Teletöltött álló hordó abroncs - feszültségeiről

Hasonló dokumentumok
Egy háromlábú állvány feladata. 1. ábra forrása:

Végein függesztett rúd egyensúlyi helyzete. Az interneten találtuk az [ 1 ] munkát, benne az alábbi érdekes feladatot 1. ábra. Most erről lesz szó.

Egy érdekes statikai - geometriai feladat

Ellipszis átszelése. 1. ábra

Egy kinematikai feladathoz

Felső végükön egymásra támaszkodó szarugerendák egyensúlya

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.

A magától becsukódó ajtó működéséről

Síkbeli csuklós rúdnégyszög egyensúlya

Egy felszínszámítási feladat a tompaélű fagerendák témaköréből

Kosárra dobás I. Egy érdekes feladattal találkoztunk [ 1 ] - ben, ahol ezt szerkesztéssel oldották meg. Most itt számítással oldjuk meg ugyanezt.

A hordófelület síkmetszeteiről

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Egymásra támaszkodó rudak

Lövés csúzlival. Egy csúzli k merevségű gumival készült. Adjuk meg az ebből kilőtt m tömegű lövedék sebességét, ha a csúzlit L - re húztuk ki!

Az egyenes ellipszishenger ferde síkmetszeteiről

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

A kötélsúrlódás képletének egy általánosításáról

Egy kérdés: merre folyik le az esővíz az úttestről? Ezt a kérdést az után tettük fel magunknak, hogy megláttuk az 1. ábrát.

Poncelet egy tételéről

Az elliptikus hengerre írt csavarvonalról

Egy mozgástani feladat

A főtengelyproblémához

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Rönk kiemelése a vízből

Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra

Egy másik érdekes feladat. A feladat

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Tető - feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladatot és végeredményeit ld. 1. ábra.

Forgatónyomaték mérése I.

Egy érdekes nyeregtetőről

Függőleges koncentrált erőkkel csuklóin terhelt csuklós rúdlánc számításához

Egy gyakorlati szélsőérték - feladat. 1. ábra forrása: [ 1 ]

A gúla ~ projekthez 2. rész

Egy nyíllövéses feladat

Szabályos fahengeres keresztmetszet geometriai jellemzőinek meghatározása számítással

Fa rudak forgatása II.

t, u v. u v t A kúpra írt csavarvonalról I. rész

Vonatablakon át. A szabadvezeték alakjának leírása. 1. ábra

Csúcsívek rajzolása. Kezdjük egy általános csúcsív rajzolásával! Ehhez tekintsük az 1. ábrát!

Egy kötélstatikai alapfeladat megoldása másként

1. ábra forrása:

Egy általános helyzetű lekerekített sarkú téglalap paraméteres egyenletrendszere. Az egyenletek felírása

Egy kinematikai feladat

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Aszimmetrikus nyeregtető ~ feladat 2.

A ferde tartó megoszló terheléseiről

A felcsapódó kavicsról. Az interneten találtuk az alábbi, a hajítás témakörébe tartozó érdekes feladatot 1. ábra.

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A bifiláris felfüggesztésű rúd mozgásáról

Befordulás sarkon bútorral

A visszacsapó kilincs működéséről

A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.

Egy általánosabb súrlódásos alapfeladat

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

További adalékok a merőleges axonometriához

Két statikai feladat

1. ábra forrása: [ 1 ]

A lengőfűrészelésről

Érdekes geometriai számítások 10.

A Cassini - görbékről

Egy érdekes mechanikai feladat

A csavarvonal axonometrikus képéről

A fa hordó - téma folytatása

A gúla ~ projekthez 1. rész

Kecskerágás már megint

T s 2 képezve a. cos q s 0; 2. Kötélstatika I. A síkbeli kötelek egyensúlyi egyenleteiről és azok néhány alkalmazásáról

Egy ismerős fizika - feladatról. Az interneten találtuk az [ 1 ] könyvet, benne egy ismerős fizika - feladattal 1. ábra.

Vontatás III. A feladat

Néhány véges trigonometriai összegről. Határozzuk meg az alábbi véges összegek értékét!, ( 1 ) ( 2 )

Az ötszög keresztmetszetű élszarufa keresztmetszeti jellemzőiről

A kör és ellipszis csavarmozgása során keletkező felületekről

Egy variátor - feladat. Az [ 1 ] feladatgyűjteményben találtuk az alábbi feladatot. Most ezt dolgozzuk fel. Ehhez tekintsük az 1. ábrát!

Vasbeton tartók méretezése hajlításra

A középponti és a kerületi szögek összefüggéséről szaktanároknak

Henger és kúp metsződő tengelyekkel

w u R. x 2 x w w u 2 u y y l ; x d y r ; x 2 x d d y r ; l 2 r 2 2 x w 2 x d w 2 u 2 d 2 2 u y ; x w u y l ; l r 2 x w 2 x d R d 2 u y ;

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!

Keresztezett pálcák II.

Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:

Karimás csőillesztés

A fák növekedésének egy modelljéről

Az elforgatott ellipszisbe írható legnagyobb területű téglalapról

Az eltérő hajlású szarufák és a taréjszelemen kapcsolatáról 1. rész. Eltérő keresztmetszet - magasságú szarufák esete

A tűzfalakkal lezárt nyeregtető feladatához

A mandala - tetőről. Ehhez tekintsük az 1. ábrát is! θ = 360/n. 1. ábra [ 6 ].

A szabályos sokszögek közelítő szerkesztéséhez

A síkbeli Statika egyensúlyi egyenleteiről

Rönk mozgatása rámpán kötelekkel

Egy újabb látószög - feladat

Ellipszis perspektivikus képe 2. rész

Kiegészítés a három erő egyensúlyához

3.1. ábra ábra

Hidrosztatika. Folyadékok fizikai tulajdonságai

Egy sajátos ábrázolási feladatról

Már megint az esővíz lefolyásáról

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

A rektellipszis csavarmozgása során keletkező felületről

Átírás:

1 Teletöltött álló hordó abroncs - feszültségeiről Korábban már többször nekifutottunk a fa hordók szilárdsági problémáinak, ám még messze nem válaszoltunk meg minden kérdést e témakörben. Az [ 1 ] munkában találtunk egy idevágó feladatot, melynek megoldása kapcsán jutottunk az alábbiakra. A feladat kiírásához tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Négy 2 mm x 40 mm keresztmetszetű, 2000 N / cm 2 előfeszültségű vasabroncs fogja körül egy fahordó dongáit. A hordó méretei: D 1 = 600 mm, D 2 = 800 mm, h = 1300 mm. Meghatározandó az abroncsok közepes normálfeszültsége, ha a hordó ρ = 850 kg / m 3 sű - rűségű borral van megtöltve. A dongákat körív alakúnak tekintjük. Itt rögtön megjegyezzük, hogy az eredeti szövegen kicsit változtattunk, egyebek mellett azért, mert azóta már mások a szabványos mértékegységek, valamint a feszültség és az igénybevétel nem használható egymás szinonimájaként. Az [ 1 ] könyvben ezen kívül közölték még a végeredményt is, ami átírva: ; ez azt jelenti, hogy a folyadéknyomás felvételéből abroncs - feszültség adódik. Ezt azért hozzuk fel a feladat megoldása előtt, mert nekünk nem ez az eredmény jött ki. Az Olvasó majd eldöntheti, hogy egyetért - e a mi megoldásunkkal és annak eredményé - vel, vagy sem. ( Nem feledhetjük, hogy [ 1 ] - et matematikus írta / szerkesztette! )

2 A megoldást a 2. ábra alapján indítjuk el. 2. ábra Itt a függőleges szimmetriasíkjával félbevágott, teletöltött hordót láthatjuk. A fél hordó falára ható hidrosztatikai nyomóerők eredője a H π vízszintes erő, amely az xz síkban hat. A félbevágottnak képzelt abroncsokban az S 1, S 2, S 3, S 4 húzóerők működnek. A z tengely menti egyensúlyi egyenlettel: innen: ( 1 ) Az abroncsok keresztmetszeti területe a kiírás szerint egyformák: ( 2 ) ahol v és s az abroncsok téglalap keresztmetszetének vastagsági és szélességi méretei. Az abroncsokban ébredő húzóerők kifejezései, ( 2 ) - vel is: ( 3 / 1 ) ( 3 / 2 ) ( 3 / 3 ) ( 3 / 4 ) Itt ( i = 1, 2, 3, 4 ) a megfelelő húzófeszültségek az abroncsokban. Most ( 2 ) és ( 3 ) - mal:

3 innen: a folyadéknyomásból származó átlagos húzófeszültség pedig innen ( 4 ) A közvetlen feladat a erőnagyság kiszámítása. Ehhez tekintsük a 3. ábrát is! 3. ábra Itt azt szemléltettük, hogy a hordófal egy df elemi felületére merőlegesen hat a dp nyomóerő. A felületelem kifejezése: ( 5 ) az elemi nyomóerő kifejezése: a p hidrosztatikai nyomás kifejezése: ( 6 ) ( 7 )

4 ahol γ a folyadék fajsúlya: ( 8 ) itt ρ foly a hordót kitöltő folyadék ( itt: bor ) sűrűsége, g a nehézségi gyorsulás nagysága. A dp elemi nyomóerő vízszintes összetevője ( nagysága ): ( 9 ) az utóbbi eredményeket egymásba helyettesítve: tehát: Ennek x szerinti integrálja adja az ábrán is bejelölt sáv - eredőt : ( 10 ) ( 11 ) a fél hordóra ható teljes horizontális erő nagysága pedig a sáv - eredők z tengelyre vett vetületeinek összegeként, a π nagyságú szögtartományra: tehát: ( 12 ) Ehhez ki kell számítanunk az ( 13 ) határozott integrált, a számadatokkal. Ehhez először fel kell írnunk a z( x ) függvény kifejezését. Ehhez tekintsük a 4. ábrát is! Itt a dongák r átlagos sugarával dolgozunk. Azért átlagos sugarat veszünk figyelembe, mert a feladatban nem adták meg a dongák falvastagságát. Egyébként z( x ) - hez a dongák belső sugara kellene, hiszen a folyadék a hordó belső falával érintkezve fejti ki a nyomását. Az 1. ábrából sem világos, hogy a D 1 és D 2 átmérők pontosan mire vonatkoznak. Meglehet, ez a feladat - kiírás, illetve a feladat - megoldás közelítő jellege miatt nem is igazán lényeges.

5 4. ábra A CTP derékszögű háromszögből Pitagorász tételével a körív egy P pontjára: innen: továbbá: majd ebből: elhagyva a P indexet: ( 14 ) Még meg kell határoznunk r kifejezését a megadott adatokkal. Ezt szintén a 4. ábra alapján tesszük. Eszerint írhatjuk, hogy ( 15 ) ( 16 ) Osztással: ( 17 )

6 felhasználva, hogy ( 18 ) ( 17 ) és ( 18 ) szerint kapjuk, hogy innen pedig: ( 19 ) A Ф szög ismeretében ( 15 ) - ből: ( 20 ) Most visszatérünk az I h integrál kiszámításához; ( 13 ) és ( 14 ) - gyel: ( 21 ) Kiszámítását numerikusan végezzük, a Graph ingyenes szoftver görbe alatti terület - számító szolgáltatásával. Ehhez kellenek a ( 21 ) kifejezésben szereplő állandók értékei. Ezekhez az adatok: R 1 = D 1 / 2 = 0,3 m ; R 2 = D 2 / 2 = 0,4 m ; h / 2 = 0, 65 m. ( A1 ) Most ( 19 ) és ( A1 ) - gyel: ( A2 ) Majd ( A1 ), ( A2 ) és ( 20 ) szerint: ( A3 ) Ezután ( 21 ) kifejezése az adatokkal: ( ( A4 ) A kijelölt műveleteket elvégezve 5. ábra :

7 5. ábra Eszerint: Most ( 8 ), ( 12 ), ( 13 ) - mal: majd ( 4 ) és ( 22 ) - vel: ( A5 ) ( 22 ) ( 23 ) ezután ( 23 ) - mal, számszerűen: tehát: ( E1 ) Ehhez hozzáadva az abroncsok előfeszítéséből származó húzófeszültséget: ( E2 )

8 Ezzel a feladatot megoldottuk. Megjegyzések: M1. Az a tény, hogy [ 1 ] egy matematikai tankönyv, nem biztos, hogy garantálja egy esetleg más forrástól átvett feladat megoldásának jóságát. Az itteni feladatról nem derült ki, hogy átvették - e valahonnan, esetleges hibáival együtt, ellenőrizetlenül. Bár kicsi a valószínűsége, de akár még ez is megtörténhetett. Vagy csak mi nem találtuk ki, hogy pl. hogyan értelmezi a szerző az átlagos feszültséget; vagy más modell alapján dolgozott, stb. Nem zárhatjuk ki egy egyszerű sajtóhiba lehetőségét sem, a végeredmény közlésében. Ha ugyanis a helyes eredmény 281 kg / cm 2 2810 N / cm 2 lenne, akkor az eredményül kapott, a folyadéknyomásból származó ( 2810 2000 ) N / cm 2 = 810 N / cm 2 érték teljesen elfogadható lenne v.ö. ( E1 ). Ha ez így lenne, akkor csak a 281 kg / cm 2 helyett írt 251 kg / cm 2 - es érték elírását kellene felemlítenünk. Ehhez persze az a kis csalás is kell, hogy a feladat kiírásában a borra megadott 850 kg / m 3 - es adatot sűrűségként, ne pedig fajsúlyként értelmezzük. M2. Az 1. ábrán a hordó magasságát H - nak látszó betűvel jelölték. Mi ezt h - ra változtattuk, mert H - val vízszintes erő - komponenseket jelöltünk, ahogy azt [ 1 ] is tette. M3. Bár [ 1 ] a határozott integrálok kiszámításával foglalkozik, jobbnak láttuk az itt fellépő ( A4 ) határozott integrált numerikus úton meghatározni. Ugyanis sok helyen eltéveszthető a hosszadalmas integrálási folyamat, még integrál - táblázat használatával is. Jobb ez így. M4. Azon morfondíroztunk az imént, hogy netán sajtóhiba miatt nem egyezik eredmé - nyünk a forráséval. Meglehet, ennél sokkal lényegesebb momentum az, hogy az álló hordó magassága mentén erősen változhat az abroncsokban a húzófeszültség, egymáshoz képest. Ez a számítás az egyes abroncsok feszültségeiről nem sokat mond, csak az összegükről, illetve a számtani átlagukról kaptunk információt. M5. Továbbra is úgy gondoljuk, hogy a hordó - statika" nem egy könnyű témakör. Ha belegondolunk, mennyit kellett fáradoznunk itt egy átlagos feszültségi eredményért, akkor érthető e véleményünk. Miközben úgy tűnik még eléggé messze vagyunk e megismerési folyamat végétől. Emlékezzünk csak vissza, hogy korábbi fa hordós dolgo - zatainkban már mi mindennel találkoztunk, és mennyi mindent nem oldottunk még meg. Talán majd legközelebb.

9 M6. Utólagos internetes keresés után megtaláltuk azt az orosz feladatgyűjteményt [ 2 ], ahonnan [ 1 ] átvette a fenti feladatot. Eszerint a helyes megoldás: σ = 283 kg / cm 2. Ez már jó. Ezek szerint tényleg az történhetett, hogy rosszul másolták át a végeredményt az eredetiből. Ez nagy öröm nekünk. A 6. ábrán szemlélhetjük az eredeti oldalakat; ezek igazolják a mondottakat. 6. ábra Ha az ( E1 ) - re vezető számítást g = 10 m / s 2 - tel végezzük, akkor az eredmény: σ átl, foly = 823,7 N / cm 2, így σ össz = σ elő + σ átl, foly = 2823,7 N / cm 2 282,4 kg / cm 2, ami már teljesen rendben lévő eredmény. Ha megnézzük a 6. ábrát, akkor azt is látjuk, hogy az ittenit követő feladat végeredménye a σ = 251 kg / cm 2. Ez azonban már nem az álló hordó esete ha jól értjük. Úgy tűnik, sikerült megfejtenünk a rejtvényt, elrendeznünk a dolgokat. Bárcsak az öt - találatosunk is így bejönne A folyamat azért is vehetett sok időt igénybe, mert [ 1 ] - ben ennél a feladatnál sem hivatkoztak közvetlenül az orosz forrásra, hanem csak a bevezetésben felsorolták, hogy kiktől merítettek. Szóval, még szerencse is kellett, hogy fény derüljön a részletekre.

10 M7. Ha már rendelkezésünkre áll a 6. ábra két fahordós feladatának eredménye, akkor azt is meg tudjuk mondani, hogy a fekvő hordó felállításával mekkorát nő az abroncsok átlagos húzófeszültségének nagysága, abszolúte és relatíve is: ~ az abszolút növekedés: Δσ = ( 2830 2510 ) N / cm 2 = 320 N / cm 2 ; ~ a relatív növekedés: δσ = ( 320 / 2510 ) x 100 = 12,7 %. Persze, itt feltettük, hogy a feladatgyűjtemény második hordós feladatának is jó a vég - eredménye. Ezt azért is vállaljuk, mert az első feladat végeredménye már az előbb jónak bizonyult. Irodalom: [ 1 ] Szerk.: Fazekas Ferenc: Műszaki matematikai gyakorlatok A. V.** Határozott integrál ( Második rész ) 3. kiadás, Tankönyvkiadó, Budapest, 1974. [ 2 ] V. Sz. Jablonszkij ~ V. P. Jablonszkaja: Szbornyik zadacs po tyehnyicseszkoj gidrotyehnyike Gosztyehizdat, 1951., Moszkva - Lenyingrad. vagy: http://static.my-shop.ru/product/pdf/159/1587482.pdf Sződliget, 2015. 04. 19. Összeállította: Galgóczi Gyula mérnöktanár