Az (N)MR(I) módszer elve

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az (N)MR(I) módszer elve"

Átírás

1 A biomolekuláris szerkezet és dinamika vizsgáló módszerei Az (N)MR(I) módszer elve Dr.Fidy Judit 215 május 5 Biomolekuláris szerkezet? (összefoglalás az eddig tanultak alapján) Nagyságrendek - sejtek, sejtorganellumok ~ 1-1 μm - makromolekulák és komplexeik ~.1-1 nm Aktin filamentumok Mikrotubulusok Sejtmag Ion-transzport fehérje és membrán-lipidek atomjai a H-ek nélkül, környezetben víz és ionok Két doménből álló fehérje polipeptid lánca és másodlagos szerkezeti elemei A szerkezetmeghatározás módszerei 1. Sejtek, sejtorganellumok 2. Makromolekulák és komplexeik Mérettartomány módszer ~μm Konfokális mikroszkóp Multifoton gerjesztés Fluoreszcens jelzés Központi idegrendszer kék Mikrotubulusok - zöld Fénymikroszkópia? Abbe elve: Drosophila melanogaster embrio Felbontóképesség: 1/δ δ =.61 λ λ 2nm nsinα 2 Mikroszkópi technikák felbontása TIRFM, szuperrezolúciós mikroszkóp (+fluoreszcens jelzés) < 2 nm DNS-re feltekeredett fehérje-filamentum AFM, elektron mikroszkópia ~ 1, 1 nm EM-képe UV-VIS abszorpciós és fluoreszcencia spektroszkópia IR és CD spektroszkópia 3. Makromolekulák molekulák szerkezete atomi részletességgel Röntgen-diffrakció (makromolekulák kristályain!) NMR spektroszkópia (kisebb tartományok szerkezete, nagy koncentráció!) (Tömegspektrometria) A tormaperoxidáz enzim atomi részletességű szerkezete

2 A szerkezet dinamikájának jellemzése Új anyag: Szerkezeti Dinamika ~ belső atomi mozgások összessége (másodlagos kötések felszakadása visszaépülése) Jellemzése: fizikai jelek időbeli változása pl. 1. fluoreszcencia élettartam v. lecsengési idő mennyire van lehetőség egy energia-átvevő molekulával való ütközésre Az atommag mágneses rezonancia jelensége, és alkalmazása: - NMR spektroszkópia - MR képalkotó diagnosztikai módszer (MRI) 2. mágneses momentumok orientációjának relaxációs sebessége az orientáló hatás megszűnte után l. később:nmr paraméterek Ábrák: Kastler-Patay: MRI orvosoknak, Folia Neuroradiologica, Történelmi háttér jelenség és alkalmazások NMR -spektroszkópia Bloch, Purcell, : Nobel-díj I. A mag mágneses rezonancia jelensége MRI: első élő felvétel 1973 első rétegvizsgálat 1977 első emberi agyvizsgálat 198 Felix Bloch Edward Mills Purcell EPR Electron Paramagnetic Resonance elektron spektroszkópiai módszer magyarul: ESR Elektron-Spin Rezonancia-spektroszkópia

3 2. Az atommagok spin-állapottal rendelkeznek, hasonlóság az elektronnal 3. A spin-állapot (saját impulzusmomentum/perdület) kvantált viselkedése Az atommagok alkotói: protonok és neutronok P N Rendelkeznek saját impulzusmomentummal: spinnel S N =S P =1/2 kvantumszám azonos mint az elektron! Modell: elektron r A saját impulzusmomentum viselkedése azonos az elektron-pályákhoz tartozó impulzusmomentum kvantált viselkedésével: Nagysága kvantált: Planck állandó L h = L = l l 2π L r S ( + 1) r r r L = mv L r A spin-állapot eredete a nukleonok kvark-szerkezete: N és P egyenként 3-3 de különböző kvarkból állnak kvarkok: ½ spin-kvantumszámú, tömeggel és elektromos töltéssel bíró alkotók l=,1,2,..n-1 mellékkvantumszám Modell: pályáján körbe forgó elektron (m tömeg, v sebesség, r pályasugár) mozgásához tartozó impulzusmomentum vektor Iránya nagysága: L = mvr L iránya is kvantált: iránykvantálás A spin-momentum hasonlóan kvantált viselkedése H(z) L Pl. l= 2 5-féle irány L x és L y nem meghatározott Egy kitűntetett irány pl. H (z) mágn. térhez viszonyítva csak meghatározott irányok L cos Θ = L = h 2π z m l (m l =,+/-1, +/-l) Mágneses kvantumszám 2l +1 -féle Nagysága : r S = S = h S( S + 1) 2π Iránya kvantált: S cos Θ = S = h 2π z m S H r (z) m S : spinhez rendelt mágneses kvantumszám 2S+1-féle értéket vehet fel 2-féle beállás m S = +1/2 és -1/2 S r

4 4. Impulzusmomentummal rendelkező elektromos töltéssel bíró részecskék mágneses dipólus-momentummal is rendelkeznek A spin-mágneses momentum iránykvantáltsága Impulzusmomentum~körmozgás töltés körmozgása=köráram mágneses dipólus μ l = e 2 m r L Mágneses momentum vektor elektron töltése elektron tömege Iránya párhuzamos az impulzusmomentummal, iránykvantálás irányítottsága ellentétes A spin-momentumhoz is tartozik mágneses momentum! e r μ S = 2 S 2 m = e r μ 2 = e 2 h S S s ( s + 1 ) 2 m 2 m 2 π r, = e r μs z 2S 2m m = ± 1 S 2 z = e 2 h m 2m 2π S = e h m 2m π 2 irány z-irányú vetület nagysága azonos S H r (z) Az elektron spin állapotához tartozó saját mágneses momentum z irányú vetületének nagysága: Bohr magneton μ B az xy-síkra vett vetülete nem meghatározott! eh 4π m elektron töltése elektron tömege 5. Az atommagok spin-állapotához tartozó mágneses momentum N P Irányitottságuk ellentétes, és μ N < μ P μ μ μ e, z N, z P, z μ g = = 2 s μ B = 2 s = 2 s eh 4πm n = μ B ( 1.91 ) ( 2.79 ) Giromágneses konstans μ g μ g m P ~184m e!! μ g << μ B A nukleonok mágneses momentuma jóval kisebb, mint az elektroné Több nukleonból álló atommagok spin-mágneses momentuma több nukleon, párosával energiaszinteken, ellentétes spinnel 3 1 = H kétnneutron μn egyn proton μmag = μp = = 2.79 μg A páros számu nukleonok ellentétes momentumai közömbösítik egymást 3 μg 2 μ N μ P 3 A mag momentuma =, ha a protonok v. neutronok száma ptl. szám

5 A H-atommag (proton) - momentum jelentősége: μ P kiemelkedően nagy Az élő szervezet atomjainak mágneses momentuma M ag n p 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Li 7 3 Li 9 4 Be 1 5 B I h-ban 1/2 1/2 1 1/2 1/2 1 3/2 3/2 3 μ μ g - ben M ag -1, C +2, C -, N N -2, O 17 8 O +, Cl -3, In -1, Pb -1, Bi I h-ban 1/2 1 1/2 5/2 2 9/2 9/2 μ μ g -ben +,7 +,4 -,28-1,9 +1,3 +5,5 +4 h = h 2π Milyen atommagoknak lesz jele mágneses kölcsönhatásban? Diagnosztika a szervezetben előforduló atommagok? páratlan atomszámúak? 1 H 13 C 19 F 23 Na 31 P I impulzusmomentum h -ban van megadva Az anyagokban igen sok H van eredő momentum nagy Atomok 2/3-a H! Nagy mágneses momentum! Sok legyen belőle! Proton-MRI 6. A protonok mágneses momentuma mágneses térben iránykvantálást mutat energetikailag is különböző állapotok Klasszikus viselkedésű mágneses momentum energiája mágneses térben E = H r ~ B r E B μ cosφ = E Bμ z φ μ r Zeeman effektus Zeeman felhasadás Kvantumos viselkedésű spin-mágneses momentumok mágneses térben kétféle orientációt vesznek fel, ezek energiában különböző állapotok, és az energiakülönbség lineárisan nő a mágneses tér nagyságával E E 2 antiparallel Az energia mágneses tér nélkül E csökken, ha cos φ nő a mágneses tér orientálja a momentumot parallel irányba E ΔE =2μ B Z Kvantumos viselkedésű mágneses momentum kétféle orientáció parallel és antiparallel orientációk energia-különbség ( E E ) ( E E ) ΔE = E 2 E1 = o mágn.2 = μb cos φ + μb cos φ = 2 μ B Z mágn.1 Zeeman féle energiafelhasadás = mágneses tér nélkül: E energia 1T 2T B E 1 parallel T:Tesla 1 Tesla= 1 Gauss Föld mágneses tere ~.5 Gauss

6 A proton-spin mágnesek orientációja precessziós mozgással történik A precesszió frekvenciáját a Zeeman felhasadás nagysága (μ és B ) határozza meg. parallel orientáció Mint az elektron! energetikailag kedvezőbb E 1 állapot ΔE = 2μB = hf precesszió frekvenciája Larmor frekvencia Proton-momentum antiparallel orientáció E 1 < E 2 E 2 állapot Egy fontos kérdés és érdekes válasz: - Milyen frekvenciával gerjeszthető az E1 E2 átmenet? - Válasz: ΔE = 2μB = hf A gerjesztő fotonenergia frekvenciája azonos a Larmor-frekvenciával! 7. A mágneses térrel parallel és antiparallel orientált momentum vektorok eredője? Mag-mágneses momentumokra alapozott mérésekben igen kis effektus várható Az ellentétes irányú vektorok eredője =! Melyikből van több? N1 és N2 Boltzmann eloszlás: az alacsonyabb energiájú nívó populációja nagyobb N1>N2 N N 2 1 = e ΔE kt Pl. proton μ, B=.5T ΔE =2μB 1-7 ev kt (31 K) =.27eV Nagyon kis szám! ~ e =1! Az antiparallel orientációk száma alig kisebb, mint a parallel orientációké A mágneses momentumok csaknem teljesen közömbösítik egymást Az eredő vektor parallel a mágneses térrel és igen kicsi N N N Hogyan növelhetnénk meg az effektust? Jelölés: protonok eredő momentuma M μi = M De: a gazdag információtartalom miatt mégis érdemes mérést tervezni A populáció-különbség ΔE-től függ. Nagyobb ΔE nagyobb eredő vektor ΔE = 2μB ΔE a mágneses tér nagyságával növelhető nagyobb vektor nagyobb effektus!

7 Proton- momentumok mágneses térben - összefoglalás A mag (spin) mágneses rezonancia jelensége A protonok mágneses momentumai mágneses térben B r - -vel parallel és anti-parallel állásúak lehetnek - a parallel orientációnak kisebb az energiája és nagyobb a populációja - mindkét orientációban precesszálnak f = 1 2 μb frekvenciával h - a két orientáció energiakülönbsége lineárisan nő B-vel -az eredő mágneses momentum vektor parallel a mágneses tér irányával - és nagysága B r -vel növelhető Spin-mágneses momentum hf = E2 E1 = ΔE = 2μB A minta mágneses térben van E 2 E 1 Mag-spin-mágneses momentum A mágneses térbe tett mintát besugározzuk olyan fotonenergiájú elektromágneses sugárzással, amely gerjeszti az E1 E2 energiaátmenetet Az energiaátmenet rezonanciában van a sugárzás fotonenergiájával II. Nuclear Magnetic Resonance spectroscopy A mag mágneses rezonancia alkalmazásai II. NMR spektroszkópia A kiválasztott mag (pl. H) lokális környezete egy kémiai kötésben megváltoztatja az általa érzett mágneses teret a külső mágneses tér (B ) hatása helyett egy módosított mágneses tér hatása érvényesül kémiai eltolódás a gerjesztési fotonenergiában hf ' ( ) = 2μ B 1 ± σ Többféle kötés jelenléte többféle gerjesztési energia kémiai molekulaszerkezet Proton-NMR-spektrum (abszorpciós spektrum) hf ' hf hf ( ppm ) Az effektus igen kicsi 1 H, 13 C, 15 N, 31 P -re alapozott mérések In vivo alkalmazások is Referencia-szerkezet : tetrametilszilán Gerjesztési energiája hf

8 A mag mágneses rezonancia alkalmazásai III. Diagnosztikai képalkotó módszer: MR(I) A diagnosztikai kép alapjául szolgáló adatokat - a gerjesztő sugárzás kikapcsolása után mérik - mialatt a gerjesztett (antiparallel orientált) momentumok visszatérnek az alacsonyabb energiájú, parallel orientációjú állapotba 2. A mágneses tér hatása a betegben levő 1. A diagnosztikai mérés jellemzői protonokra M:kompenzálatlan momentumok Szupravezető elektromágnes tekercs Erős mágnes ΔE nagyobb Kompenzálatlan momentumok száma nő Z tengely M z nagy eredője, parallel orientáció B-vel 2μB=hf Mágneses tér hatása: -orientáció -azonos frekveciáju precesszió A B mágneses tér iránya II Z Lineárisan nő Z mentén B o +B(Z) B B O 1 Gauss.5 G földi tér Különleges rendszabályok óvatosság -De: a precesszió fázisa összehangolatlan Z Fémek, implantok, pacemaker. M xy =

9 3. Megfelelő gerjesztési frekvenciájú sugárzás bekapcsolása: proton-mágneses rezonancia A gerjesztés hatása: Δ E = 2μB( z) = hf A vizsgálandó testrészt rádiófrekvenciás sugárzásnak tesszük ki tekercs AC tere RF ~ 2 MHz ( ΔE) Z-től függ! vizsgálandó keresztmetszeti szelet kiválasztása a sugárzás frekvenciájával 1. Energiaátmenet E1 E2 egy adott testszeletben 2. Orientációváltás parallel antiparallel 3. A külső váltakozó feszültség-tér rákényszeríti fázisát a precessziós mozgásra a mágneses momentumok együtt forognak M xy A gerjesztés impulzus jellegű - időtartamának szerepe Az orientációváltás időt vesz igénybe! Az orientációváltás precesszálva történik (együttes precesszió) M xy Elnevezések az impulzus időtartama alapján pl.15 o Az együttes precesszió Következménye: 9 -os impulzus Merőlegesbe fordítás-ig tart A gerjesztő tekercs mágneses tere Precesszió B1 körül is hν 1 = 2μB os impulzus Teljes átfordítást végez Az X-Y síkban a gerjesztés alatt -Növekvő amplitudójú -Forgó mágneses momentum AC feszültség adó tekercs

10 A gerjesztés néhány fázisa 9 o Orientációváltás energia-képben 18 o 9 o -os impulzus 5%-os orientáció-váltás M z = Valódi mérésben : 9 és 18 fokos jelek kombinációja szekvenciák 4. Adatgyűjtés pl. 9 -os impulzus után Az MR-kép adatait a gerjesztő impulzus kikapcsolása utáni relaxáció alatt mérhető jelek jelentik Mz változik: max Mxy változik: körbeforogva csökken - orientációváltás - precesszió fázisa elhangolódik Változó mágneses tér az X-Y síkban elektromos feszültséget indukál Mz relaxációs ideje: spin-rács relaxációs idő -T1 Környező molekulák A momentum B irányú vetülete a 9 o -os impulzus után visszatér a z irányhoz M Z M Zo 1 e = τ t A ρ protonsűrüséggel arányos T1: 5 1 ms T1 A mért jel: Free Induction Decay FID --> Mz és Mxy relaxációs ideje

11 T1 értelmezése Milyen gyorsan sikerül ütközésekkel leadni a ΔE energiát a környezetnek? A ρ protonsűrüséggel arányos M Z M Zo 1 e = τ t Az energiaátadás feltétele, hogy az átvevő molekula vibrációs frekvenciája rezonanciában legyen a Larmor precesszióval f p ~ f mol (f viz >> f p ) T1: 5 1 ms Nagy molekulák lassú rezgései fehérjék, lipidek T1 kicsi t T1 rövid --- Mz(t) nagy --- fényes pixel --- zsírszövet világos Mxy relaxációs ideje: spin-spin relaxációs idő T2 T2 értelmezése M XY = M XY, e t τ A lokális mágneses terek miatt a koordinált precesszió elhangolódik ΔE = 2μB = hf M XY = M XY, e t τ T2 Környezet: mágneses inhomogenitás Nagy molekulák-> lassú mozgás ->inhomogenitás fennmarad -> gyors fázisvesztés -> T2 rövid T2 T2: 5 1 ms T2: 5 1 ms Nagy molekulák-> T2 rövid -> Mxy(t) kicsi -> pixel sötét Vizes közeg: inhomogenitások kiátlagolódnak -> fázisvesztés lassú -> T2 nagy -> fényes pixel

12 A képalkotásra használt paraméterek : ρ(protonsűrűség), T1 és T2 A T1 és a T2 szerinti fényesség-kódolás különböző szöveti tulajdonságokat emel ki: pl zsírszövet ellentétes Nagy molekulák (pl. lipidek) T1 rövid -- pixel világos T2 rövid -- pixel sötét 5. A kiválasztott testszeleten belüli felbontás 1. A rezonancia állapot gerjesztési frekvenciája kiválaszt egy testszeletet hf= 2μB(Z) f B Z T1 szerinti súlyozás Világos: fehér állomány T2 szerinti súlyozás Világos: szürke állomány 2. Képelemek feloldása az X irányban A relaxáció alatt X irányban lineárisan változó gradiens tér bekapcsolása precesszió (=> indukált feszültség) frekvenciája az X mentén változik hf= 2μ(B+B(X)) 3.Képelemek feloldása az Y irányban Y mentén lineárisan változó gradiens tér alkalmazása rövid ideig => Precesszió fázisának módosítása Y függvényében Egy szeleten belül a pixelek kijelölése gradiens-terekkel 4. A vevőtekerccsel mért jel felbontása A mért indukált feszültség sok frekvenciájú és fázisú jel szuperpoziciójának eredménye ω = 2πf Az egyes f és φ komponensek előállítása Fourier analízissel ρ, τ, τ minden képelemre i, j 1, i, j 2, i, j

13 Az MRI mint diagnosztikai módszer De: - a készülék és a mérés drága - 3D képhez hosszú adatgyűjtési idő pszichológiai problémák -non-invasive módszer (de: kontrasztanyagok toxicitása?) -Csont-szövet nem zavar: pl. gerincvelő vizsgálata UH, CT -Felbontás: ~5 mm vastag szelet, 1.5x1.5 mm képelem igen jó mint a CT, de a kontraszt élesebb Biztonsági szempontok erős mágneses tér, indukált áram melegítő hatása, hangjelenségek, periferiális idegvégződések stimulálása -3D rekonstrukció lehetősége -Lágy szövetek, elsősorban zsírszövetek agyszövet de széleskörű alkalmazás: nyak, mellkas, alhas (máj, lép, hasnyálmirigy, vese..) vázizomzat, izületek gerjesztő tér teljesítménye és db/dt limitek kontraindikáció: terhesség első trimer pacemaker ferromágneses és fém implantok (szembe kerűlt szilánkok) Olvasásra Speciális MRI technikák fejlődési irányok 1. Angiográfiai alkalmazások A mért térfogatba a szeletre merőlegesen ki vagy be-áramló vér a sebességprofiltól és az áramlási sebességtől függően jelszegény vagy jelgazdag tartományhoz vezet Olvasásra érszűkűlet értágulat Artéria cerebri média területén arterio-venosus malformáció -fáziselemzés alapján Gd jelzés Time of flight

14 Olvasásra 2. Kontrasztanyagok alkalmazása: T1 és T2-kontraszt T1 súlyozott kép meningeoma diagnosztizálásához Gadolinium kontraszt kiemeli a daganat helyét: világos képlet Olvasásra T2 tipusu kontrasztanyagok ferromágneses: ép szövetekben T2 csökken T2 kép sötét szuperparamágneses (Fe-oxid) nanorészecskék: T2-kép sötét pl. máj: normál szövetek dúsítják, tumor nem Víz: természetes kontrasztanyag De: Gd jelző toxicitása - veseelégtelenség Paramágneses atomok alkalmazása: T1 rövidül a kóros szövetekben Gd, Mn, Ba farmakonok (ahol a vér-agy gát átjárható) 3. Funkcionális MRI- fmri BOLD : Blood Oxygen Level Dependent signal Hemodinamikai válaszfüggvények rövid mérési idő: 1-2 perc alacsony felbontás, gyors szken 1/ 2-3 sec Ogawa, 199 Alapja: oxy hemoglobin : diamágneses, nincs mag mágneses momentuma deoxy hemoglobin: paramágneses, mágneses momentuma van => Hb állapota endogén kontraszt-ágens Alkalmazása agyi funkciók vizsgálatában: visual cortex, motor cortex, beszéd Neoron aktivitás véráramlás oxyhb T2 jelintenzitás

15 fmri sebészeti területek és funkcionálisan fontos tartományok elkülönítése

Az MR(I) módszer elve. Dr.Fidy Judit 2012 március 7

Az MR(I) módszer elve. Dr.Fidy Judit 2012 március 7 Az MR(I) módszer elve Dr.Fidy Judit 2012 március 7 Az MR(I) módszer Ábrák: Kastler-Patay: MRI orvosoknak, Folia Neuroradiologica, 1993 (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia

Részletesebben

Az MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer

Az MR(I) módszer elve. Az MR(I) módszer. (Nuclear) Magnetic Resonance Imaging mag (atommag) mágneses rezonancia alapu képalkotó módszer Az MR(I) módszer elve Mai kérdés: Hogyan változik a röntgensugárzás elnyelődésének valószínűsége lágy szövetekben a sugárzás foton-energiájával? Dr.Fidy Judit 05 március 8 Az MR(I) módszer Történelem -

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

Rádióspektroszkópiai módszerek

Rádióspektroszkópiai módszerek Rádióspektroszkópiai módszerek NMR : Nuclear magneic resonance : magmágneses rezonancia ESR : electron spin resonance: elektronspin-rezonancia Mikrohullámú spektroszkópia Schay G. Rádióspektroszkópia elég

Részletesebben

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum

Részletesebben

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics

Részletesebben

Mágneses módszerek a mőszeres analitikában

Mágneses módszerek a mőszeres analitikában Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:

Részletesebben

Mágneses módszerek a műszeres analitikában

Mágneses módszerek a műszeres analitikában Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

Morfológiai képalkotó eljárások CT, MRI, PET

Morfológiai képalkotó eljárások CT, MRI, PET Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

24/04/ Röntgenabszorpciós CT

24/04/ Röntgenabszorpciós CT CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12

Részletesebben

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

Az NMR képalkotás alapjai. Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK A mágnesség A mágneses erı: F = pp 1 2 r

Részletesebben

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v

Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Times, 2003. október 9 MRI

Times, 2003. október 9 MRI Times, 2003. október 9 MRI: orvosi diagnosztikát forradalmasító képalkotó módszer This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel

Részletesebben

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség

Részletesebben

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI Times, 2003. október 9 NMR, MRI Magnetic Resonance Imaging This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel Prize for Physiology

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Biofizika és orvostechnika alapjai MRI Képalkotó diagnosztika 2 Noninvazív módszerek: MRI, termográfia Szerkesztette: Szekrényesi Csaba Áttekintés Történelem Nagy mágneses tér A szövetek mágneses különbségei

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése

Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu

Részletesebben

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia

Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás

Részletesebben

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád

Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK

palkotás alapjai Bányai István Kolloid- és Környezetkémiai Tanszék DE, TEK Az NMR képalkotk palkotás alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Az NMR alapjai alapjai Bánai István Kolloid- és Körnezetkémiai Tanszék DE, TEK Kvantummechanikai alapok Az atommag

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

alapvető tulajdonságai

alapvető tulajdonságai A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Természettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK)

Természettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK) Szimultán multi-slice EPI szekvenciák: funkcionális MRI kompromisszumok nélkül? Kiss Máté, Kettinger Ádám, Hermann Petra, Gál Viktor MTA-TTK Agyi Képalkotó Központ Természettudományi Kutatóközpont, Magyar

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu

BIOFIZIKA. Metodika- 4. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu BIOFIZIKA 2012 11 26 Metodika- 4 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temamkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET

Részletesebben

CT/MRI képalkotás alapjai. Prof. Bogner Péter

CT/MRI képalkotás alapjai. Prof. Bogner Péter CT/MRI képalkotás alapjai Prof. Bogner Péter CT - computed tomography Godfrey N. Hounsfield Allan M. Cormack The Nobel Prize in Physiology or Medicine 1979 MRI - magnetic resonance imaging Sir Peter Mansfield

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Z bozonok az LHC nehézion programjában

Z bozonok az LHC nehézion programjában Z bozonok az LHC nehézion programjában Zsigmond Anna Julia MTA Wigner FK Max Planck Institut für Physik Fizikus Vándorgyűlés Szeged, 2016 augusztus 24-27. Nehézion-ütközések az LHC-nál A-A és p-a ütközések

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν

Részletesebben

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.)

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) Képalkotó diagnosztika Szerkesztette: Dió Mihály 06 30 2302398 Témák 1. Röntgen

Részletesebben

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István

FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek

Részletesebben

Elektronspin rezonancia

Elektronspin rezonancia Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria.

Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. A biomolekuláris szerkezet és dinamika vizsgálómódszerei: Röntgendiffrakció, tömegspektrometria, infravörös spektrometria. Smeller László A molekuláris szerkezet és dinamika vizsgáló módszereinek áttekintése

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010

Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010 Készítette: NÁDOR JUDIT Témavezető: Dr. HOMONNAY ZOLTÁN ELTE TTK, Analitikai Kémia Tanszék 2010 Bevezetés, célkitűzés Mössbauer-spektroszkópia Kísérleti előzmények Mérések és eredmények Összefoglalás EDTA

Részletesebben

Biomolekuláris szerkezet és dinamika vizsgálata. Gerjesztés során elnyelt energia sorsa. Fluoreszcencia és különleges alkalmazásai

Biomolekuláris szerkezet és dinamika vizsgálata. Gerjesztés során elnyelt energia sorsa. Fluoreszcencia és különleges alkalmazásai Biomolekuláris szerkezet és dinamika vizsgálata Fluoreszcencia, egymolekula biofizika, rádióspektroszkópiák (EPR, NMR, MRI) John Dalton (1766-1844) 1 nm Oxigén atomok rhodium egykristály felületén Cary

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia

NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia Anyagszerkezeti vizsgálatok 2016. őszi félév Balogh Szabolcs sz.balogh@gmail.com Pannon Egyetem, NMR Laboratórium

Részletesebben

Az atommag összetétele, radioaktivitás

Az atommag összetétele, radioaktivitás Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Fizikai kémia 2. ZH V. kérdések I. félévtől

Fizikai kémia 2. ZH V. kérdések I. félévtől Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

Drug design Képalkotó eljárások a gyógyszerkutatásban Dr. Kengyel András GK, SPECT, PET, fmri, UH, CT, MRI Doppler UH

Drug design Képalkotó eljárások a gyógyszerkutatásban Dr. Kengyel András GK, SPECT, PET, fmri, UH, CT, MRI Doppler UH Drug design Hatóanyag tervezés molekuláris mechanizmusok alapján eljut-e a gyógyszer a célszervig? felszívódik-e? mennyi idő alatt? Képalkotó eljárások a gyógyszerkutatásban milyen a szöveti eloszlása?

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.

Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16. Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege

Részletesebben

Mikroszerkezeti vizsgálatok

Mikroszerkezeti vizsgálatok Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,

Részletesebben