Műszaki analitikai kémia. Alapfogalmak a műszeres analitikai kémiában

Hasonló dokumentumok
NÉHÁNY FONTOS ALAPFOGALOM A MŰSZERES ANALITIKAI KÉMIÁBAN

Mérési hibák

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek

Minőségbiztosítás, validálás

Radionuklidok meghatározása környezeti mintákban induktív csatolású plazma tömegspektrometria segítségével lehetőségek és korlátok

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

Indikátorok alkalmazása a labordiagnosztikai eljárások minőségbiztosításában

Ecetsav koncentrációjának meghatározása titrálással

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Dr. Galbács Gábor. Értékelés: kollokvium vagy zárthelyik alapján megajánlott jegy

Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

QualcoDuna jártassági vizsgálatok - A évi program rövid ismertetése

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

ATOMEMISSZIÓS SPEKTROSZKÓPIA

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

MŰSZERES ANALÍZIS. ( a jelképzés és jelfeldologozás tudománya)

Minőségbiztosítás, validálás

Röntgen-gamma spektrometria

Zárójelentés. ICP-OES paraméterek

Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában

Abszorpciós spektroszkópia

Méréselmélet és mérőrendszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Mérés és adatgyűjtés

VIZSGÁLAT NEHÉZFÉMEKRE NÖVÉNYI DROGOKBAN ÉS NÖVÉNYI DROGKÉSZÍTMÉNYEKBEN

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

Engedélyszám: /2011-EAHUF Verziószám: Műszer és méréstechnika követelménymodul szóbeli vizsgafeladatai

NYOMELEMEK MEGHATÁROZÁSA ATOMFLUORESZCENS SPEKTROSZKÓPIA ALKALMAZÁSÁVAL

A tisztítandó szennyvíz jellemző paraméterei

Anyagvizsgálati módszerek

Titrimetria - Térfogatos kémiai analízis -

KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS

Villamos jelek mintavételezése, feldolgozása. LabVIEW 7.1

Mérési hibák Méréstechnika VM, GM, MM 1

A TÖMEGSPEKTROMETRIA ALAPJAI

Mágneses szuszceptibilitás mérése

MEMBRÁNKONTAKTOR SEGÍTSÉGÉVEL TÖRTÉNŐ MINTAVÉTEL A MVM PAKSI ATOMERŐMŰ ZRT PRIMERKÖRI RENDSZERÉNEK VIZEIBEN OLDOTT GÁZOK VIZSGÁLATÁRA

Magspektroszkópiai gyakorlatok

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Fázisátalakulások vizsgálata

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

MAGYAR ÉLELMISZERKÖNYV. Codex Alimentarius Hungaricus /78 számú előírás

Méréstechnikai alapfogalmak

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Hiszterézis: Egy rendszer kimenete nem csak az aktuális állapottól függ, hanem az állapotváltozás aktuális irányától is.

7. gyak. Szilárd minta S tartalmának meghatározása égetést követően jodometriásan

Korrelációs kapcsolatok elemzése

Minőségirányítási rendszerek 9. előadás

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

Villamos jelek mintavételezése, feldolgozása. LabVIEW előadás

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

Magas gamma dózisteljesítmény mellett történő felületi szennyezettség mérése intelligens

Mágneses szuszceptibilitás mérése

Kontrol kártyák használata a laboratóriumi gyakorlatban

A diffúz reflektancia spektroszkópia (DRS) módszerének alkalmazhatósága talajok ásványos fázisának rutinvizsgálatában

Anyagszerkezet vizsgálati módszerek

Abszorpciós fotometria

Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek

Folyadékszcintillációs spektroszkópia jegyz könyv

Kromatográfia Bevezetés. Anyagszerkezet vizsgálati módszerek

Igény a pontos minőségi és mennyiségi vizsgálatokra: LC-MS/MS módszerek gyakorlati alkalmazása az élelmiszer-analitikában

BORÁSZATI ANALITIKA. Murányi Zoltán Oldal Vince

1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

Műszeres analitika II. (TKBE0532)

Debreceni Egyetem. Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar Élelmiszertudományi Intézet. Szerzők: Prof. Dr.

Folyadékinjektálásos gázkromatográfiás mérések a WESSLING-tesztben: EPH, SVOC, peszticidek

Ón-ólom rendszer fázisdiagramjának megszerkesztése lehűlési görbék alapján

Analitikai módszerek validálása, érvényesítése

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁLATALÁNOS METEOROLÓGIA 2. 01: METEOROLÓGIAI MÉRÉSEK ÉS MEGFIGYELÉSEK

Rezervoár kőzetek gázáteresztőképességének. fotoakusztikus detektálási módszer segítségével

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés Műszer és méréstechnika modul. 1.

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

Új alternatív módszer fenol származékok vizsgálatára felszíni és felszín alatti víz mintákban

9 gyak. Acél mangán tartalmának meghatározása UV-látható spektrofotometriás módszerrel

KÖRNYEZETI VIZEK SZERVES SZENNYEZŐINEK ELEMZÉSE GC- MS/MS MÓDSZERREL

Kromatográfiás módszerek

Abszolút és relatív aktivitás mérése

Analóg elektronika - laboratóriumi gyakorlatok

Mérések hibája pontosság, reprodukálhatóság és torzítás

Szerszámtervezés és validálás Moldex3D és Cavity Eye rendszer támogatással. Pósa Márk Október 08.

UV-sugárzást elnyelő vegyületek vizsgálata GC-MS módszerrel és kimutatásuk környezeti vízmintákban

Tömegspektrometria. Mintaelőkészítés, Kapcsolt technikák OKLA 2017

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Műszerek kiválasztása, jellemzése

É Á Á Ö Á

Számítások ph-val kombinálva

ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú

É É Ö

ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó

ú Ó ú ú ú ú ú ú ú É Á

MOTORHAJTÓANYAG ADALÉKOK KÖRNYEZETI HATÁSAI ÉS MEGHATÁROZÁSI MÓDSZEREI

ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü

ű ő ő ő

Abszorpciós fotometria

Átírás:

Műszaki analitikai kémia Alapfogalmak a műszeres analitikai kémiában Dr. Galbács Gábor A koncepció 1. Valamilyen külső fizikai hatás (elektromágneses sugárzás, hevítés, elektromos feszültség, stb.) alá helyezzük a mintát 2. A minta jellemzőinek külső hatások által előidézett változását (válaszjel) érzékeljük. A válaszjel lehet pl. elektromos, mechanikai, optikai, termikus vagy optikai jellegű, vagyis lényegében fizikai jel. Következésképpen a műszeres analitikai kémia valójában az analitikai kémia fizikai módszereit öleli fel, szemben a kémiai (vagy klasszikus) analízissel. Emlékeztetőül: a klasszikus kémiai elemzés módszerei a kémiai reakciók sztöchiometriájának ismeretén alapulnak, így a térfogat vagy tömegmérés révén teszik lehetővé az egyes komponensek mennyiségének elemzését. Mindezzel szemben a fizikai módszereknél szinte mindig kalibrálni kell.

A kalibráció A kalibráció folyamata során a műszer válaszjele és a mérendő koncentrációja közötti összefüggést határozzuk meg. A kísérletileg meghatározott kapcsolatot a kalibrációs görbe (másképpen: mérőgörbe, analitikai görbe) grafikonja írja le, amely a műszer válaszjelét vagy egy abból közvetlenül származtatott mennyiséget ábrázolja a mérendő komponens koncentrációja vagy anyagmennyisége függvényében. A görbe felvételét ismert koncentrációjú mintasorozattal végezzük; általában öt-hat kalibrációs mintát használunk, beleértve a nulla koncentrációjú mintátis(ún. vakminta vagy blank). ) Agörbe alakja az alkalmazott műszertől illetve mérési módszertől függően lehet más és más, azonban a függvénykapcsolat a hasznos tartományban egyértékű, monoton növekvő, legtöbbször telítési jellegű. Kalibrációs módszerek közvetlen kalibráció Többféle kalibrációs módszer van használatban. Ezek közül a legegyszerűbb a közvetlen (klasszikus) kalibráció, amikor a mérőgörbéről viszaolvassuk az ismeretlenre kapott jel alapján a koncentrációt. A telítési szakaszon az érzékenységék é egyre csökken, a koncentráció-meghatározás bizonytalansága egyre nagyobb, ezért igyekszünk a még elfogadhatóan lineáris (kezdeti) szakaszon mérni. jel Az ismeretlen mintára mért válaszjel Az ismeretlen mintabeli koncentrációja koncentráció

Kalibrációs módszerek standard addíció A (többszörös) standard addíciós kalibrációt olyankor alkalmazzuk, amikor a minta mátrixa a mért válaszjelet befolyásolja (zavaró hatást fejt ki). A módszer lényege, hogy a mintából oldatsorozatot készítünk, amely tagjaihoz egyre növekvő mennyiségben addicionáljuk a mérendő komponenst. A mért jelekből addíciós grafikont szerkesztünk. Fontos feltétel, hogy a válaszjelnek lineárisan kell változnia a mérendő komponens koncentrációjával és a hígulást minimalizálnunk kell. Kalibrációs módszerek belső standard alkalmazása Nem önálló kalibrációs módszer, hanem valójában egy jelkorrekciós eljárás a belső standard alkalmazása. Az eljárás lényege, hogy nem közvetlenül a mérendő komponensre kapott válaszjelet, hanem ennek a válaszjelnek és egy minden mintához azonos koncentrációban hozzáadott (belső standard) komponensre kapott válaszjelnek a hányadosát használjuk a kalibrációhoz. Ezt az eljárást minden más kalibrációs módszerrel összefüggésben alkalmazhatjuk. Ha jól választjuk meg a belső standard komponenst amelynek jelét ideálisan egy független mérőcsatorna méri akkor ezzel a jelkorrekcióval kiküszöbölhetjük a jel rövid és hosszútávú ingadozásából, vagy a mátrixnak mintabeviteli rendszerre gyakorolt általános hatásából származó effektusok jelentősrészét.

Kalibrációs módszerek izotóphigítás Az izotóphígítás abelsőstandard és az addíciós módszer egy speciális kombinációja, amikor a belső standard a mérendő elem egy izotópja. Értelemszerűen az izotóp információt adó módszerekkel (pl. tömegspektrometria) t i ) alkalmazzuk. l k Kalibrációs görbék jellemző adatai Érzékenység (S) az analitikai mérőgörbe deriváltja. Egyszerű esetekben, amikor a mérőgörbe lineáris, az érzékenység független a koncentrációtól és egyenlő a merdekséggel. Más esetekben értéke a koncentrációtól függ, de legtöbbször ilyenkor a kezdeti (lineáris) szakaszon mért értékét adjuk meg.

Kalibrációs görbék jellemző adatai Lineáris dinamikus tartomány az a koncentráció (anyagmennyiség) tartomány, amelyen belül a kalibrációs görbe lineárisnak tekinthető; vagyis az eltérés sehol sem nagyobb, mint 5%. Kalibrációs görbék jellemző adatai Kimutatási határ (DL, LOD) az a legkisebb koncentráció (anyagmennyiség) amelyhez tartozó jel statisztikailag már megbízhatóan elkülöníthető a háttértől (vakminta). A kvantitatív meghatározáshoz ennél 5-10-szer nagyobb koncentrációra van szükség; ez a meghatározási határ (LOQ): 5-10 x DL.

Hitelesítés Hitelesítés során egy műszer mérési pontosságát ellenőrizzük illetve állítjuk be. A hitelesítést hivatalos vizsgálati bizonylattal ellátott minta vagy eszköz (etalon) segítségével végezzük. Hitelesíteni logikusan olyan mérőeszközöket szokás, amelyek valamilyen abszolút mennyiséget, sok esetben fizikai alapmennyiséget határoznak meg (pl. mérleg, feszültségmérő, esetleg egy ph-mérő vagy vezetőképességmérő műszert). Nagyon fontos érzékelni a kalibráció és a hitelesítés fogalma közötti különbséget. A hitelesítés célja a fentiek szerint a műszer pontosságának ellenőrzése és beállítása. A kalibráció célja ezzel szemben a válaszjel-koncentráció függvényt alakját megállapítani. Gondoljuk meg azt is, hogy a legtöbb kalibrációt igénylő kvantitatív műszeres analitikai eljárás esetében nincs szükségünk arra, hogy a mért válaszjel abszolút értelemben is pontos legyen (lásd később). Felbontás Sok műszeres mérési eljárás több információt szolgáltat, mint egyetlen skaláris szám. A spetroszkópiai és kromatográfiás módszerek két- vagy háromdimenziós adatmátrixot (spektrumot, kromatogrammot, stb.) produkálnak egyes mérési paraméterek (pl. hullámhossz, energia, stb.) függvényében, amelyeket többnyire grafikonokon ábrázolunk. Ezeken a grafikonokon az egyes komponensekhez más és más csúcsok tartoznak. A felbontás abból a m1 + m2 R = szempontból jellemzi 2 ( m2 m1 ) amikor ezeket a grafikonokat, h1 + h2 h0 0,05 hogy mennyire válnak 2 külön a szomszédos csúcsok (összefüggésben van a szelektivitással). Jele R, számítása pl. tömegspektrometriában:

Ismételhetőség és reprodukálhatóság Az ismételhetőség a precizitás azon fajtája, amely ismételhető körülmények között elvégzett kísérletekre vonatkozik, vagyis mértéke kifejezhető pl. azonos módszerrel, azonos anyagon, azonos műszerrel, azonos kezelő által azonos laboratóriumban különböző időpontban végzett meghatározások eredményei közötti szórással. A reprodukálhatóság a precizitás azon fajtája, amely megismételhető körülmények között elvégzett kísérletekre vonatkozik, vagyis pl. azonos módszerrel, különböző anyagon, különböző műszerrel, különböző kezelők által azonos laboratóriumban végzett meghatározások közötti szórással fejezhető ki. Zaj, háttér, jel/zaj viszony, stabilitás A zaj a detektortól vagy az elektronika más részeitől származórövid időtávú jelingadozás (ezt is szórással jellemezzük). A háttér fogalma magában foglalja a zajt és a mért jelnek a mérendő komponens távollétében kapott állandó részét is (sok esetben a vakmintával mérhető közelítő értéke). A gyakorlatban a műszereket a legtöbbször a legnagyobb jel/zaj vagy jel/háttér viszony elérésére állítjuk be. Egy gyakorlati szempontól fontos jellemző még a stabilitás. Ez a fogalom lényegében a műszer által adott mintára szolgáltatott válaszjel hosszútávú ú (órák vagy napok alatt tapasztalt) l)ingadozását á adja meg. Értékét általában relatív mennyiségként adjuk meg: (max-min)/átlag.

A műszeres módszerek előnyei és hátrányai A műszeres analitikai módszerek főbb előnyei: gyorsaság (automatizálható, a mérési sebesség magas) érzékenység (nyom- vagy ultra-nyomanalízis is lehetséges) szelektivitás (csekély zavaró hatás) reprodukálhatóság (megbízható) kis mintaigény (ml vagy mg vagy kevesebb) miniatürizálhatóság Hátrányok: jelentős költségek összetett működés rendszeres karbantartás igénye A módszerek osztályozása A műszeres analtikai módszereket általában az alkalmazott vagy detektált fizikai paraméter jellege szerint szokás csoportosítani: elektromos áram/feszültség elektroanalitika elektromágneses sugárzás spektrokémia/radiokémia hőátadás termoanalitika elválasztástechnika kromatográfia

Szenzorikai és hagyományos analitikai szemléletmód Aműszeres analitikai kémiában hagyományosan a módszereket abból anézőpontból szokás tárgyalni, miszerint a minta megy a műszerhez. Legtöbbször tehát mintavétel és mintaelőkészítés után a minta bekerül a laboratóriumba, ahol egy asztali műszeren viszonylag nagy térfogatú mintákat tudunk érzékenyen és nagyon szelektíven mérni. Az ipari/műszaki/orvosi területen újabban az alkalmazások inkább in situ (helyben) történő méréseket követelnek meg. Ilyen esetekben a kémiai mérőeszközök legtöbbször miniatürizált, sorozatgyártott, korlátozott tt szelektivitású itá vagy érzékenységű, ék é ű de igen kis mintamennyiséggel dolgozó és gyors, energiatakarékos eszközök, amelyeket ebben az esetben szenzoroknak nevezzük. A mérési elv a legtöbb esetben hasonló az asztali műszerekhez.