0) I=0 I=1/2 I=k (k=1,2,..) töltéssel forog (I=1/2)

Hasonló dokumentumok
A BioNMR spektroszkópia alapjai

A BioNMR spektroszkópia alapjai

Műszeres analitika II. (TKBE0532)

Mágneses módszerek a mőszeres analitikában

NMR a peptid- és fehérje-kutatásban

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Mágneses módszerek a műszeres analitikában

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

Alkalmazott spektroszkópia

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia

FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v

Biomolekuláris szerkezeti dinamika

Lehet ségek és kihívások a modern bionmr spektroszkópia területén


Peptidek és fehérjék szerkezetvizsgálata spektroszkópia és in silico módszerekkel

Lehetőségek és kihívások a modern bionmr spektroszkópia területén

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia

Biomolekuláris szerkezeti dinamika

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Morfológiai képalkotó eljárások CT, MRI, PET

A fény és az anyag kölcsönhatása

Rádióspektroszkópiai módszerek

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

lásd: enantiotóp, diasztereotóp

Vektorok, mátrixok, tenzorok, T (emlékeztető)

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Medical Imaging Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás

Bevezetés a részecske fizikába

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Az MR(I) módszer elve. Dr.Fidy Judit 2012 március 7

24/04/ Röntgenabszorpciós CT

3. Sejtalkotó molekulák III.

Fizika M1, BME, gépészmérnök szak, szi félév (v6)

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

Fizikai kémia 2. ZH V. kérdések I. félévtől

Az MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer

Spektroszkópiai módszerek 2.

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.

Matematika (mesterképzés)

Hangfrekvenciás mechanikai rezgések vizsgálata

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

A spin. November 28, 2006

I. Az NMR spektrométer

alapvető tulajdonságai

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

A Mössbauer-effektus vizsgálata

5.4. Elektronspektroszkópia

Bioinformatika előad

2015/16/1 Kvantummechanika B 2.ZH

Biológiailag aktív molekulák kölcsönhatásvizsgálata NMR-spektroszkópiával

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

A fehérjék hierarchikus szerkezete

Az (N)MR(I) módszer elve

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

Az NMR spektroszkópia alapjai

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Az elektromágneses hullámok

Az elméleti mechanika alapjai

Fizika 2 - Gyakorló feladatok

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános

Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék

Nagy Sándor: Magkémia

Az ionizáló sugárzások fajtái, forrásai

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

The magnetic pole model: two opposing poles, North (+) and South (-), separated by a distance d produce an H- field (lines).

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések

1. Tömegszámváltozás nélkül milyen részecskéket bocsáthatnak ki magukból a bomlékony atommagok?

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

FIZIKA II. Az áram és a mágneses tér kapcsolata

Magszerkezet modellek. Folyadékcsepp modell

Lin.Alg.Zh.1 feladatok

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

2, = 5221 K (7.2)

Fourier transzformáció

NMR, MRI. Magnetic Resonance Imaging. Times, október 9 MRI

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

Átírás:

Az NMR-spektroszkópia szükséges feltétele a nullától különbözÿ magspin (I 0) I=0 mind a protonok mind a neutronok száma páros ( 12 C, 16 O) I=1/2 ha tömegszáma páratlan ( 1, 3, 13 C, 15 N, 19 F, 57 Fe, 113 Cd) vagy a protonok, vagy a neutronok száma páratlan. I=k (k=1,2,..) mind a protonok mind a neutronok száma páratlan ( 2, 14 N) klasszikus modell: atommag egy töltéssel rendelkezÿ részecske, mely továbbá egy adott tengely mentén forog. Töltéssel rendelkezÿ mag + forgása = köráram létesítése. Köráram ÿ mágneses momentum (µ). Bio-NMR Feles spin kvantumszámú (I=1/2), µ éppen a mágneses dipolmomentum vektor (rúdmágnessel modellezhetÿ). A mágneses dipólmomentum (µ) arányos a szögimpulzusmomentum vektorral (I). Giromágneses állandó (γ) egy, az atommagra jellemzÿ mennyiség: µ =γ I.

Külsÿ mágneses tér hiányában a magok spinjei rendezetlenül állnak kérdés: Egy ilyen elemi dipólmomentum vektor (µ) a külsÿ térerÿnek (B o )megfelelÿen, azzal párhuzamos irányba rendezÿdik-e? válasz: Nem! magyarázat: Az említett atommagokhoz mágnese tulajdonsága mellett forgó mozgást is rendeltünk, ezért az elemi mágneses dipólmomentum vektorok (µ)akülsÿ sztatikus mágneses térre (B o ) merÿleges sík szerinti forgó mozgást, úgynevezett precessziót fognak végezni.

ÿ Külsÿ mágneses tér hatására rendezÿdött és precesszáló magok z y ÿ x Külsÿ mágneses tér hatására rendezÿdött és precesszáló spinek (közös origóból ábrázolva)

(búgócsiga modell) Impulzusmomentum ω o szögsebesség nagysága arányos a külsÿ statikus térerÿ nagyságával: ω o = γb o. Az ω o szögsebességgel arányos ν o (Larmor-frekvencia): ν o = ω o /2π. A mágneses dipólmomentum vektor (µ)idÿbeli változását a következÿ vektoriális szorzat írja le: dµ/dt = γ B o µ Forgásirány Forgó korong impulzusmomentuma

A makroszkopikus-, globális- vagy mérhetÿ-mágnesezettség (M), a megfelelÿ elemi vagy mikroszkopikus mennyiség additív összege: M = Σµ i Ennek segítségével a Larmor-precesszió átírható makroszkopikus alakba: d M /dt = -γ B o M A µ i vektoroknak kizárólag a B o -al párhuzamos, szokásosan z irányúnak nevezett komponensei adódnak konstruktívan össze. A termikus egyensúly állapotában tehát, a M z = Σ (µ z ) i a tehát I =1/2 (pl. 1, 13 C, stb.) akkor a (2I+1)=2, azaz két állapot. két kvantumállapotot α> és β> két energia (E α és E β ) két betöltöttségek (N α és N β ) N / N β α = exp (- E/kT). egy átmenet (Zeeman-átmenet) energiakülönbség ( E): E=hγΒ ο /2π

A BLOC-egyenletek z-irányú mágnesezettség idÿbeni alakulása: dm z' /dt= (M z' M o )/T 1 Az egyszer differenciál-egyenletet megoldásaként a következÿ függvényt kapjuk: M z' (t)=m o (1 exp( t/t 1 ) az x,y-síkban zajló csillapított amplitúdójú rotációt precesszió alakulása: dm x' /dt=(ω o ω)m y' M x' /T 2 dm y' /dt= (ω o ω)m x' M y' /T 2 Csatolt differenciál-egyenletrendszer megoldásaként a következÿt kapjuk: M x' (t)=m o exp( t/t 2 )sin(ω o ω) M y' (t)=m o exp( t/t 2 )cos(ω o ω), ahol (ω o ω) a forgó referencia rendszerben a precesszió szögsebessége.

Ennek a függvény a Fourier-transzformáltja az NMR-spektrum.

Külsÿ mágneses térben a makroszkopikus mágnesezettség gerjesztése annak precessziójához vezet, amely mérhetÿ indukált feszültséget eredményez

A nagy felbontású NMR-spektrumok öt jellemzÿ paramétere csatolási állandó félértékszélesség (J érték) terület multiplicitás kémiai eltolódás δ=[(υ M -υ R )/ υ R ]10 6 Jellegzetes proton kémiaieltolódás értékek COO 14 12 10 8 6 4 2 0 CO N=C Ar RCONQ Ar-O C=C RO RQN C C 2 C 3 TMS 14 12 10 8 6 4 2 0

Spin-spin csatolás (a színkép finomszerkezete) a b A B A és B magok indirekt módon a és b elektronokon keresztül csatoltak. A jelenség a spin-spin felhasadás, a skaláris csatolás vagy a J-csatolás dublet mintázat

triplet mintázat kvadruplet mintázat

Jellegzetes 13 C kémiaieltolódás értékek CO 210 180 150 120 90 60 30 0 CO COO COOQ CONQ CN Ar alkin alkilhalogenid alkilamin alkén alkán CO (alkohol, éter) 210 180 150 120 90 60 30 0

Mekkora egy fehérje? néhány tucat aminosavtól esetleg több ezerig 3bet s kód: -Thr-is-Ile-Ser-Ser-Ile-Met-Pro-Leu-Glu- 1bet s kód: T - -I -S S -I -M -P -L -E Térszerkezet Szekvencia Funkció

ány fehérjetérszerkezet ismert?

ogyan ismerhetÿ meg a fehérjetérszerkezet? kristályosítás röntgen-diffrakció elektron s r ség térkép oldatkészítés NMR-spektroszkópia geometriai kényszerfeltételek számítógépes modellezés szerkezetfinomítás 3D-szerkezet

Miért szükséges a fehérjetérszerkezet ismerete? Közismert betegségek megértése: Sarlósejtes anémia (Glu Val mutáció ÿ dezoxihemoglobin fokozott agregációja) Kergemarha kór (Creutzfeld-Jakob disease) (prion fehérje misfold ) szivacsos enkefalopátisz Alzheimer kór (β-amiloid misfold és aggregáció) Racionális gyógyszertervezés: pl. IV proteáz inhibítor

Peptid és fehérje NMR-spektroszkópia alapjelenség eltérÿ kémiai környezet eltérÿ rezonancia frekvencia N α- β- γ-

Peptid és fehérje NMR-spektroszkópia 1. jelhozzárendelés a jelhozzárendelés vagy spektrum asszignáció ez elÿbbi megfigyelésen alapszik eltérÿ rezonancia frekvencia eltérÿ kémiai környezet N α- β- γ-

omonukleáris NMR-spektroszkópia egy dimenzióban N(W indol) N(amid gerinc) N(amid oldallánc) (aromás) C(α) C(ε) C(β) C(δ) C(γ) C 3 TMS 14 12 10 8 6 4 2 0 14 12 10 8 6 4 2 0

omo- vagy eteronukleáris NMR-spektroszkópia két dimenzióban

Ala A 3 X COSY * O N C C C 3 α β TOCSY Gly COSY α 1 α 2 AX TOCSY * O N C C

Val A 3 B 3 MX COSY * O N C C C C 3 C 3 α β γ 1 γ 2 TOCSY Lys COSY A 2 (F 2 T 2 )MPX * O N C C C C 2 C 2 α ε β 1 β 2 γ δ TOCSY C 2 N 2

Leu A 3 B 3 MPTX COSY α β 1 β 2 γ δ 1 δ 2 TOCSY * N O CC C C C 3 C 3 Ile A 3 MPT(B 3 )X COSY α β γ 11 γ 12 γ 2 δ TOCSY * N O CC γ 2 C C 3 C γ 11 γ 12 C 3

Jtípus COSY AMX O N * CC C R α β 1 β 2 TOCSY R=O Ser S Cys COO Asp CON 2 Asn C 6 5 Phe C 6 5 O Tyr C 3 3 N 2 is C 8 6 N 1 Trp

Phe gyÿrÿ COSY AA XX M N * O CC δ C 2 ε ζ δ ε ζ TOCSY Tyr gyÿrÿ COSY AA XX * O N CC C 2 δ δ ε TOCSY ε O

is gyÿrÿ COSY AX O N CC * C 2 N δ 2 ε 1 N * TOCSY Trp gyÿrÿ COSY A(X)MP + A * N O CC C 2 N * δ ζ 2 ε 3 ε 3 η 2 ζ 2 ε 3 δ ε 3 η 2 TOCSY

NOESY B D β Ala A G F C α Ala β1 Ser β2 Ser E α Ser N Ser N Ala TOCSY E C CO F C C N G D CO O Ser intrareziduális NOE (A,B,E,F,G) A C N B C 3 Ala interreziduális NOE (C,D)

omonukleáris NMR-spektroszkópia Jelhozzárendelés

Peptid és fehérje NMR-spektroszkópia 2. szerkezetmeghatározás Távolság jellegÿ adatok (NOE) ÿ 3D-szerkezet

Schistocerca gregaria kimotripszin inhibitor (SGCI) hidrofób magja

Makromolekulák 3D szerkezetének meghatározása NMR adatok alapján NMR spektrumok NMR jelhozárendelés távolság jellegÿ kényszerfeltételek torziószög típusú kényszerfeltételek Kezdeti szerkezet distance geometry restrained dynamics simulated annealing IGEN Konvergencia? Restrained dynamics Restrained minimization NEM 3D szerkezet

Egy helikális fragmens szerkezetének finomítása

Magnetic Resonance Imaging (MRI) a gyógyászatban elÿnyök: - nem használ ionizáló sugárzást mint a röntgen - nem kell feszték vagy kontrasztanyagot bevinni - lágy-szövetek kontrasztosabbak kivitelezés: tipikus 1 -NMR kisérlet ahol a szöveteket felépít sejtek protonjait figyeljük meg. képalkotás függ: az adott szövetben lév protonok számától, az adott protonok relaxációs idejét l (T1 spin-mátrix relaxációs id és T2 spin-spin relaxációs id ) felhasználási terület: tumor sejtek, ödémák, koros elváltozások azonosítása 31 P-NMR sejt-metabolizmusok követése