 2+O 2 =2H 2O TV20/2 1VTKI ±NH 4 + Fővízkör Részáramú víztisztító fővízkör termikus bomlás 2N 2H 4 2NH 3+N 2 TV61/3 FKSZ záróvíz N 2H 4+O 2=2H 2O+N 2 termikus bomlás 2NH 3 3H 2 +N 2 TV75 hűtővíz elvétel tiszta kondenzátum beadás N 2H 4-adagolás PG H 2O H 2O+NH 3 páragőz Pótvíz rendszer H 2O mentesítés (NH 3) Hidrogénégető 2H 2+O 2=2H 2O Kondicionáló vegyszerek A gőzerőművek munkaközege teljesen sótalanított víz, ezért ph o 7,0. A közeg kondicionálására (a ph-érték beállítására) lúgosító vegyszert kell adagolni. A lúgosító vegyszerek a megoszlási tényezőjük alapján illékony (δ i >1), pl.: NH 3, morfolin, nem illékony (δ i <1), pl. NaOH (LiOH, KOH). A kondicionálás mellett az energiarendszerekbe keringő vízbe egyéb célból is adagol/hat/nak vegyszereket: kémai gáztalanítás (N 2 H 4 ), korróziógátlás (fűtési melegvízbe inhibitor), állás alatti konzerválás (N 2 H 4, ODA)

21 Ammónia Az illékony NH 3 megoszlási tényezője: δ = f ( T[ p ], ph, c ) 3 NH 3 s NH változik a gőzkörfolyamatban. Az NH 3 megoszlási tényezője a hőmérséklet növekedésével csökken: kondenzátorban δ 20, gőzfejlesztőben δ 5-2. Hazánkban elterjedten használják (lúgos vízkémia: adagolás a tápvízbe, vagy főcsapadékvízbe.) Használata VVER-ben üzemviteli problémákat eredményezett (PG a H2-t is kiszűri) Jelentős járulék a hulladékban Hidrazin A hidrazin az energiarendszerekben megköti az oxigént, szabályozza a ph-t, korróziós inhibitor. A gyakorlatban vizes oldata kerül forgalomba, hidrazin-hidrát (N 2 H 4.H 2 O) formában. 15 tömeg %-os oldatát szokás adagolni. Vizes oldata gyenge bázis, disszociál A hidrazin termikusan bomlik: N 2H 4 NH 3 + N 2 A reakció sebessége 200 o C felett válik észrevehetővé, értékét a hőmérséklet és a közeg ph-ja határozza meg A hidrazin reakciója az oxigénnel A hidrazin, mint erős redukálószer az oldott oxigénnel reakcióba lép: N 2H + O 2H O + N ph-n és a hőmérsékleten kívül a reakciósebesség más tényezőktől is függ. Mivel 65 C-nál kisebb hőmérsékleten a reakció igen lassú, a hidrazinhoz katalizátort szokás adagolni. Katalizátorként redoxi folyamatokat gyorsító szerves vegyületeket, pl. hidrokinont alkalmaznak. Hidrazin további hatása: mint redukálószer az acél oxidációt csak a magnetit keletkezéséig engedi lejátszódni Kis mennyiségű oxigén jelenlétében tehát a hidrazin anódos inhibitorként viselkedik, gátolja a vas oldódását, és éppen a gőzkörfolyamat 200 o C-nál alacsonyabb hőmérsékletű, tehát a korróziótermék kibocsátás szempontjából legveszélyesebb pontjain fejti ki kedvező hatását. Nem illékony lúgosító vegyszerek A PWR atomreaktorok primerköri hűtővizébe adagolt lúgosító vegyszer LiOH, míg a VVER reaktoroknál KOH. A kísérleti adatok azt mutatják, hogy a KOH jobb oldhatósággal rendelkezik, és kevésbé agresszív a cirkónium-ötvözetekkel szemben, mint a LiOH. A hűtővíz LiOH koncentrációját a legtöbb PWR atomerőműben 2,2±0,15 mg/kg Li-ion értéken korlátozzák a Zircalloy-4 ötvözettel szembeni korróziója miatt, mert a fűtőelemeken keletkezett lerakódásokban és oxidokban betöményedő lítium növeli a cirkónium oxidációjának sebességét

22 Lúgosító kationok A VVER atomreaktoroknál a lúgosító kationok (K +, Li +, Na + ) moláris koncentrációját 0,35 (az utóbbi időben 0,5) mmol/kg, értéken korlátozzák. A lítium a hűtővízben oldott bórból (B-10 izotóp 19,61 %) keletkezik, a nátrium-ion koncentrációja elhanyagolható (csak a pótvízzel, ill. a vegyszerekkel kerülhet be), így a KOH adagolásával szabályozzák a lúgosító kationok koncentrációját. A hűtővíz lítium koncentrációja a kampány során az idővel változik, és maximális koncentrációját a kampány közepén éri el: orosz reaktorok: 0,2-0,3 mg/kg (0,03-0,04 mmol/kg), DU, LO: 0,6-0,7 mg/kg (0,85-1 mmol/kg) PA: 1-1,2 mg/kg (0,14-0,17 mmol/kg). c Li =f(t) Li koncentráció [mg/kg] 10 7 B + n Li + He A bór-10 izotópból keletkező lítium számított koncentrációja a hűtővízben az üzemidő függvényében 1,4 1,2 1 0,8 0,6 0,4 0, üzem idő [h] 4 Li KOH A K-41 izotóp (a természetben található kálium 6,90 %) felaktiválódhat: K + n K + γ A K-42 izotóp felezési ideje 12,5 h, a γ-sugárzás energiája 1,5 MeV. A K-42 aktivitás a kampány első felében, nagyobb bórsav és kálium-ion koncentrációknál halmozódik fel a hűtővízben, s a kampány második felében a bórsav és kálium-ion koncentrációk csökkenésének mértékében csökken. A viszonylag rövid felezési idő és a kationcserélő gyantán való kötődés miatt a K-42 izotóp radiológiai problémát sem üzem közben, sem állás alatt nem okoz. Szennyezők Szennyezőanyagok teljesen sótalanított pótvíz (κ=0,05-0,08 µs/cm, c Na,Cl =1-2 µg/kg, c Ca,Mg =0,1-0,2 µg/kg, c SiO2 =3-5 µg/kg) kevertágyas ioncserélő. Nagy tisztaságú pótvíz (κ=0,05 µs/cm, c Na,Cl =0,1-0,2 µg/kg, c Ca,Mg =0,01-0,02 µg/kg, c SiO2 <1 µg/kg) háromágyas ioncserélő. A nagy tisztaságú hűtővíz lehetővé tette, hogy a részáramú víztisztító a primerköri vízkémia szabályozását végezze, és a víztisztító funkció csak a beavatkozásokra korlátozódik

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i)

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Boros Ildikó 2016.04.07. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Tartalom Vízkémia, vízüzem Korróziós folyamatok Atomerőműben felhasznált anyagok (berendezések,

Részletesebben

Nyomottvizes atomerımővek primerköri vízüzeme

Nyomottvizes atomerımővek primerköri vízüzeme Nyomottvizes atomerımővek primerköri vízüzeme Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI Tartalom 1. Konstrukció: hıátvitel és hőtıvíz áramlás. 2. Szerkezeti

Részletesebben

A víz kondicionálása. Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI

A víz kondicionálása. Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI A víz kondicionálása Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. 2008. 03. 13. Atomerımővek BME NTI Tartalom 1. Lúgos vízkémia. 2. Semleges vízkémia 3. Kondicionáló vegyszerek. 3.1. Ammónia.

Részletesebben

Atomerımővi szerkezeti anyagok és korróziójuk

Atomerımővi szerkezeti anyagok és korróziójuk Atomerımővi szerkezeti anyagok és korróziójuk Dr. İsz János, BME EGR Tsz. Tajti Tivadar, LG Energia Kft. BME NTI Tartalom 1. A fémek korróziója. 2. Elektrokémiai korrózió. 2.1. Az acél védı oxidrétegei.

Részletesebben

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i)

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Boros Ildikó 2017.03.30. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Tartalom Vízkémia, vízüzem Korróziós folyamatok Atomerőműben felhasznált anyagok (berendezések,

Részletesebben

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i)

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Boros Ildikó 2014.04.24. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Tartalom Vízkémia, vízüzem Korróziós folyamatok Atomerőműben felhasznált anyagok (berendezések,

Részletesebben

Tartalom. Fémek korróziója

Tartalom. Fémek korróziója Tartalom Boros Ildikó 2014.04.24. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Vízkémia, vízüzem Korróziós folyamatok Atomerőműben felhasznált anyagok (berendezések,

Részletesebben

A VVER-1200 gőzfejlesztők és a szekunderkör vízüzeme

A VVER-1200 gőzfejlesztők és a szekunderkör vízüzeme A VVER-1200 gőzfejlesztők és a szekunderkör vízüzeme OAH TSO szeminárium Dr. Ősz János Budapest, 2016. június 7. Vízüzem A konstrukció, szerkezeti anyag és a vízkémia harmonikus egysége a gőzfejlesztők

Részletesebben

VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők)

VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők) VVER-440 (V213) reaktor (főberendezések és legfontosabb üzemi jellemzők) Reaktor és fővízkör A főkeringtető kör névleges adatai Névleges hőteljesítmény A hőhordozó közepes hőmérséklete Megnevezés Névleges

Részletesebben

OAH TSO szeminárium Dr. Ősz János

OAH TSO szeminárium Dr. Ősz János A VVER-1200 (AES-1200) atomerőmű: A primerköri biztonsági és technológiai rendszerek, a víztisztító berendezések vízüzemének, vegyészetének szakmai és biztonsági összehasonlító elemzése, értékelése. A

Részletesebben

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1024/2013 nyilvántartási számú akkreditált státuszhoz Az MVM Paksi Atomerőmű Zrt. Üzemviteli Igazgatóság Vegyészeti Főosztály Vegyészeti

Részletesebben

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i)

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Boros Ildikó 2016.04.21. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Az előző rész tartalmából. Fémfelület korróziója: felületről kiinduló, kémiai vagy fizikai

Részletesebben

1. TÉTEL 2. TÉTEL 3. TÉTEL

1. TÉTEL 2. TÉTEL 3. TÉTEL 1. TÉTEL 1. Ismertese az örvényszivattyúk működési elvét és felépítését (fő szerkezeti elemeit)! 2. Ismertesse a fővízköri rendszer és berendezéseinek feladatát, normál üzemi állapotát és üzemi paramétereit!

Részletesebben

Kontakt korrózió vizsgálata

Kontakt korrózió vizsgálata Kontakt korrózió vizsgálata Haraszti Ferenc 1, Kovács Tünde 1 1 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar, Budapest, Népszínház u. 8, Magyarország Abstract. A korrózió összetett,

Részletesebben

Első magreakciók. Targetmag

Első magreakciók. Targetmag Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.

Részletesebben

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i)

Boros Ildikó Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Boros Ildikó 2012. 04. 19. Az előadás alapja Dr. Ősz János korábbi (Atomerőművek 2010, 2011) hasonló című előadása(i) Az előző részek tartalmából: Vízüzem Konstrukció, szerkezeti anyagok és vízkémia harmóniája

Részletesebben

Kémiai energia - elektromos energia

Kémiai energia - elektromos energia Általános és szervetlen kémia 12. hét Elızı héten elsajátítottuk, hogy a redoxi reakciók lejátszódásának milyen feltételei vannak a galvánelemek hogyan mőködnek Mai témakörök az elektrolízis és alkalmazása

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

a NAT /2008 számú akkreditálási ügyirathoz

a NAT /2008 számú akkreditálási ügyirathoz Nemzeti Akkreditáló Testület RÉSZLETEZÕ OKIRAT a NAT-1-1024/2008 számú akkreditálási ügyirathoz A Paksi Atomerõmû Zrt. Üzemviteli Igazgatóság egyészeti Ellenõrzõ Osztály (7030 Paks, 98803. hrsz.) akkreditált

Részletesebben

Atomerőmű. Radioaktívhulladék-kezelés

Atomerőmű. Radioaktívhulladék-kezelés Atomerőmű. Radioaktívhulladék-kezelés Lajos Máté lajos.mate@osski.hu OSSKI Bővített fokozatú sugárvédelmi tanfolyam 2016. október 13. Országos Közegészségügyi Központ (OKK) Országos Sugárbiológiai és Sugáregészségügyi

Részletesebben

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek A talajszennyezés csökkenése/csökkentése bekövetkezhet Természetes úton Mesterséges úton (kármentesítés,

Részletesebben

Aktuális CFD projektek a BME NTI-ben

Aktuális CFD projektek a BME NTI-ben Aktuális CFD projektek a BME NTI-ben Dr. Aszódi Attila igazgató, egyetemi docens BME Nukleáris Technikai Intézet CFD Workshop, 2005. szeptember 27. CFD Workshop, 2005. szeptember 27. Dr. Aszódi Attila,

Részletesebben

Lég- és iszapleválasztás elmélete és gyakorlati megoldásai. Kötél István Flamco Kft

Lég- és iszapleválasztás elmélete és gyakorlati megoldásai. Kötél István Flamco Kft Lég- és iszapleválasztás elmélete és gyakorlati megoldásai Kötél István Flamco Kft Tartalom 1.Levegő és iszap mint probléma a rendszerben Gázok a rendszerben Következmények 2.Levegő leválasztás Henry törvénye

Részletesebben

Filozófia. Gızfejlesztık vízüzeme. Filozófia. Követelmények

Filozófia. Gızfejlesztık vízüzeme. Filozófia. Követelmények Filozófia Gızfejlesztık vízüzeme Dr. İsz János, BME EGR Tsz. A gızfejlesztık megbízhatóságát a konstrukció, a szerkezeti anyag és a vízkémia harmóniája biztosítja. Adott konstrukció és szerkezeti anyag

Részletesebben

Sav bázis egyensúlyok vizes oldatban

Sav bázis egyensúlyok vizes oldatban Sav bázis egyensúlyok vizes oldatban Disszociációs egyensúlyi állandó HAc H + + Ac - ecetsav disszociációja [H + ] [Ac - ] K sav = [HAc] NH 4 OH NH 4 + + OH - [NH + 4 ] [OH - ] K bázis = [ NH 4 OH] Ammóniumhidroxid

Részletesebben

A VVER-440 gőzfejlesztők hatékonyabb leiszapolása a Paksi Atomerőműben

A VVER-440 gőzfejlesztők hatékonyabb leiszapolása a Paksi Atomerőműben A VVER-440 gőzfejlesztők hatékonyabb leiszapolása a Paksi Atomerőműben Tajti Tivadar, Kaszás Csilla, dr. Ősz János LG Energia Kft. 1119 Budapest, Fehérvári út 89-95. telefon: 482-9040 Az LG Energia Kft

Részletesebben

KÉMIA FELVÉTELI DOLGOZAT

KÉMIA FELVÉTELI DOLGOZAT KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74

Részletesebben

Környezetbarát elektromos energia az atomerőműből. Pécsi Zsolt Paks, november 24.

Környezetbarát elektromos energia az atomerőműből. Pécsi Zsolt Paks, november 24. Környezetbarát elektromos energia az atomerőműből Pécsi Zsolt Paks, 2011. november 24. Jövőképünk, környezetpolitikánk A Paksi Atomerőmű az elkövetkezendő évekre célul tűzte ki, hogy az erőműben a nukleáris

Részletesebben

Számítások ph-val kombinálva

Számítások ph-val kombinálva Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos

Részletesebben

1. A VÍZ SZÉNSAV-TARTALMA. A víz szénsav-tartalma és annak eltávolítása

1. A VÍZ SZÉNSAV-TARTALMA. A víz szénsav-tartalma és annak eltávolítása 1. A VÍZ SZÉNSAV-TARTALMA A víz szénsav-tartalma és annak eltávolítása A természetes vizek mindig tartalmaznak oldott széndioxidot, CO 2 -t. A CO 2 a vizekbe elsősor-ban a levegő CO 2 -tartalmának beoldódásával

Részletesebben

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens. Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

A teljesítménysűrűség térbeli eloszlása

A teljesítménysűrűség térbeli eloszlása A teljesítménysűrűség térbeli eloszlása Primer és szekunder korlátok Primer korlátok Nem vagy nem feltétlenül mérhető mennyiségek Közvetlenül megadják, hogy egy feltétel teljesül-e Szekunder korlátok Mérhető

Részletesebben

PhD beszámoló. 2015/16, 2. félév. Novotny Tamás. Óbudai Egyetem, június 13.

PhD beszámoló. 2015/16, 2. félév. Novotny Tamás. Óbudai Egyetem, június 13. PhD beszámoló 2015/16, 2. félév Novotny Tamás Óbudai Egyetem, 2016. június 13. Tartalom Tézisek Módszer bemutatása Hidrogénezés A hidrogénezett minták gyűrűtörő vizsgálatai Eredmények Konklúzió 2 Tézisek

Részletesebben

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,

Részletesebben

Atomerőművi dekontamináló berendezés gépész. Atomerőművi gépész

Atomerőművi dekontamináló berendezés gépész. Atomerőművi gépész A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Általános Kémia, BMEVESAA101

Általános Kémia, BMEVESAA101 Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:

Részletesebben

Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék

Ipari vizek tisztítási lehetőségei rövid összefoglalás. Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék Ipari vizek tisztítási lehetőségei rövid összefoglalás Székely Edit BME Kémiai és Környezeti Folyamatmérnöki Tanszék Kezelés Fizikai, fizikai-kémiai Biológiai Kémiai Szennyezők típusai Módszerek Előnyök

Részletesebben

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás

Atomreaktorok üzemtana. Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorok üzemtana Az üzemelő és leállított reaktor, mint sugárforrás Atomreaktorban és környezetében keletkező sugárzástípusok és azok forrásai Milyen típusú sugárzások keletkeznek? Melyik ellen milyen

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

Vízminőségi követelmények

Vízminőségi követelmények i követelmények 1. sz. fólia A kazán alapanyagok tulajdonságai 2. sz. fólia Alapanyagok tulajdonságai Elterjedt kazán alapanyagok Öntöttvas Acéllemez Alumínium Vas 3. sz. fólia A korrózió A fémes anyagoknak

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

A LÉGKÖR SZERKEZETE ÉS ÖSSZETÉTELE. Környezetmérnök BSc

A LÉGKÖR SZERKEZETE ÉS ÖSSZETÉTELE. Környezetmérnök BSc A LÉGKÖR SZERKEZETE ÉS ÖSSZETÉTELE Környezetmérnök BSc A LÉGKÖR SZERKEZETE A légkör szerkezete kémiai szempontból Homoszféra, turboszféra -kb. 100 km-ig -turbulens áramlás -azonos összetétel Turbopauza

Részletesebben

ACÉLOK MÉRNÖKI ANYAGOK

ACÉLOK MÉRNÖKI ANYAGOK ACÉLOK MÉRNÖKI ANYAGOK 80%-a (5000 kg/fő/év) kerámia, kő, homok... Ebből csak kb. 7% a iparilag előállított cserép, cement, tégla, porcelán... 14%-a (870 kg/fő/év) a polimerek csoportja, melynek kb. 90%-a

Részletesebben

AES-2006. Balogh Csaba

AES-2006. Balogh Csaba AES-2006 Készítette: Balogh Csaba Mit jelent az AES-2006 rövidítés? Az AES-2006 a rövid neve a modern atomerőműveknek amik orosz tervezésen alapszanak és VVER-1000-es típusú reaktorral vannak felszerelve!

Részletesebben

Oldódás, mint egyensúly

Oldódás, mint egyensúly Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott =

Részletesebben

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Számítások ph-val kombinálva 1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Mekkora az eredeti oldatok anyagmennyiség-koncentrációja?

Részletesebben

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion

Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

távhőszolgáltatási főmérnök

távhőszolgáltatási főmérnök - Előadó: Treuer Sebestyén távhőszolgáltatási főmérnök 2018. május 09. II. Közös képviselői fórum 1 Egyes tatabányai lakóépületeknél már tapasztalható, a fűtési rendszer iszaposodása Mi is a melegvizes,

Részletesebben

Energetikai mérnökasszisztens Mérnökasszisztens

Energetikai mérnökasszisztens Mérnökasszisztens A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Szabadentalpia nyomásfüggése

Szabadentalpia nyomásfüggése Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével

Részletesebben

Kazánok működtetésének szabályozása és felügyelete. Kazánok és Tüzelőberendezések

Kazánok működtetésének szabályozása és felügyelete. Kazánok és Tüzelőberendezések Kazánok működtetésének szabályozása és felügyelete Kazánok és Tüzelőberendezések Tartalom Meleg- és forróvizes kazánok szabályozása és védelme Fűtés és mekegvíz ellátás szabályozása Gőzfeljesztők szabályozási

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Anyagos rész: Lásd: állapotábrás pdf. Ha többet akarsz tudni a metallográfiai vizsgálatok csodáiról, akkor: http://testorg.eu/editor_up/up/egyeb/2012_01/16/132671554730168934/metallografia.pdf

Részletesebben

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása

Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.

Részletesebben

Oldódás, mint egyensúly

Oldódás, mint egyensúly Oldódás, mint egyensúly Szilárd (A) anyag oldódása: K = [A] oldott [A] szilárd állandó K [A] szilárd = [A] oldott S = telített oldat conc. Folyadék oldódása: analóg módon Gázok oldódása: [gáz] oldott K

Részletesebben

a réz(ii)-ion klorokomplexének előállítása...

a réz(ii)-ion klorokomplexének előállítása... Általános és szervetlen kémia Laborelőkészítő előadás IX-X. (2008. október 18.) A réz(i)-oxid és a lecsapott kén előállítása Metallurgia, a fém mangán előállítása Megfordítható redoxreakciók Szervetlen

Részletesebben

Titrimetria - Térfogatos kémiai analízis -

Titrimetria - Térfogatos kémiai analízis - Titrimetria - Térfogatos kémiai analízis - Alapfogalmak Elv (ismert térfogatú anyag oldatához annyi ismert konc. oldatot adnak, amely azzal maradéktalanul reagál) Titrálás végpontja (egyenértékpont) Törzsoldat,

Részletesebben

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Laboratóriumi gyakorlat AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Az alumínium - mivel tipikusan amfoter sajátságú elem - mind savakban, mind pedig lúgokban H 2 fejldés közben oldódik. A fémoldódási

Részletesebben

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0

A paksi atomerőmű. Készítette: Szanyi Zoltán RJQ7J0 A paksi atomerőmű Készítette: Szanyi Zoltán RJQ7J0 Történelmi áttekintés 1896 Rádióaktivitás felfedezése 1932 Neutron felfedezése magátalakulás vizsgálata 1934 Fermi mesterséges transzurán izotópot hozott

Részletesebben

Jellemző redoxi reakciók:

Jellemző redoxi reakciók: Kémia a elektronátmenettel járó reakciók, melynek során egyidejű elektron leadás és felvétel történik. Oxidáció - elektron leadás - oxidációs sám nő Redukció - elektron felvétel - oxidációs sám csökken

Részletesebben

Reaktortechnika. A reaktortechnikában használatos anyagok II. Reaktivitáskompenzáló, illetve reaktivitásszabályozó

Reaktortechnika. A reaktortechnikában használatos anyagok II. Reaktivitáskompenzáló, illetve reaktivitásszabályozó Reaktortechnika A reaktortechnikában használatos anyagok II. Reaktivitáskompenzáló, illetve reaktivitásszabályozó anyagok A reaktivitásszabályozás anyagai Nagy neutronbefogási hatáskeresztmetszet Természetes

Részletesebben

Kétalkotós ötvözetek. Vasalapú ötvözetek. Egyensúlyi átalakulások.

Kétalkotós ötvözetek. Vasalapú ötvözetek. Egyensúlyi átalakulások. Kétalkotós ötvözetek. Vasalapú ötvözetek. Egyensúlyi átalakulások. dr. Fábián Enikő Réka fabianr@eik.bme.hu BMEGEMTAGM3-HŐKEZELÉS 2016/2017 Kétalkotós ötvözetrendszerekkel kapcsolatos alapfogalmak Az alkotók

Részletesebben

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.

4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion. 4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

Vízkezelés és korrózióvédelem az épületgépészetben. Vízellátás, csatornázás, gázellátás II március 12.

Vízkezelés és korrózióvédelem az épületgépészetben. Vízellátás, csatornázás, gázellátás II március 12. Vízkezelés és korrózióvédelem az épületgépészetben Vízellátás, csatornázás, gázellátás II. 2007. március 12. Tartalom A víz tulajdonságai, vízminőség Épületgépészeti berendezések korróziója A berendezéseket

Részletesebben

Általános Kémia GY 3.tantermi gyakorlat

Általános Kémia GY 3.tantermi gyakorlat Általános Kémia GY 3.tantermi gyakorlat ph számítás: Erős savak, erős bázisok Gyenge savak, gyenge bázisok Pufferek, pufferkapacitás Honlap: http://harmatv.web.elte.hu Példatárak: Villányi Attila: Ötösöm

Részletesebben

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek.

Paks déli részén a 6-os számú főút és a Duna között. Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. www.atomeromu.hu Paks déli részén a 6-os számú főút és a Duna között Ennek oka: Az atomerőmű működéséhez nagy mennyiségű víz szükséges, amit a Dunából vesznek. Az urán 235-ös izotópját lassú neutronok

Részletesebben

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez

Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek

Részletesebben

Radioaktív nyomjelzés

Radioaktív nyomjelzés Radioaktív nyomjelzés A radioaktív nyomjelzés alapelve Kémiai indikátorok: ugyanazoknak a követelményeknek kell eleget tenniük, mint az indikátoroknak általában: jelezniük kell valamely elemnek ill. vegyületnek

Részletesebben

A ferrát-technológia klórozással szembeni előnyei a kommunális szennyvizek utókezelésekor

A ferrát-technológia klórozással szembeni előnyei a kommunális szennyvizek utókezelésekor A ferrát-technológia klórozással szembeni előnyei a kommunális szennyvizek utókezelésekor Gombos Erzsébet PhD hallgató ELTE TTK Környezettudományi Kooperációs Kutató Központ Környezettudományi Doktori

Részletesebben

1. feladat Összesen 10 pont. 2. feladat Összesen 10 pont

1. feladat Összesen 10 pont. 2. feladat Összesen 10 pont 1. feladat Összesen 10 pont Töltse ki a táblázatot oxigéntartalmú szerves vegyületek jellemzőivel! Tulajdonság Egy hidroxil csoportot tartalmaz, moláris tömege 46 g/mol. Vizes oldatát ételek savanyítására

Részletesebben

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll.

Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Trícium ( 3 H) A trícium ( 3 H) a hidrogén hármas tömegszámú izotópja, egy protonból és két neutronból áll. Bomláskor lágy - sugárzással stabil héliummá alakul át: 3 1 H 3 He 2 A trícium koncentrációját

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam

Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép

Részletesebben

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont

1. feladat Összesen: 18 pont. 2. feladat Összesen: 9 pont 1. feladat Összesen: 18 pont Különböző anyagok vízzel való kölcsönhatását vizsgáljuk. Töltse ki a táblázatot! második oszlopba írja, hogy oldódik-e vagy nem oldódik vízben az anyag, illetve ha reagál,

Részletesebben

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár ROMAVERSITAS 2017/2018. tanév Kémia Számítási feladatok (oldatok összetétele) 4. alkalom Összeállította: Balázs Katalin kémia vezetőtanár 1 Számítási feladatok OLDATOK ÖSSZETÉTELE Összeállította: Balázs

Részletesebben

Atomreaktorok korróziós transzportfolyamatainak vizsgálata a primerköri hőhordozóból vett minták elemzésével

Atomreaktorok korróziós transzportfolyamatainak vizsgálata a primerköri hőhordozóból vett minták elemzésével Eötvös Loránd Tudomány Egyetem Természettudományi kar Vegyész MSc RADANAL Analitikai, Izotóptechnikai Kft. Radiokémiai Laboratórium Atomreaktorok korróziós transzportfolyamatainak vizsgálata a primerköri

Részletesebben

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani

Részletesebben

Az atommagtól a konnektorig

Az atommagtól a konnektorig Az atommagtól a konnektorig (Az atomenergetika alapjai) Dr. Aszódi Attila, Boros Ildikó BME Nukleáris Technikai Intézet Pázmándi Tamás KFKI Atomenergia Kutatóintézet Szervező: 1 Az atom felépítése kb.

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE

MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ KINYERÉSÉRE MEMBRÁNKONTAKTOR ALKALMAZÁSA AMMÓNIA IPARI SZENNYVÍZBŐL VALÓ MASZESZ Ipari Szennyvíztisztítás Szakmai Nap 2017. November 30 Lakner Gábor Okleveles Környezetmérnök Témavezető: Bélafiné Dr. Bakó Katalin

Részletesebben

Ni 2+ Reakciósebesség mol. A mérés sorszáma

Ni 2+ Reakciósebesség mol. A mérés sorszáma 1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol

Részletesebben

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL

A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL A VÍZ OLDOTT SZENNYEZŐANYAG-TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL ELTE Szerves Kémiai Tanszék A VÍZ OLDOTT SZENNYEZŐANYAG -TARTALMÁNAK ELTÁVOLÍTÁSA IONCSERÉVEL Bevezetés A természetes vizeket (felszíni

Részletesebben

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna

Jegyzőkönyv. Konduktometria. Ungvárainé Dr. Nagy Zsuzsanna Jegyzőkönyv CS_DU_e 2014.11.27. Konduktometria Ungvárainé Dr. Nagy Zsuzsanna Margócsy Ádám Mihálka Éva Zsuzsanna Róth Csaba Varga Bence I. A mérés elve A konduktometria az oldatok elektromos vezetésének

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny második forduló KÉMIA II. KATEGÓRIA Javítási-értékelési útmutató 1. kötésszög nő csökken ammóniamolekula protonálódása

Részletesebben

Radioizotópok az üzemanyagban

Radioizotópok az üzemanyagban Tartalomjegyzék Radioizotópok az üzemanyagban 1. Radioizotópok friss üzemanyagban 2. Radioizotópok besugárzott üzemanyagban 2.1. Hasadási termékek 2.2. Transzurán elemek 3. Az üzemanyag szerkezetének alakulása

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

Általános Kémia GY, 2. tantermi gyakorlat

Általános Kémia GY, 2. tantermi gyakorlat Általános Kémia GY, 2. tantermi gyakorlat Sztöchiometriai számítások -titrálás: ld. : a 2. laborgyakorlat leírásánál Gáztörvények A kémhatás fogalma -ld.: a 2. laborgyakorlat leírásánál Honlap: http://harmatv.web.elte.hu

Részletesebben

Kerámia, üveg és fém-kerámia implantátumok

Kerámia, üveg és fém-kerámia implantátumok Kerámia, üveg és fém-kerámia implantátumok Bagi István BME MTAT Bevezetés Kerámiák csoportosítása teljesen tömör bioinert porózus bioinert teljesen tömör bioaktív oldódó Definíciók Bioinert a szomszédos

Részletesebben

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k

Részletesebben

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1 Sav-bázis egyensúlyok 8-1 A közös ion effektus 8-1 A közös ion effektus 8-2 ek 8-3 Indikátorok 8- Semlegesítési reakció, titrálási görbe 8-5 Poliprotikus savak oldatai 8-6 Sav-bázis egyensúlyi számítások,

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz 9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal

Részletesebben

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)

KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont) KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO

Részletesebben

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL

NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL NUKLEÁRIS LÉTESÍTMÉNYEK LÉGNEMŰ 14 C KIBOCSÁTÁSÁNAK MÉRÉSE EGYSZERŰSÍTETT LSC MÓDSZERREL Bihari Árpád Molnár Mihály Janovics Róbert Mogyorósi Magdolna 14 C képződése és jelentősége Neutron indukált magreakció

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben