A lektin út aktivációs modelljének korrigálása irányított evolúcióval létrehozott, monospecifikus MASP inhibitorok segítségével

Hasonló dokumentumok
Immunológia alapjai. 10. előadás. Komplement rendszer

Immunológia alapjai. 16. előadás. Komplement rendszer

A lektin út aktivációs modelljének korrigálása irányított evolúcióval létrehozott, monospecifikus MASP inhibitorok segítségével

A preventív vakcináció lényege :

TDK lehetőségek az MTA TTK Enzimológiai Intézetben


Doktori értekezés tézisei

Immunológia alapjai előadás. Az immunológiai felismerés molekuláris összetevői.

TRIPSZIN TISZTÍTÁSA AFFINITÁS KROMATOGRÁFIA SEGÍTSÉGÉVEL

2016. nov. 8. Bajtay Zsuzsa

Immunológia alapjai előadás. Az immunológiai felismerés molekuláris összetevői

Immunológia I. 2. előadás. Kacskovics Imre

[S] v' [I] [1] Kompetitív gátlás

Kutatási beszámoló ( )

Közlemények Köszönetnyilvánítás Bevezetés Célkitűzések... 43

Immunológia 4. A BCR diverzitás kialakulása

Antigén, Antigén prezentáció

A T sejt receptor (TCR) heterodimer

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)

Immunológiai módszerek a klinikai kutatásban

A komplementrendszer aktiválódásának kezdeti lépései: Moduláris szerin proteázok szerepe a természetes immunválasz beindításában

Doktori tézisek. Dr. Szmola Richárd. Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola

Immunológia alapjai előadás Az immunológiai felismerés molekuláris összetevői. Az antigén fogalma. Antitestek, T- és B-sejt receptorok:

Immunológia I. 4. előadás. Kacskovics Imre

4. A humorális immunválasz október 12.

Immunológia alapjai. Az immunválasz szupressziója Előadás. A szupresszióban részt vevő sejtes és molekuláris elemek

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.

Az adaptív immunválasz kialakulása. Erdei Anna Immunológiai Tanszék ELTE

A Magyar Biokémiai Egyesület internetes folyóirata. XXXVI. ÉVFOLYAM 2. SZÁM június

Elválasztástechnikai és bioinformatikai kutatások. Dr. Harangi János DE, TTK, Biokémiai Tanszék

Az immunrendszer működésében résztvevő sejtek Erdei Anna Immunológiai Tanszék ELTE

Natív antigének felismerése. B sejt receptorok, immunglobulinok

Immunológia alapjai 5-6. előadás MHC szerkezete és genetikája, és az immunológiai felismerésben játszott szerepe. Antigén bemutatás.

Szervezetünk védelmének alapja: az immunológiai felismerés

avagy az ipari alkalmazhatóság kérdése biotechnológiai tárgyú szabadalmi bejelentéseknél Dr. Győrffy Béla, Egis Nyrt., Budapest

Az enzimműködés termodinamikai és szerkezeti alapjai

Természetes immunitás

Az ellenanyagok szerkezete és funkciója. Erdei Anna Immunológiai Tanszék ELTE

Apoptózis. 1. Bevezetés 2. Külső jelút 3. Belső jelút

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

Jelutak. Apoptózis. Apoptózis Bevezetés 2. Külső jelút 3. Belső jelút. apoptózis autofágia nekrózis. Sejtmag. Kondenzálódó sejtmag

Biomolekuláris nanotechnológia. Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium

Ellenanyag reagensek előállítása II Sándor Noémi

Összefoglalók Kémia BSc 2012/2013 I. félév

INTRACELLULÁRIS PATOGÉNEK

Immunológia alapjai előadás. A humorális immunválasz formái és lefolyása: extrafollikuláris reakció és

ZÁRÓBESZÁMOLÓ. A pályázat címe: A WFIKKN fehérjék és a miosztatin, GDF11 közötti kölcsönhatás jellemzése. OTKA nyilvántartási száma: 72125

A humán tripszinogén 4 expressziója és eloszlási mintázata az emberi agyban

Molekuláris biológiai eljárások alkalmazása a GMO analitikában és az élelmiszerbiztonság területén

A MASP-1 dózis-függő módon vazorelaxációt. okoz egér aortában

Intelligens molekulákkal a rák ellen

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia

Antigén szervezetbe bejutó mindazon corpuscularis vagy solubilis idegen struktúra, amely immunreakciót vált ki Antitest az antigénekkel szemben az

Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen

3. Az ellenanyagokra épülő immunválasz. Varga Lilian Semmelweis Egyetem III. Sz. Belgyógyászati Klinika

Kutatási programunk fő célkitűzése, az 2 -plazmin inhibitornak ( 2. PI) és az aktivált. XIII-as faktor (FXIIIa) közötti interakció felderítése az 2

Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék

kutatás során legfőbb eredményeinket a szerin proteázok aktiválódásának mechanizmusával és az aktiválódás fiziológiai következményeinek

Gyógyszerrezisztenciát okozó fehérjék vizsgálata

Az immunológia alapjai

Norvég Finanszírozási Mechanizmus által támogatott projekt HU-0115/NA/2008-3/ÖP-9 ÚJ TERÁPIÁS CÉLPONTOK AZONOSÍTÁSA GENOMIKAI MÓDSZEREKKEL

Allergia immunológiája 2012.

2. A jelutak komponensei. 1. Egy tipikus jelösvény sémája 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Anaerob fermentált szennyvíziszap jellemzése enzimaktivitás-mérésekkel

Opponensi vélemény. címmel benyújtott akadémiai doktori értekezéséről

Immunológiai módszerek a klinikai kutatásban

Imunnológiailag fontos fehérjék röntgendiffrakciós szerkezetvizsgálata: fehérje-ligandum kölcsönhatások a működés során Zárójelentés

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

A komplementrendszer aktiválódásának kezdeti lépései: Moduláris szerin proteázok szerepe a természetes immunválasz beindításában

A nemkatalitikus domének szerepe a C1r komplement szerin proteáz működésének szabályozásában

1. Bevezetés. Integrinek, Fc-receptorok és G-fehérje-kapcsolt receptorok jelátvitelének mechanizmusa neutrofil granulocitákban

A PACIFASTIN PROTEÁZ-INHIBITOR CSALÁD SZERKEZET-FUNKCIÓ VIZSGÁLATA NMR SPEKTROSZKÓPIA ÉS IRÁNYÍTOTT EVOLÚCIÓ SEGÍTSÉGÉVEL. Doktori (PhD) értekezés

15. Fehérjeszintézis: transzláció. Fehérje lebontás (proteolízis)

Immunológia alapjai előadás MHC. szerkezete és genetikája, és az immunológiai felismerésben játszott szerepe. Antigén bemutatás.

Humánetológia Humán viselkedési komplex és kötődés. Miklósi Ádám, Etológia Tanszék

Immunitás és evolúció

NANOTECHNOLOGIA 6. előadás

Komplementrendszer, fagociták, opszonizáció

11. Dr. House. Biokémiai és sejtbiológiai módszerek alkalmazása az orvoslásban

Az ellenanyagok orvosbiológiai. PhD kurzus 2011/2012 II. félév

3. Az alábbi citokinek közül melyiket NEM szekretálja az aktivált Th sejt? A IFN-γ B interleukin-10 C interleukin-2 D interleukin-1 E interleukin-4

VEBI BIOMÉRÖKI MŰVELETEK KÖVETELMÉNYEK. Pécs Miklós: Vebi Biomérnöki műveletek. 1. előadás: Bevezetés és enzimkinetika

Az evolúció revolúciója. Forradalmian gyors módszerek új fehérjék előállítására

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK

Immunológiai módszerek a klinikai kutatásban

Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei)

Szőlőmag extraktum hatása makrofág immunsejtek által indukált gyulladásos folyamatokra Radnai Balázs, Antus Csenge, Sümegi Balázs

KALPAINOK SZABÁLYOZÁSA: AZ ENZIM AKTIVÁLÁSA IN VITRO ÉS IRÁNYÍTÁSA IN VIVO

KOAGULÁCIÓS FAKTOROK BIOTECHNOLÓGIAI ELŐÁLLÍTÁSA

A TATA-kötő fehérje asszociált faktor 3 (TAF3) p53-mal való kölcsönhatásának funkcionális vizsgálata

2. Ismert térszerkezetű transzmembrán fehérjék adatbázisa: a PDBTM adatbázis. 3. A transzmembrán fehérje topológiai adatbázis, a TOPDB szerver

VEBI BIOMÉRÖKI MŰVELETEK

ÖSSZ-TARTALOM 1. Az alapok - 1. előadás 2. A jelutak komponensei 1. előadás 3. Főbb jelutak 2. előadás

Jelutak ÖSSZ TARTALOM. Jelutak. 1. a sejtkommunikáció alapjai

Új terápiás lehetőségek helyzete. Dr. Varga Norbert Heim Pál Gyermekkórház Toxikológia és Anyagcsere Osztály

A vérképző rendszerben ionizáló sugárzás által okozott mutációk kialakulásának numerikus modellezése

Jelutak. 2. A jelutak komponensei Egy tipikus jelösvény sémája. 2. Ligandok 3. Receptorok 4. Intracelluláris jelfehérjék

Növényvédelmi Tudományos Napok 2014

BD Vacutainer Molekuláris Diagnosztikai termékei

A MIKROBIOLÓGIA GYAKORLAT FONTOSSÁGA A KÖZÉPISKOLÁBAN MÚLT, JELEN, JÖVŐ SPENGLER GABRIELLA

Átírás:

A lektin út aktivációs modelljének korrigálása irányított evolúcióval létrehozott, monospecifikus MASP inhibitorok segítségével Doktori (PhD) értekezés tézisei Héja Dávid Szerkezeti Biokémia Program, Biológia Doktori Iskola, Eötvös Loránd Tudományegyetem, Természettudományi Kar Témavezető: Dr. Pál Gábor A program vezetője: Dr. Nyitray László A doktori iskola vezetője: Prof. Erdei Anna Eötvös Loránd Tudományegyetem, Természettudományi Kar, Biokémiai Tanszék Budapest, 2012

BEVEZETÉS A komplement rendszer a veleszületett immunitás egyik alappillére, amelyet egy 35 40 tagból álló fehérjehálózat alkot a vérben. A komplement rendszer központi modulja egy proteolítikus kaszkád. A kaszkád három eltérő útvonalon aktiválódhat útvonalanként eltérő molekuláris események hatására. A klasszikus utat immunkomplexek (antigén antitest komplexek) aktiválják, így ha a szervezet egy számára új antigénnel találkozik, a klasszikus út mindaddig nem lép működésbe, amíg az adaptív immunválasz ki nem alakul. Ez hetekig is eltarthat. A lektin és az alternatív útvonalak ezzel szemben ellenanyagtól független módon működnek, így azonnali védvonalat képeznek a szervezet számára. A lektin és az alternatív utat olyan molekuláris mintázatok aktiválják, amelyek felismerésére evolúciós léptékben adaptálódott a komplement rendszer. Ilyen struktúra a lektin út esetében pl. a mannántartalmú bakteriális sejtfal. A komplement rendszer fő funkciója a szervezetet támadó kórokozó mikroorganizmusok és a szervezet saját, pusztuló sejtjeinek eltávolítása. A klasszikus és a lektin út esetében a molekuláris felismerést követően aktiválódnak a felismerő molekulákhoz kapcsolódó zimogén állapotú szerin proteázok, majd komplement fehérjék hasításába kezdenek. A C4 és a C2 komponensek hasítása eredményezi a sejtfelszínen lerakódó (C4b2a összetételű) C3 konvertáz kialakulását, amelyben a proteáz aktivitást hordozó C2a komponens végzi a C3 komplement fehérje hasítását. A C3 hasítási termékei közül a C3b szintén lerakódik a sejtfelszínre. Ezáltal további folyamatok indulnak el. Egyrészt ezen a ponton kapcsolódik be az alternatív út, másrészt további komplement fehérjék is hasításra kerülnek. Mindez a komplement működés utolsó lépéséhez vezet, amelynek során az elpusztítandó sejt membránjában a C5 9 komponensekből összeáll a membrán károsító komplex (C5b 9). A komplex által a komplement rendszer minden egyéb sejtes támogatás nélkül, pusztán fehérje fehérje kölcsönhatásokon keresztül képes közvetlenül a sejteket lízisét előidézni. Sejtes immunválaszt indukálnak viszont a komplement komponensek hasadása során felszabaduló, illetve a sejtfelszínen lerakódó komplement fragmentumok. A komplement rendszer szabályozásának meghibásodása számos betegség kialakulásához vezet. A szívinfarktus és a szélütés során a komplement rendszer az oxigénhiányt túlélt, még funkcióképes sejteket pusztít el. A tömeges sejtpusztulás jelentős részben a lektin út túlzott aktiválódása miatt következik be. Többek között emiatt került a lektin út az érdeklődés 2

középpontjába. Az útvonal aktivációs mechanizmusának egyik leghomályosabb pontja a benne szereplő proteázok, a MASP ok szerepe. Az nem vitatott, hogy a MASP 2 a fő végrehajtó proteáz, mivel egymaga képes C4 és C2 komponenseket is hasítani, ami önmagában elegendő a teljes komplement kaszkád aktiválásához. Ráadásul in vitro megfigyelések alapján a MASP 2 zimogének képesek önaktiválásra is. Tehát a MASP 2 enzimnek látszólag minden képessége megvan ahhoz, hogy egymaga aktiválja a lektin utat. Ezért tartják jelenleg a MASP 2 t a lektin út autonóm aktivátorának. A MASP 1 szerepét az utóbbi években, génkiütött egérben, és olyan humán szérumban vizsgálták, amelyből előzőleg a MASP 1 fehérjét affinitás kromatográfia segítségével kivonták. Azt tapasztalták, hogy a lektin út a MASP 1 hiányában is működőképes maradt. Ugyanakkor az aktiváció sebessége nagymértékben csökkent, ami arra utalt, hogy a MASP 1 a korábban feltételezettnél nagyobb szereppel bír. Az egyik legfrissebb ilyen jellegű tanulmány Kocsis Andrea nevéhez fűződik, aki doktori munkájában a világon elsőként fejlesztett ki lektin út specifikus inhibitorokat. Az SFMI 2 specifikusan gátolta a MASP 2 enzimet, míg az SFMI 1 a MASP 1 mellett, a MASP 2 enzimet is gátolta. Az SFMI inhibitorokkal végzett kísérletek is a MASP 1 lektin út aktivációban betöltött fontos szerepére utaltak. Mindazonáltal MASP 1 specifikus inhibitor híján a MASP 1 lektin út aktivációhoz való hozzájárulásának mértékét nem lehetett pontosan meghatározni. Összegezve, az utóbbi évek eredményei nem változtattak lényegileg a korábbi aktivációs modellen, amely szerint a MASP 2 a lektin út autonóm aktivátora. Az azonban világossá vált, hogy a MASP 1 szerepe a lektin út aktivációjában nem elhanyagolható, de nem sikerült kétséget kizárólag feltárni, hogy a MASP 1 milyen módon és milyen mértékben vesz részt a folyamatban. Doktori munkámban a MASP proteázok szerepének tisztázására vállalkoztam. 3

CÉLKITŰZÉSEK A bevezetőben ismertetett előzmények alapján, doktori munkámban az alábbi, egymásra épülő kísérletes célokat tűztem ki. 1. Az SGPI 2 inhibitor vázon monospecifikus, nagy affinitású inhibitorok létrehozása mind a MASP 1, mind a MASP 2 proteázok ellen, fág bemutatás módszerével. 2. A MASP proteázok lektin út aktivációban betöltött szerepének feltárása az újonnan kifejlesztett, monospecifikus MASP inhibitorok (SGMI, SGPI 2 alapú MASP inhibitor) segítségével. 3. Az SGMI/MASP komplexek kristályszerkezetének meghatározása. Az itt megfogalmazott kísérletes célok megvalósítása elérhető közelségbe hoz olyan távlati célokat, mint a lektin út túlműködéséhez köthető betegségek (pl. szívinfarktus) célzott kezelése, vagy a lektin út szerepének felderítése a komplement rendszerrel összefüggésbe hozható betegségek kialakulásában. 4

MÓDSZEREK Irányított fehérjeevolúció Fág bemutatást alkalmaztam az SGPI 2 vázon való MASP inhibitorok kifejlesztéséhez. Alap rekombináns DNS technikák Kunkel féle mutagenezissel hoztam létra az inhibitor fág könyvtárat. A szelektált inhibitor variánsok aminosav sorrendjét DNS szekvenáláson keresztül határoztam meg. PCR technikával előállított DNS kazettákból hoztam létre egy új expressziós vektort, amelybe szintén PCR alapú mutagenezis technikával létrehozott inhibitor variánsokat klónoztam. Rekombináns fehérjék előállítása és tisztítása Beállítottam egy új rendszert, amelyben az SGMI inhibitor variánsok natív formában és nagy mennyiségben termelhetők. E. coli BL21 Star sejtekkel termeltettem az inhibitor variánsokat. Durva frakcionálási és folyadékkromatográfiás módszerekkel tisztítottam meg az inhibitorokat. Funkcionális mérések Az inhibitorok hatékonyságát a MASP proteázokon mért egyensúlyi inhibíciós állandók meghatározásán keresztül állapítottam meg. A MASP proteázok lektin út aktivációjában betöltött szerepét ELISA típusú tesztekben vizsgáltam az SGMI inhibitorok segítségével, normál humán szérumban és vérben. Szerkezet vizsgálatok Az SGMI/MASP kölcsönhatás és a MASP proteázok működésének alaposabb megértéséhez az SGMI/MASP komplexek szerkezetét röntgen krisztallógráfia segítségével határoztuk meg. 5

EREDMÉNYEK 1. Az SGPI 2 alapváz kötőhurok optimalizálásával nagy affinitású MASP 1 és MASP 2 inhibitorokat hoztam létre (SGMI 1 és SGMI 2) 2. Az SGMI inhibitorok nem gátoltak egyetlen véralvadási enzimet, és a megfelelő MASPokon kívül egyetlen más komplement proteázt sem. Tehát mindkét SGMI monospecifikus inhibitornak mondható. 3. A MASP 2 specifikus SGMI 2 hatékonyan gátolta a C5b 9 kialakulását, a C3b és a C4b lerakódást is. A MASP 1 specifikus SGMI 1 is teljes mértékben gátolta ugyanezeket a folyamatokat, de csak abban az esetben, ha az inhibitort még a zimogén MASP ok aktiválódása előtt a hígított szérumhoz adtam. A MASP zimogének aktiválódása után az SGMI 1 inhibitorral már nem lehetett gátolni a lektin utat. 4. Fiziológiás körülmények között: normál humán szérumban és teljes vérben is gátolta a lektin utat mindkét SGMI inhibitor. 5. Mindkét SGMI inhibitorral teljes mértékű lektin út gátlást lehetett előidézni MBL MASP és Fikolin MASP összetételű aktivátor komplexek esetében is. 6. A produktív (C3 konvertáz kialakulással járó) C2 hasítás 60% át a MASP 1, míg 40% át a MASP 2 végzi. 7. Meghatároztuk az SGMI 1/MASP 1 (3,2 Å) és az SGMI 2/MASP 2 (1,3 Å) komplexek kristályszerkezetét is. 8. Az eredmények alapján a lektin út aktivációjának egy új modelljét állítottam fel, ami összhangban áll valamennyi idevonatkozó kísérletes eredménnyel. 6

KÖVETKEZTETÉSEK A lektin út aktiváció korrigált modellje A kísérleti eredmények a következő, lényegileg új megállapításokra vezettek a lektin út aktivációjára vonatkozólag: 1. A MASP 1 közvetlenül és kizárólagos módon aktiválja a MASP 2 zimogént normál humán szérumban és vérben. 2. Fiziológiás körülmények között tehát a MASP 2 nem önaktiválódik, így a MASP 2 valójában nem autonóm aktivátora a lektin útnak. 3. A fiziológiásan releváns C2 hasításban a MASP 1 nek jelentősebb szerepe van, mint a MASP 2 nek. 4. A fenti megállapítások az MBL/MASP és a fikolin/masp komplexekre egyformán érvényesek, ezért a kétféle komplex azonos működési mechanizmusú. Az 1. és a 2. pontban foglaltak ellentmondásban állnak a jelenleg elfogadott irodalmi nézettel a MASP ok szerepét illetően. Az ellentmondások azonban csak látszólagosak, többnyire nem magukkal a korábbi eredményekkel, hanem azok értelmezésével kapcsolatosak. Egy új, korrigált aktivációs modell segítségével az ellentmondások feloldhatóak. A MASP 1 vérben mérhető koncentrációja 20 szor magasabb, mint MASP 2 enzimé. Emiatt feltételezhető, hogy az aktiváció során a sejtfelszínre lerakódó zimogén MASP 2 enzimek az esetek többségében MASP 1 zimogének gyűrűjében helyezkednek el. Ráadásul a MASP 2 zimogének aktiválását az aktív MASP 1 20 szor nagyobb sebességgel végzi, mint az aktív MASP 2 (Dobó József nem publikált eredményei alapján). Ezen ismeretek alapján érthetővé válik, hogy miért lehet a MASP 1 a MASP 2 professzionális aktivátora. Az itt ismertetett egyszerű felállás magyarázatot ad a 2. megállapításra is. A 20 szoros feleslegben lévő MASP 1 proteázok térben elválasztják, izolálják a MASP 2 zimogéneket, amelyek inherens önaktiváló képessége ezáltal nem érvényesülhet. Ezt mutatjuk ki akkor, amikor a MASP 1 molekulákat in situ gátoljuk. Modellünkből következik, hogy amennyiben a rendszerből teljes mértékben eltávolítanánk a MASP 1 enzimet, úgy a MASP 1 által üresen hagyott kötőhelyeket (legalább részben) MASP 2 enzimek töltenék fel a felismerő molekulákon. Ebben az esetben a MASP 2 zimogének kellő közelségbe kerülhetnek ahhoz, 7

hogy önaktiváló képességük érvényesülhessen. Tehát MASP 1 hiányában is várható volna a lektin út aktiválódása, de csak jóval lassabb ütemben, mint a MASP 1 jelenlétében. Pontosan ezt figyelték meg azokban a kísérletekben, ahol génkiütéssel vagy affinitás kromatográfiával teljesen eltávolították a MASP 1 enzimet (lásd bevezető). Ezekben a kísérletekben tehát nem fiziológiás összetételben voltak jelen a lektin út aktivációs komplexei. Ezzel szemben az új modell alapjául szolgáló kísérleteket normál humán szérumban és teljes emberi vérben végeztem. Így intakt állapotú lektin út aktivációs komplexekben vizsgáltam a MASP 1 enzimaktivitás in situ gátlásának hatását. Összefoglalva, a legfontosabb különbség a régi és az új modell között az, hogy amíg a régi modell autonóm útvonal aktivátornak tartotta a MASP 2 proteázt, addig az új modell azt teljes mértékben a MASP 1 enzim irányítása alá vonja. Az SGMI inhibitorokkal végzett kísérletek tehát felfedték, hogy az eddig másodhegedűsnek tartott MASP 1 valójában a lektin út aktivációjának karmestere. A dolgozat egyik általános konklúziója, hogy a génkiütéssel és az in situ gátlással végzett kísérletek eltérő eredményre vezethetnek egy egy adott fehérje funkcióját illetően. Ezzel kapcsolatban a további következtetés az, hogy ilyen esetben folytatni kell a kísérleteket mindaddig, amíg olyan működési modellhez jutunk, ami az összes kísérleti rendszer eredményeivel összhangban áll. Csak így tárhatjuk fel az adott fehérje valós funkcióját. Szerkezeti aspektusok Az SGMI inhibitorok első ízben kínáltak lehetőséget arra, hogy a MASP enzimek szerkezetét szubsztrátszerű fehérje partnerrel komplexben is megfigyelhessük. A komplex képződés hatására a MASP 2 esetében nagymértékű átrendeződés következik be a szubsztrát kötő felszínt övező felszíni hurkok szerkezetében, míg a MASP 1 esetében alig észlelhető ilyen változás. A felszíni hurkok eltérő szerveződése lehet a szerkezeti alapja a MASP 2 rendkívül szűk, és a MASP 1 viszonylag széles szubsztrát specifitásának. Figyelemreméltó jelenség az is, hogy a MASP 2 milyen jelentős térszerkezeti változást követel meg a szubsztrátszerű inhibitor részéről a komplex kialakulása során. Logikus feltevés, hogy hasonló jellegű konformáció változásokat igényelhet a MASP 2 komplexképzése a természetes szubsztrátjaival. Elképzelhető, hogy csak a komplexben válik a megfelelő enzim számára hozzáférhetővé a C2 illetve a C4 hasítandó peptidkötése. Az SFTI és az SGPI 2 alapú MASP inhibitor fejlesztés eredményei, és az SGMI/MASP komplex szerkezetek összehasonlító vizsgálata rávilágított arra, hogy az optimális proteázkötő 8

szekvencia inhibitor váztól való függetlenségének Laskowski által bevezetett elmélete nem lehet érvényes a kulcs zár mechanizmustól eltérő módon kialakuló, konformáció változással járó fehérje fehérje kölcsönhatások esetében. Terápiás vonatkozások Új modellünk alapján a MASP 2 és a MASP 1 egyaránt tökéletes gyógyszercélpont a lektin út által kiváltott szövetsérülések kivédésére. Ennek megfelelően mindkét SGMI inhibitor gyógyszer jelölt molekulának tekinthető. Ezek a monospecifikus inhibitorok emellett hasznos eszközei lesznek a lektin út még ismeretlen élettani és kórélettani szerepeinek feltárásában is. 9

A dolgozat alapjául szolgáló közlemények Héja, D., Kocsis, A., Dobó, J., Szilágyi, K., Szász, R., Závodszky, P., Pál, G. & Gál, P. (2012). Revised mechanism of complement lectin pathway activation revealing the role of serine protease MASP 1 as the exclusive activator of MASP 2. Proc Natl Acad Sci U S A 109, 10498 503. Héja, D., Harmat, V., Fodor, K., Wilmanns, M., Dobó, J., Kékesi, K. A., Závodszky, P., Gál, P. & Pál, G. (2012). Monospecific Inhibitors Show That Both Mannan binding Lectinassociated Serine Protease 1 (MASP 1) and 2 Are Essential for Lectin Pathway Activation and Reveal Structural Plasticity of MASP 2. J Biol Chem 287, 20290 300. Gál P., Héja D., Pál G., Závodszky P. (2010) Új fehérjék, eljárás előállításukra és alkalmazásuk Lajstromszám: P1000366 Szabadalom A dolgozat témájához szorosan nem kötődő egyéb közlemények Szabó, A., Héja, D., Szakács, D., Zboray, K., Kékesi, K. A., Radisky, E. S., Sahin Tóth, M. & Pál, G. (2011). High affinity small protein inhibitors of human chymotrypsin C (CTRC) selected by phage display reveal unusual preference for P4' acidic residues. J Biol Chem 286, 22535 45. Bozsó Zs., Hári P., Hegyi Gy., Héja D., Málnási Cs. A., Pál G., Penke B. (2011) Keresztkötő reagens biopolimerekhez Lajstromszám: P1100720 Benyújtott Szabadalom 10