A HOMOKOK SZEMELOSZLÁSA ÉS MÁS TALAJFIZIKAI JELLEMZŐI KÖZÖTTI KAPCSOLAT

Hasonló dokumentumok
RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

A talajok összenyomódásának vizsgálata

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

Vizsgálati eredmények értelmezése

TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Talajmechanika. Aradi László

A talajok nyírószilárdsága

Talajmechanika II. ZH (1)

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ

ÖDOMÉTERES VIZSGÁLAT LÉPCSŐZETES TERHELÉSSEL MSZE CEN ISO/TS BEÁLLÍTÁS ADAT. Zavartalan 4F/6,0 m Mintadarab mélysége (m)

LABORATÓRIUMI SOROZATMÉRÉSEK HATÁSA TALAJOK ÁLLÉKONYSÁGI PARAMÉTEREIRE EFFECT OF LABORATORY MEASUREMENTS TO THE GEOTECHNICAL PARAMETERS OF SOILS

Talajmechanika, földművek (BMEEOGT-L43) levelező kiegészítő képzés

Alagútfalazat véges elemes vizsgálata

RÉSZLETEZŐ OKIRAT (1) a NAH /2018 nyilvántartási számú akkreditált státuszhoz

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

Folyadékszcintillációs spektroszkópia jegyz könyv

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Síklapokból álló üvegoszlopok laboratóriumi. vizsgálata. Jakab András, doktorandusz. BME, Építőanyagok és Magasépítés Tanszék

Rugalmas állandók mérése

A talajok általános tulajdonságai, osztályozásuk

KOMPOZITLEMEZ ORTOTRÓP

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

A II. kategória Fizika OKTV mérési feladatainak megoldása

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

XVII. econ Konferencia és ANSYS Felhasználói Találkozó

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Hangfrekvenciás mechanikai rezgések vizsgálata

Kiválósági ösztöndíjjal támogatott kutatások az Építőmérnöki Karon c. előadóülés

GEOTECHNIKAI VIZSGÁLATOK

TALAJAZONOSÍTÁS Kötött talajok

(Independence, dependence, random variables)

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

CPT PÓRUSVÍZNYOMÁS DISSZIPÁCIÓS VIZSGÁLATOK MÉLYSÉGI SZIKES KÖRNYEZETBEN. Kulcsszavak disszipációs kísérlet, CPTu, Szeged, szikes talaj, puha talaj

Melléklet. 4. Telep fluidumok viselkedésének alapjai Olajtelepek

Geotechika 2005 konferencia, Ráckeve A dinamikus tömörségmérés aktuális kérdései. Subert István AndreaS Kft.

NYÍRÓSZILÁRDSÁG MEGHATÁROZÁSA KÖZVETLEN NYÍRÁSSAL (kis dobozos nyírókészülékben) Közvetlen nyíróvizsgálat MSZE CEN ISO/TS BEÁLLÍTÁSI ADATOK

A talajok alapvető jellemzői

Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre

a NAT /2006 számú akkreditált státuszhoz

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

1. Feladat. a) Mekkora radiális, tangenciális és axiális feszültségek ébrednek a csőfalban, ha a csővég zárt?

7.1. Al2O3 95%+MLG 5% ; 3h; 4000rpm; Etanol; ZrO2 G1 (1312 keverék)

Talajok osztályozása az új szabványok szerint

Nemzeti Akkreditáló Testület. SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAT /2012 nyilvántartási számú akkreditált státuszhoz

Mechanikai vizsgáltok

Szilárd testek rugalmassága

Rugalmas állandók mérése

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Árvízvédelmi töltésből kimosott talaj szemeloszlási entrópia vizsgálata

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

Konzulensek: Czeglédi Ádám Dr. Bojtár Imre

SZŰKÍTETT RÉSZLETEZŐ OKIRAT (1) a NAH /2015 nyilvántartási számú 1 akkreditált státuszhoz

Nemzeti Akkreditáló Hatóság. RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Modern fizika laboratórium

Megjegyzések (észrevételek) a szabad energia és a szabad entalpia fogalmához

Szádfal szerkezet ellenőrzés Adatbev.

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2013 nyilvántartási számú akkreditált státuszhoz

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

NSZ/NT betonok alkalmazása az M7 ap. S65 jelű aluljáró felszerkezetének építésénél

Követelmény a 7. évfolyamon félévkor matematikából

Tárgyszavak: kapilláris, telítéses porometria; pórustérfogat-mérés; szűrés; átáramlásmérés.

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

A.2. Acélszerkezetek határállapotai

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

Vasalttalaj hídfők. Tóth Gergő. Gradex Mérnöki és Szolgáltató Kft Budapest, Bécsi út 120. Telefon: +36-1/

A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása

MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAH /2015 nyilvántartási számú (1) akkreditált státuszhoz

KOVÁCS BÉLA, MATEMATIKA I.

Microsoft Excel Gyakoriság

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2014 nyilvántartási számú akkreditált státuszhoz

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Nem-lineáris programozási feladatok

Jellemző szelvények alagút

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT /2015 nyilvántartási számú akkreditált státuszhoz

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Mérési adatok illesztése, korreláció, regresszió

RÉSZLETEZŐ OKIRAT a NAH /2017 nyilvántartási számú akkreditált státuszhoz

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

MUNKAGÖDÖR TERVEZÉSE

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.

Descartes-féle, derékszögű koordináta-rendszer

CSAPADÉK ÉS TALAJVÍZSZINT ÉRTÉKEK SPEKTRÁLIS ELEMZÉSE A MEZŐKERESZTES-I ADATOK ALAPJÁN*

Követelmények Motiváció Matematikai modellezés: példák A lineáris programozás alapfeladata 2017/ Szegedi Tudományegyetem Informatikai Intézet

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Utak földművei. Útfenntartási és útüzemeltetési szakmérnök szak I. félév 2./1. témakör. Dr. Ambrus Kálmán

Modern Fizika Labor. 2. Elemi töltés meghatározása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Alumínium ötvözetek aszimmetrikus hengerlése

Átírás:

A HOMOKOK SZEMELOSZLÁSA ÉS MÁS TALAJFIZIKAI JELLEMZŐI KÖZÖTTI KAPCSOLAT Imre Emőke 1 Király Csaba 1 Rajkai Kálmán 2 Laufer Imre 3 Juhász Miklós 4 Lőrincz János 4 Szent István Egyetem 1, MTA ATK TAKI 2, Lambda Kft 3, Tengizchevroil 4 Kulcsszavak homok, tömörség, nyírószilárdság, kompresszió 1 BEVEZETÉS A szemeloszlási görbe jellemzésére kevesebb paramétert használunk, mint amennyit mérünk, és ezek sem a legmegfelelőbbek. Ezen a problémán segít az statisztikus entrópia alkalmazása, amely minden mérési adatot magában foglaló entrópia koordinátákat használ. Az entrópia koordináták és mérések összevetése alapján áttörés volt lehetséges számos területen (a vázszerkezet stabilitása, szemcsehalmazok szétosztályozódása, szűrőszabályok, a kötött talajok esetén alkalmazott mésszel való módosítás sikerességének megértése, a diszperzív jelleg, buzgárosodásra való hajlam megértése, száraz térfogatsűrűség a leglazább állapotban. ([1,2]). A folyamatban lévő kutatás a homokok szemeloszlási görbéje, térfogatsűrűsége, víztartási görbéje, nyírószilárdsága és kompressziója közötti kapcsolatot elemzi, laboratóriumi és numerikus kísérletek segítségével. Ehhez optimális (szemeloszlási entrópia elméleti szempontból átlagos) és szemcse-hiányos szemeloszlásokat alkalmaz, és bemutatja a mért adatok entrópia koordinátákkal való kapcsolatát. E munka a többszakaszos közvetlen nyíró- és kompressziós kísérletek eredményét tárgyalja a korábbi minimális száraz térfogatsűrűség vagy e max (s min ) kísérlet kísérletek alapján, valamint numerikus kísérletek lehetőségét mutatja be. 1. táblázat Az i-dik frakció saját entrópiája S 0,i i 24 23 22 21 20 19 0 D 4-8 2-4 1-2 0.5-1 0.25-0.5 0.125-0.25 2-21- 2-22 [mm] S 0,i 24 23 22 21 20 19 0

1234567 123456 234567 12345 23456 34567 1234 2345 3456 4567 123 234 345 456 567 12 23 34 45 56 67 1 2 3 4 5 6 7. Entropy increment, S [-] 2.8 N=7 N=6 2.4 N=5 2.0 N=4 1.6 N=3 1.2 N=2 0.8 0.4 0.0 0.0 2.0 4.0 6.0 8.0 Base entropy, S 0 [-] 1. ábra. A 7 frakciós szemeloszlások tere (hat dimenziós szimplex) reprezentálható a folytonos rész-szimplexek hálójával. A folytonos rész-szimplexek entrópiadiagramban vett képének maximális vonalai. 2 VÁLTOZÓK Szemeloszlási görbe tér A szemcseátmérő széles határok között változhat, így gyakorlati megfontolásból a szemeloszlási vizsgálatnál használt sziták átmérője és így a frakciók mérete duplázódik. Az i-edik frakció esetén a szemcsék átmérője (d) az alábbi i 1 i határok között van: 2 d min d 2 d min ahol d min egy önkényesen választott méret. A frakciók átmérője és i sorszáma egy értelmű kapcsolatban áll egymással. Az i-edik frakció relatív gyakorisága x i alapján (i=1..n) felírható: N x 1; x 0 (1) i= 1 i i ahol N a frakciók száma. Ez az egyenlet egyúttal egy N-1 dimenziós szimplex definiáló egyenlete, amely korlátos és zárt, és azonosítható az N frakciós, adott minimális frakciójú szemeloszlások terével. A nulla, egy, két vagy három-dimenziós szimplex ábrázolható a három dimenziós térben, a nagyobb dimenziós nem. Ábrázolható viszont pl. a folytonos rész-szimplexek szerkezete (1). Az entrópia koordináták A szemeloszlási entrópia két részből áll (az entrópia koordinátákból): S = S N 0 S, S0 xis0i i= 1 1 N, S xi ln xi ln 2 (2) i= 1

ahol S 0 az alap entrópia, S entrópia növekmény, S 0i a frakciók saját entrópiája (1. táblázat). A normált entrópia koordináták az A relatív alap entrópia és B a normalizált entrópia növekmény: S A = S o o max S S o min o min, S B = ln(n) (3) Az entrópia koordináták jelentése Az S 0 alap entrópia lényegében azonos az átlagos frakciómérettel (azaz átlagos absztrakt szemcseátmérő, i 0 ). Az A relatív alap entrópia ennek szemcseátmérő terjedelemmel normalizált változata (átlagos, normált absztrakt szemcseátmérő, k m ), kifejezve, hogy az átlagos érték mennyire van közel a maximálishoz. A S entrópia növekmény maximuma az azonos S 0 értékű szemeloszlások átlagát jelöli ki, az ún. optimális szemeloszlást. E szemeloszlási görbék eloszlása véges fraktál. Entrópia diagram Bármely szemeloszlási görbe egy ponttal jellemezhető az entrópia koordináták terében. Az N-1 dimenziós szimplex képe e leképezés során korlátos és zárt. Így az entrópia diagramnak (és minden rész-szimplex képének) van maximum és minimum vonala. A maximum vonalak (1 ábra) lényegében az 1 ábra szerinti szerkezetet mutatják. A maximum vonal őse a folytonos rész-szimplex optimális vagy átlagos vonala, pontjai pedig az ún. optimum pontok vagy optimális szemeloszlások, melyek fraktál eloszlások. A szimplex képének minimum vonalát általában az 1-N ik él képével helyettesítjük, ez a maximálisan szemcsehiányos keverékek képe. Mivel minden folytonos részszimplexhez csak egy optimum vonal, és egy 1-N típusú él rendelhető, ezen 1-N típusú élek szerkezete is az reprezentálható az 1 ábrán látható hálóval. E munka során ezt az ábrázolást használtuk. Geotechnikai paraméterek a tömörség leírására A munka során használt szokásos tömörségi paraméterek a hézagtényező e, a száraz térfogatsűrűség d = s s ahol a szilárd fázis térfogati aránya s= 1/(1 e), és a szemcsék sűrűsége s. A homokok minimális száraz térfogatsűrűség vagy e max kísérletének eredményét két paraméterrel jellemezzük Lőrincz [1] alapján: s s s0 = ( s s0 ) s0 (4) ahol s(=s min ) a keverék mért minimális száraz térfogatsűrűség értéke, s 0 ennek egy matematikai súlyozott átlaggal történő lineáris közelítése:

i max s 0 = x i s (5) i i min ahol i a frakció szám s i a mért frakció sűrűség.* i 3 A MÓDSZEREK A mérések során 5 homokfrakció (2. táblázat) és az ezekből készült olyan optimális és frakcióhiányos keverékek kerültek vizsgálatra, amelyek részszimplex optimális vonalainak és 1-N típusú éleinek pontjaival reprezentálhatók mind Lőrincz [1], mind a jelen vizsgálat esetén. A minimális száraz térfogatsűrűség vagy e max (s min ) kísérlet esetén a talajt tölcséren a Proctor edénybe töltik, ez 10 cm-es átmérő mérete miatt nem okoz átboltozódást a mintában ([4, 5]). A kompressziós kísérletek főbb adatai a következők voltak: 50, 100, 200, 400 kpa terhelés tehermentesítéssel, mindkét szakasz hossza 5 perc, d=7,5 cm; h=2 cm. A többlépcsős nyírókísérletek (a mintát visszahúzzák, nem veszik ki az egyes szakaszok után) adatai a következők voltak. A terhelések: 31,5 kpa, 62,5 kpa, 112,5 kpa; a nyíródoboz mérete 6 cm x 6 cm x4.2 cm. A homokminták lég-szárazon, a lehető legnagyobb hézagtérfogattal kerültek bekészítésre a nyírási és kompressziós kísérletek során. A kis edényméret miatt a bekészítési tömörség csak közelítően volt a leglazább. 2. táblázat Felhasznált szemcsefrakciók Frakció d mm 1 0,063-0,125 2 0,125-0,25 3 0,25-0,5 4 0,5-1,0 5 1,0-2,0 4 AZ EREDMÉNYEK Lőrincz [1] méréseit feldolgozva látható, hogy a frakció sorszámával nő a tömörség (2 ábra), az s 0 lényegében egyértelműen követi ugyanezt az aszimmetrikus trendet matematikai definíciója alapján. A keverési növekmény (s - s 0 ) jellegében ugyanúgy (szimmetrikusan) változik az S 0

és N szerint, mint a S (lásd 1 és 2 ábra), de kissé eltérően optimális és szemcsehiányos keverékek esetén. A 3. ábra szerint a kompressziós kísérletek eredménye nem tér el a talajok esetén ismert képtől: A terhelés-tehermentesítés görbe rugalmasképlékeny jellemzőket és előterhelési hatást látszik mutatni. A térfogati alakváltozás maximuma csökken az i frakció sorszám növekedésével. A 4 ábra szerint a többlépcsős nyírókísérletek során minden szakasz ellenkező irányú, maradó nyírási alakváltozással fejeződött be. A 4 ábra szerint a többlépcsős nyírókísérletek eredménye az első szakaszban a leglazább állapotban bekészített mintáknál is kompressziót, térfogat-csökkenést mutat a második-harmadik szakasztól minden esetben, de sok esetben már az első nyírási szakaszban is, minden szakasz maradó kompressziós alakváltozással fejeződött be. Az 5. ábra szerint a Mohr-Coulomb burkoló tipikus alakja nemlineáris, parabolával jól közelíthető. A 6. ábra szerint, a harmadik terhelési lépcsőben lineáris burkoló feltételezésével számolt súrlódási szög nő az i frakció sorszámmal. A nyírókísérletek és a kompressziós kísérletek bekészítésből, mintaméretből és falsúrlódásból [7] eredő hibái miatt numerikus DEM kísérletek tervezését kezdtük meg. Az előzetes vizsgálatok szerint bizonyos keverékek modellje gond nélkül futtatható, de vannak olyan keverékek, amelyek nagy számú gömböt igényelnek a modellben. Dry density difference s [-] 1E-1 8E-2 4E-2 N=2 N=3 N=5 N=5 gap 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Abstract mean diameter i0 [-] 2. ábra Lőrincz [1] eredményei [2] Frakciók. Optimális keverékek a maximális szemcsehiányos bemutatásával

0.00 v [mm] 0.00 1 v [mm] 0.20 5 0.40 0 500 1000 [kpa] 0.00 0 500 1000 [kpa] 0.00 v [mm] 0.20 5 v [mm] 0.40 4-5 2-3 1-2 1 10 100 1000 [kpa] (c) 0 500 1000 [kpa] (d) 3. ábra. Kompressziós kísérletek. - (c) Rugalmas-képlékeny viselkedés. (d) A frakció sorszám és a kompressziós görbe. 4. ábra. A nyírókísérletek Feszültség-alakváltozás. Térfogatváltozás 4. ábra. A Mohr-Coulomb burkoló (kék: mért, barna: illesztett)

5 TÁRGYALÁS, ÖSSZEGEZÉS A szemeloszlási entrópia elmélet A szemeloszlási koordináták hiányoznak jelenleg a talajmechanikai szakvélemények eszköztárából, jóllehet bizonyítást nyert, hogy döntő fontosságuk van a szemcsés talajok viselkedésének (pl. erózióra való hajlam megítélése, szűrőszabály) szempontjából. Homokok minimális száraz térfogatsűrűsége Lőrincz ([1], [2]) a minimális száraz térfogatsűrűségét két részre bontotta. A mért adatok újrafeldolgozása alapján látható, hogy ezek változása a frakciók sorszámával illetve azok átlagával (amit S 0 ír le) kétféle kapcsolatban van, az egyik rész szimmetrikus, a másik aszimmetrikus, ez utóbbi kapcsolata S 0 al egyértelmű. 6. ábra. A súrlódási szög, a harmadik lépcsőben lineáris burkolóval számolva. optimális keverékek frakcióhiányos keverékek

A fizikai magyarázat a következő. A gömb-halmaz sűrűsége növekszik, ha a gömbök átmérője nagyobb tartományban változhat. Ez a tartomány nő a frakciók sorszámának átlagával (amit S 0 ír le, aszimmetrikus rész) és szimmetrikusan változik mind a frakciók számával és az A relatív alap entrópiával (ami S függéséhez hasonló). Homokok összenyomhatósága és szilárdsága A kompressziós kísérletek eredményét a nagy falsúrlódás miatt, a a többszakaszos közvetlen nyírókísérletek eredményét a relatíve kis nyíródoboz méret miatt feltehetően jelentős hiba terheli. Annyi megállapíthatónak látszik, hogy mind a súrlódási szög, mind a maximális térfogati alakváltozás határozott kapcsolatban van a frakciók sorszámával illetve azok átlagával (amit S 0 ír le). IRODALOM 1. Lőrincz, J (1986). Grading entropy of soils Doctoral Thesis, Technical Sciences, TU of Budapest. 2. Imre E, Hazay M, Juhász M, Lőrincz J, Rajkai K, Schanz T, Lins Y, Hortobágyi Zs (2014) Sand mixture density.proceedings of UNSAT2014 Sydney, Australia, 2-4 July 2014. 1:691-697. 3. Király Cs (2014) Szakdolgozat. Telítetlen talajok egyes laboratóriumi kísérletei. SZIE. 4. Imre E, Fityus S, Keszeyné E, Schanz T(2011) A Comment on the Ratio of the Maximum and Minimum Dry Density for Sands. Geotechnical Engineering 42(4) pp. 77-82. 5. Imre, E & Gerendai, E & Szalkai, R &Lőrincz, J & Lins, Y & Schanz T 2013. Some notes concerning the dry density testing standards. In: Proc 18th ICSMGE. Paris. 350-353. 6. Einav 2007. Breakage mechanics Part I. Theory Journal of the Mech. and Physics of Solids, 55: 1274-1297 7. Kézdi Árpád Talajmechanika I., Tankönyvkiadó,Budapest, 1960. 8. Imre, E; Lőrincz, J.; Szendefy, J.; Trang, P.Q.; Nagy, L.; Singh, V.P.; Fityus, S. 2012. "Case Studies and Benchmark Examples for the Use of Grading Entropy in Geotechnics." Entropy Entropy-Switz 14, no. 6: 1079-1102.