1. Geometria a komplex számsíkon

Hasonló dokumentumok
1. Mátrixösszeadás és skalárral szorzás

1. A komplex számok ábrázolása

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Vektorok, mátrixok, lineáris egyenletrendszerek

1. A kétszer kettes determináns

Lineáris leképezések, mátrixuk, bázistranszformáció. Képtér, magtér, dimenziótétel, rang, invertálhatóság

Lineáris egyenletrendszerek

1. A komplex számok definíciója

A gyakorlati jegy

Mátrixok 2017 Mátrixok

Mátrixok, mátrixműveletek


I. VEKTOROK, MÁTRIXOK

1. Bázistranszformáció

Diszkrét matematika 1. estis képzés

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

1. Gyökvonás komplex számból

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

Lineáris algebra (10A103)

2. előadás. Lineáris algebra numerikus módszerei. Mátrixok Mátrixműveletek Speciális mátrixok, vektorok Norma

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

1. Transzformációk mátrixa

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

Valasek Gábor

Lineáris egyenletrendszerek Műveletek vektorokkal Geometriai transzformációk megadása mátrixokkal Determinánsok és alkalmazásaik

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Matematika A1a Analízis

λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0

15. LINEÁRIS EGYENLETRENDSZEREK

10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

és n oszlopból áll, akkor m n-es mátrixról beszélünk. (Az oszlopok száma a mátrix vízszintes mérete, a sorok 2 3-as, a ij..

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

Testek. 16. Legyen z = 3 + 4i, w = 3 + i. Végezzük el az alábbi. a) (2 4), Z 5, b) (1, 0, 0, 1, 1) (1, 1, 1, 1, 0), Z 5 2.

1. Determinánsok. Oldjuk meg az alábbi kétismeretlenes, két egyenletet tartalmaz lineáris egyenletrendszert:

1. Az euklideszi terek geometriája

Összeállította: dr. Leitold Adrien egyetemi docens

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. zárthelyi,

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Vektorterek. =a gyakorlatokon megoldásra ajánlott


Lineáris egyenletrendszerek

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

KOVÁCS BÉLA, MATEMATIKA I.

3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Matematika (mesterképzés)

11. DETERMINÁNSOK Mátrix fogalma, műveletek mátrixokkal

Mat. A2 3. gyakorlat 2016/17, második félév

Bevezetés az algebrába 1

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

5. előadás. Skaláris szorzás

Budapesti Műszaki Főiskola, Neumann János Informatikai Kar. Vektorok. Fodor János

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

Összeállította: dr. Leitold Adrien egyetemi docens

Meghirdetés féléve 2 Kreditpont Összóraszám (elm+gyak) 2+0

9. Előadás. Megyesi László: Lineáris algebra, oldal. 9. előadás Mátrix inverze, mátrixegyenlet

Diszkrét matematika II., 8. előadás. Vektorterek

Diszkrét matematika 1.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

1. Egész együtthatós polinomok

Lineáris algebra (10A103)

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.

Bevezetés az algebrába 1

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

Gauss-eliminációval, Cholesky felbontás, QR felbontás

2. gyakorlat. A polárkoordináta-rendszer

KOVÁCS BÉLA, MATEMATIKA I.

Transzformációk síkon, térben

Matematika A2a LINEÁRIS ALGEBRA NAGY ATTILA

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

Számítási feladatok a Számítógépi geometria órához

A lineáris algebra forrásai: egyenletrendszerek, vektorok

9. Előadás. (9. előadás) Lineáris egyr.(3.), Sajátérték április / 35

1. Homogén lineáris egyenletrendszer megoldástere

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

A KroneckerCapelli-tételb l következik, hogy egy Bx = 0 homogén lineáris egyenletrendszernek

MATEMATIKA FELADATGYŰJTEMÉNY

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0


1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

Vektorok és koordinátageometria

Koordináta-geometria feladatok (emelt szint)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

Kalkulus. Komplex számok

Matematika A2 vizsga mgeoldása június 4.

17. előadás: Vektorok a térben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

Lin.Alg.Zh.1 feladatok

Átírás:

1. Geometria a komplex számsíkon A háromszög-egyenlőtlenség A háromszög-egyenlőtlenség (K1.4.3) Minden z,w C-re z +w z + w. Egyenlőség pontosan akkor áll, ha z és w párhuzamosak, és egyenlő állásúak, azaz z = rw vagy w = rz alkalmas valós r 0-ra. O w B z +w z z A w C Bizonyítás Háromszög-egyenlőtlenség az OAC háromszögre. Két pont távolsága Állítás (K1.4.7) Minden z,w C-re a z és w távolsága z w. O w B z w z z w D A Bizonyítás Legyen z = OA és w = OB. Ekkor z w = BA, hiszen w +(z w) = z. De z w hossza z w. 1

Forgatás pont körül Mi a z pont w körüli +90 fokos elforgatottja? K1.4.5: Az r(cos α + i sin α) számmal szorzás forgatva nyújtás: α szöggel forgat az origó körül és r-szeresére nyújt az origóból. i(z w) w z w i(z w)+w z i = 1(cos90 +isin90 ) A wz = z w vektort az origóba toljuk, elforgatjuk (i szöge90 ), visszatoljuk, azaz w-t hozzáadunk. Geometria-feladatok megoldása komplex számokkal Feladat (K1.4.12.) Egy négyszög oldalaira kifelé négyzeteket rajzolunk. Kössük össze az átellenes négyzetek középpontjait. Igazoljuk, hogy e két szakasz merőleges, és egyenlő hosszú. 2

Négyzet középpontja Határozzuk meg az AB oldalú két négyzet két középpontját. A Y X B Láttuk: w körül z-t +90 fokkal elforgatva i(z w) + w-t kapjuk. X körül A-t +90 fokkal forgatva B-t kapjuk. Így B = i(a X)+X. Innen X = (B Ai)/(1 i). Y körül B-t +90 fokkal forgatva A-t kapjuk. Így A = i(b Y)+Y. Innen Y = (A Bi)/(1 i). A négyszöges feladat megoldása (D Ai)/(1 i) = V D U = (C Di)/(1 i) C Y = (B Ci)/(1 i) A B XU = U X = 1 YV = V Y = 1 X = (A Bi)/(1 i) ( (C ) ( ) ) Di A Bi. 1 i( (D ) ( ) ) Ai B Ci. De 1 i i ( (C Di) (A Bi) ) = ( (D Ai) (B Ci) ). Azaz i(u X) = V Y, így XU +90 -os elforgatottja YV. 3

2. Példák egyenletrendszerre Egy ismeretlen kiejtése Oldjuk meg: 2x 3y = 1 5x 2y = 8 Ötlet: Próbáljuk meg x-et kiejteni (eliminálni). Az első egyenlet 5-szöröséből vonjuk ki a második egyenlet 2-szeresét. Az eredmény: 15y ( 4y) = 5 16, azaz 11y = 11. Innen y = 1. Az első egyenletből ekkor 2x 3 = 1, azaz x = 2. Ellenőrzés: 2 2 3 1 = 1 5 2 2 1 = 8 Geometriai ábrázolás 2x 3y = 1, azaz y = (2/3)x (1/3). 5x 2y = 8, azaz y = (5/2)x 4. y = (5/2)x 4 y = (2/3)x (1/3) (x,y) = (2,1) A megoldások száma Két egyenesnek lehet (1) Nulla darab közös pontja (ha párhuzamosak); (2) Egy darab közös pontja (ha metszők); (3) Végtelen sok közös pontja (ha egyenlők). 4

Példák 3x 3y = 3 2x 2y = 4 Párhuzamos egyenesek (y = x 1, y = x 2), nincs megoldás. 3x 3y = 3 2x 2y = 2 Egybeeső egyenesek (y = x 1), végtelen sok megoldás. Az általános megoldás Az egyenletrendszer általános megoldása az összes olyan (x,y) számpár valamilyen megadása, amik megoldásai az egyenletrendszernek. Példa 3x 3y = 3 2x 2y = 2 Az (x,y) akkor megoldás, ha y = x 1. Ezért az általános megoldás: {(r,r 1) r R}. Probléma Hogyan lehet megkeresni egy általános egyenletrendszer általános megoldását? Lineáris egyenletrendszer esetén Gauss-eliminációval. 3. Gauss-elimináció Lineáris egyenletrendszerek Definíció Legyenek az ismeretlenek x 1,x 2,...,x m. Lineáris egyenlet: a 1 x 1 +...+a m x m = b Ismeretlenek szorzata nem szerepel, a 1,...,a m,b számok. Definíció (Freud, 3.1. szakasz) Lineáris egyenletrendszer: több lineáris egyenlet közös megoldásait keressük. Általános jelölés: a 11 x 1 +...+a 1m x m = b 1 a 21 x 1 +...+a 2m x m = b 2... a n1 x 1 +...+a nm x m = b n Itt n egyenlet van és m ismeretlen. 5

Az elimináció megengedett lépései Skalár: egy szám, amilyenek az együtthatók is. (1) Az egyik egyenletet egy nem nulla skalárral megszorozzuk. (2) Az egyik egyenletből kivonjuk egy másik egyenlet tetszőleges skalárszorosát. Ekkor a megoldások ugyanazok maradnak. Az (1) lépéssel bármelyik nem nulla együtthatóból 1-et csinálhatunk, ha annak reciprokával szorzunk. A (2) lépéssel ki lehet nullázni minden olyan együtthatót, amely fölött vagy alatt egy nem nulla együttható található. 2x+4y = 6 x+2y = 3 x+2y = 3 3x+2y = 5 3x+2y = 5 0x 4y = 4 Az első háromszorosát kivonjuk a másodikból. Így y = 1. Szisztematikus eljárás (1) Egy nem nulla együtthatót leosztással 1-re változtatunk, és bekarikázzuk. Ez a vezéregyes. (2) Az oszlopában a többi együtthatót kinullázzuk. (3) Az (1)+(2)-t ismételjük, de (1)-ben csak olyan együtthatót választhatunk, amely sorában és oszlopában nincs karika. (4) Ha ilyen nincs, akkor megállunk. Ezután: (5) Ha van olyan sor, amelynek bal oldalán minden együttható nulla, de a jobb oldali b j nem, akkor az egyenletrendszer ellentmondásos, nincs megoldása. Ez egy tilos sor. (6) Ha van olyan sor, amelynek bal oldalán minden együttható nulla, és a jobb oldali b j is nulla, akkor ezt a sort kihúzzuk. A megoldás leolvasása (F3.1.1. Tétel) (7) Azokat az ismeretleneket, amelyek oszlopában nincs karika, szabad változónak nevezzük. A többi ismeretlen a kötött változó. (8) Mindegyik kötött változó csak egyetlen egyenletben szerepel, és abban az együtthatója 1. Ezért a kötött változók kifejezhetők a szabad változókkal. 6

A megoldások száma A szabad változóknak tetszőleges értéket adva egyértelmű megoldást kapunk. Így ha van szabad változó, akkor a megoldások száma végtelen. A megoldás akkor egyértelmű, ha az egyenletrendszer nem ellentmondásos, és nincs szabad változó. Az egyetlen összefüggés Tétel (F3.1.2. Tétel) Ha az egyenletek száma kisebb, mint az ismeretlenek száma, akkor nem lehet egyértelmű a megoldás. Bizonyítás Ha egyértelmű a megoldás, akkor nincs szabad változó. Ezért minden oszlopban van karika. De a karikák csupa különböző sorokban vannak, így legalább annyi sor van, mint oszlop. Azaz legalább annyi egyenlet van, mint ismeretlen. Fontos: más összefüggés nincs az ismeretlenek száma, az egyenletek száma és a megoldások száma között! Példák: gyakorlaton, mátrixos jelöléssel. Homogén lineáris egyenletrendszerek Definíció Egy lineáris egyenletrendszer homogén, ha a jobb oldalán szereplő mindegyik b j nullával egyenlő. Triviális megoldás: mindegyik ismeretlen nulla. Következmény (F3.1.4. Tétel) Ha egy homogén lineáris egyenletrendszerben az egyenletek száma kisebb, mint az ismeretlenek száma, akkor van nemtriviális megoldás. Bizonyítás Az előző tétel miatt nem lehet egyértelmű a megoldás. De nem is ellentmondásos, mert van (triviális) megoldás. Ezért van legalább még egy megoldás. 7

4. Oszlopvektorok A sík vektorai Az origóból az A = (a,b) pontba mutató OA vektort az (a, b) számpárral adjuk meg. Az OA = (a,b) és az OB = (c,d) vektorok összegeoa+ OB = (a+c,b+d), ami a paralelogramma-szabállyal is megkapható. Legyen λ valós szám (skalár). Az OA vektor λ-szorosa az OB, ahol a B pontot úgy kapjuk, hogy az A pontot az origóból λ -szorosára nyújtjuk, és ha λ negatív, akkor tükrözzük is az origóra. Állítás Ha OA = (a,b), akkor λ OA = (λa,λb). Általános vektorok Az (a, b) vektort ezentúl oszlopvektornak írjuk: [ ] [ ] a λa és λ =. b λb [ ] a. Tehát b [ ] a + b [ ] c = d [ ] a+c b+d F3.1.5. Definíció T = C vagy R vagy Q. A T fölötti n magas oszlopvektorok az a 1 a 2 a n alakú táblázatok, ahol a 1,...,a n T. Az összes ilyen oszlopvektorból álló halmaz jele T n. Az n szám a T n dimenziója. A sík, azaz R 2 kétdimenziós. Műveletek vektorokkal Definíció T = C vagy R vagy Q. Értelmezzük T n -en az összeadást és a λ T skalárral szorzást. a 1 b 1 a 1 +b 1 a 1 λa 1 a 2 + b 2 = a 2 +b 2... és λ a 2 = λa 2 a n b n a n +b n a n λa n Azaz összeadni és skalárral szorozni komponensenként kell. 0 a 1 a 1 A nullvektor 0 = 0 és az ellentett: a 2 = a 2... 0 a n a n (minden komponens T nulleleme) (komponensenkénti ellentett) 8

A műveleti tulajdonságok Tétel (HF ellenőrizni) Tetszőleges u,v,w T n vektorokra, és λ,µ T skalárokra (1) (u+v)+w = u+(v +w) (az összeadás asszociatív). (2) u+v = v +u (az összeadás kommutatív). (3) u+0 = 0+u = u (0 a nullvektor). (4) u+( u) = ( u)+u = 0 ( u az u ellentettje). (5) (λ+µ)u = λu+µu. (6) λ(u+v) = λu+λv. (7) (λµ)u = λ(µu). (8) 1 u = u (ahol 1 a T egységeleme). (9) 0 u = λ 0 = 0, és ha λu = 0, akkor λ = 0 vagy u = 0. Kétféle 0 5. Mátrixösszeadás és skalárral szorzás Mátrixok F2.1.1. Definíció T = C vagy R vagy Q. Egy n m-es mátrix egy n sorból és m oszlopból álló táblázat, melyben T elemei vannak. Ezek halmazát T n m jelöli. Így T n elemei n 1-es mátrixok. A sorvektorok az 1 m-es mátrixok. Az M = ((a ij )) T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben [ az i-edik sor ] j-edik eleme a ij T. Ha M = ((a ij )) T 2 3, akkor a11 a M = 12 a 13. a 21 a 22 a 23 [ ] [ ] 1+1 1+2 2 3 Ha M = ((i+j)) T 2 2, akkor M = =. 2+1 2+2 3 4 [ ] Ha M = ((a ij +b ij )) T 2 2 a11 +b, akkor M = 11 a 12 +b 12. a 21 +b 21 a 22 +b 22 9

Összeg, λ-szoros, nullmátrix, ellentett F2.1.2. Definíció M = ((a ij )) és N = ((b ij )) T n m mátrixok és λ T. Ekkor M +N = ((a ij +b ij )) T n m az M és N összege (a két mátrix megfelelő elemeit összeadjuk); λm = ((λa ij )) T n m az M mátrix λ-szorosa (a mátrix minden elemét λ-val szorozzuk). Két mátrixot akkor lehet összeadni, ha ugyanaz a méretük. Definíció Az n m-es nullmátrix az a mátrix, melynek minden eleme a T nulleleme. A nullmátrix jele: 0. Egy n m-es M mátrix ellentettje az a mátrix, melynek minden eleme az M megfelelő elemének ellentettje. M = ((a ij )) ellentettje M = (( a ij )) = ( 1)M. A műveleti tulajdonságok F2.1.3. Tétel (HF ellenőrizni) Tetszőleges M,N,K T n m mátrixokra és λ,µ T skalárokra (1) (M +N)+K = M +(N +K) (az összeadás asszociatív). (2) M +N = N +M (az összeadás kommutatív). (3) M +0 = 0+M = M (0 a nullmátrix). (4) M +( M) = ( M)+M = 0 ( M az M ellentettje). (5) (λ+µ)m = λm +µm. (6) λ(m +N) = λm +λn. (7) (λµ)m = λ(µm). (8) 1 M = M (ahol 1 a T egységeleme). (9) 0 M = λ 0 = 0, és ha λm = 0, akkor λ = 0 vagy M = 0. 10

6. Mátrixok szorzása Sor és oszlop szorzata Szorzás 2 2-es mátrixokra [ ] [ ] x a b = [ ax+by ] [ ][ ] a c x, = y b d y [ ][ ] [ ] a c a c aa b d b d = +cb ac +cd ba +db bc +dd. [ ] ax+cy, bx+dy Definíció b 1 Legyen [ ] a 1 a 2... a m b 2 = a 1b 1 +a 2 b 2 +...+a m b m. b m Minden elemet a neki megfelelővel szorozzuk, majd összeadjuk. 2 2-es: az első mátrix sorait szoroztuk a második oszlopaival! A szorzás definíciója F2.1.4. Definíció A szorzatmátrix i-edik sorának j-edik eleme az első mátrix i-edik sorának és a második mátrix j-edik oszlopának szorzata. Ez akkor értelmes, ha az első mátrixnak ugyanannyi oszlopa van, ahány sora a másodiknak. [ ][ ] [ ] a11 a 12 b11 b 12 a11 b = 11 +a 12 b 21 a 11 b 12 +a 12 b 22. a 21 a 22 b 21 b 22 a 21 b 11 +a 22 b 21 a 21 b 12 +a 22 b 22 Definíció Ha M = ((a ij )) T n m és N = ((b ij )) T m k, akkor az MN T n k mátrix i-edik sorának j-edik eleme a i1 b 1j +a i2 b 2j +...+a im b mj = m a il b lj. Negatív tulajdonságok Tétel Az n n-es mátrixok között a szorzás n 2 esetén nem kommutatív és nem nullosztómentes. Bizonyítás [ ][ n ] = 2-re [ ] 1 1 1 0 2 1 =, ami nem ugyanaz, mint 0 1 1 1 1 1 [ ][ ] [ ] 1 0 1 1 1 1 =, tehát nem kommutatív. 1 1 0 1 1 2 [ ][ ] [ ] 0 1 0 1 0 0 =, azaz nem nullosztómentes. 0 0 0 0 0 0 l=1 11

Általában a leképezések kompozíciója sem kommutatív. Példa (HF): két tengelyes tükrözés (ha a tengelyek szöge pl. 60 ). Asszociativitás, egységmátrix F2.1.5. Tétel A mátrixok szorzása asszociatív. Azaz (MN)K = M(NK), feltéve, hogy az összes szükséges szorzást el lehet végezni. Azaz ha M T n m, N T m k, K T k l. Bizonyítás számolással, de a következő félévben elegánsan is. Az n n-es E n egységmátrix az a mátrix, ahol az i-edik sor j-edik eleme 1 ha i = j, és 0 ha i j. Azaz a főátlóban végig 1 van, másutt csupa 0. [ ] [ ] [ ] 1 0 a b a b =. 0 1 c d c d F2.1.3. Feladat Ha M T n n, akkor E n M = ME n = M. A szorzás szabályai F2.1.5. Tétel Ha M,N,K T n n tetszőleges mátrixok és λ,µ T, akkor (1) (M +N)+K = M +(N +K) (az összeadás asszociatív). (2) M +N = N +M (az összeadás kommutatív). (3) M +0 = 0+M = M (0 a nullmátrix). (4) M +( M) = ( M)+M = 0 ( M az M ellentettje). (5) A szorzás asszociatív. (6) Igaz mindkét oldali disztributivitás, azaz M(N + K) = MN + MK és (N +K)M = NM +KM. (7) Az E n egységmátrix kétoldali egységelem: E n M = ME n = M. Továbbá λ(mn) = (λm)n = M(λN) is teljesül. Bizonyítás: a következő félévben, lineáris transzformációkkal. 12

Mátrix transzponáltja F2.1.6. Definíció Egy mátrix főátlója a bal felső sarokból 45 alatt induló egyenesen lévő elemekből áll. Ezek azok, amelyeknek a sor- és oszlopindexe megegyezik. Egy mátrix transzponáltja a főátlójára vett tükörképe. Azaz ha M = ((a ij )) T n m, akkor M T = ((a ji )) T m n. (A két indexet megcseréljük; az i-edik sorból i-edik oszlop lesz.) Példák [ ] T [ ] [ ] T a11 a 12 a11 a = 21 a11 a 12 a 13 = a 21 a 22 a 12 a 22 a 21 a 22 a 23 Sorvektor transzponáltja oszlopvektor és viszont. a 11 a 21 a 12 a 22 a 13 a 23 7. Mátrix inverze Az inverz definíciója és kiszámítása Definíció (F, 2.2. szakasz) Ha M,N T n n, akkor M és N egymás inverzei, ha MN = NM = E n (az n n-es egységmátrix). Jele: N = M 1. M T n n invertálása Gauss-eliminációval (F3.5.3. Tétel) K := [M,E n ] T n 2n (írjuk M mellé az egységmátrixot). Végezzük el a Gauss-eliminációt a K mátrixra úgy, hogy vezéregyest kizárólag a bal oldalon (az első n oszlopban) választhatunk. Ha keletkezik tilos sor (melynek az első fele végig nulla), akkor M nem invertálható. Egyébként sorcserékkel K bal feléből az egységmátrix lesz. Ekkor K jobb felén M 1 keletkezik: [M,E n ] [E n,m 1 ]. 13

Lineáris egyenletrendszer mátrixos alakja a 11 x 1 +a 12 x 2 +...+a 1m x m = b 1 a 21 x 1 +a 22 x 2 +...+a 2m x m = b 2... a n1 x 1 +a n2 x 2 +...+a nm x m = b n Definíció a 11 a 12... a 1m x 1 b 1 M = a 21 a 22... a 2m........., x = x 2 és b = b 2. a n1 a n2... a nm x m b n Az M a fenti lineáris egyenletrendszer mátrixa. Az Mx = b az egyenletrendszer mátrixos alakja (az eredeti egyenleteknek egy képletben való, tömör felírása). Ha M négyzetes és invertálható, akkor a megoldás x = M 1 b. 8. Összefoglaló Az 5. előadáshoz tartozó vizsgaanyag Fogalmak Lineáris és homogén lineáris egyenletrendszer (F3.1. szakasz). Vektor- és mátrixműveletek: összeg, skalárszoros, nulla, ellentett, szorzat, egységmátrix, inverz, transzponált (F2. fejezet). Tételek A háromszög-egyenlőtlenség (K1.4.3). Két pont távolsága (K1.4.7). Forgatva nyújtás (K1.4.5), forgatás adott pont körül (K1.4. ábra). Gauss-elimináció, a megoldások leolvasása (F3.1.1. Tétel). A megoldások, az ismeretlenek és az egyenletek száma közötti összefüggés (általános és homogén eset: F3.1.2. és F3.1.4. Tétel). A mátrixok és vektorok műveleti tulajdonságai (F2. fejezet). A nullosztómentesség és a kommutativitás nem teljesül általában. Az inverz kiszámítása Gauss-eliminációval (F3.5.3. Tétel). 14