Vektorok, mátrixok, tenzorok, T (emlékeztető)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vektorok, mátrixok, tenzorok, T (emlékeztető)"

Átírás

1 Vektorok, mátrixok, tenzorok, T (emlékeztető) A = T*B Tenzor: lineáris vektorfüggvény, amely két vektormennyiség közötti összefüggést ír le, egy négyzetmátrix, M reprezentálja. M M M M = M M M M M M Diagonizálás: megtalálni azt a koordináta rendszert ahol fennáll, hogy d M = 0 d d azaz csak az átfogóban lévő elemek nem nullák! 33 Példák: σ kémiai árnyékolás: I σ B o D dipoláris csatolás (I,S): I D S I,S = mágneses momentumok B o = külső állandó mágneses tér M1

2 M2

3 M3

4 M4

5 M5

6 A MAS kísérlet Amennyiben a mintát a külső mágneses térhez képest egy adott φ szöggel gyorsan forgatjuk az irányfüggő kölcsönhatások egy 1/2 (3cos2φ-1) tényezővel szorzódnak. A zárójeles kifejezés értéke φ = 54.7 fok esetén nulla, ezért hívják ezt a szöget "mágikus"-nak és innen adódik a kísérlet elnevezése is, MAS (Magic Angle Spinning). A MAS hatása a kémiai árnyékolási anizotrópia miatt fellépő sávszélesedésekre a) a rotor elhelyezkedése a Bo külső térhez képest, b) a minta forgatása nélkül felvett spektrum, c) a rotor forgási sebessége, t R nagyobb mint a mag árnyékolási anizotrópiája, d) a rotor forgási sebessége kisebb mint a mag árnyékolási anizotrópiája. M6

7 Az X- 1 H dipoláris és skaláris csatolások elnyomása Folyadékfázis: 1 H 1 H spektrum kb Hz (7 Tesla) (csak skaláris csatolás) lecsatoló teljesítmény: pulzusüzemű ~5-10 watt folyamatos ~30-40 watt X ( 13 C, 31 P,...) mérési idő ~ 1-10 sec Szilárdfázis: 1H 1 H spektrum kb khz (7 Tesla) (skaláris és dipoláris együtt) lecsatoló teljesítmény: folyamatos ~ watt X ( 13C,31 P,...) mérési idő ~ csak 0,1-0,2 sec!!! csak ennyi ideig terhelhető a mérőfej ezzel a nagy teljesítménnyel... M7

8 A CP/MAS kísérlet Polarizációátvitel (Cross Polarization) Ω1H = γhb1h z Hartmann-Hahn feltétel Ω1H = γhb1h = γcb1c = Ω1C B1y 90 o (B 1x ) 1H 90 o x (B 1y ) jelcsökkenés T 1ρ szerint spin-lock proton lecsatolás polarizációátvitel idő 13 C (B 1x ) a jel az 1H jelet követi mérés (F.I.D.) jelnövekedés Hartmann-Hahn "egymerítéses" polarizációátviteli szekvencia M8

9 Kvadrupól magok spektrumai szilárd fázisban (1) High order eset: mágneses tér, B o >> elektromos tér, EF azaz a kvadrupól hatás csak perturbálja a Zeeman energiákat, ν o az eltolódás mértéke ν. ( 2 1) m I ν = ν 3 χ θ o 8 I ( ) ( 2I cos 1) ahol m I a mágneses kvantumszám, értéke I-től I-1 -ig terjed. Emiatt 2I számú vonal jelenik meg a spektrumban. χ = e 2 Q q h zz állandó kvadrupoláris csatolási Q=a mag kvadrupól momentuma gradiense q zz = az elektromos tér A theta szög a külső sztatikus tér, B o és a q zz gradiens által bezárt szög, amely egykristályok esetén egy adott érték, polikristályos anyagokban azonban természetesen mindenféle értéket felvesz, bár nem azonos valószínűséggel. θ 1 q zz B o θ 2 θ 1 q zz A kilencven fokos elhelyezkedés valószínűsége a legnagyobb! θ 3 q zz q zz n θ90 o >> n θx o M9

10 Az első- és másodrendű kvadrupól kölcsönhatás I=3/2 eset, energiaszintek és átmenetek energia Zeemann elsőrendű kvadrup. másodrendű kvadrup. m=-3/2 I=3/2 m=-1/2 m=1/2 m=3/2 Hz H(Q) 1 H(Q) 2 átmenetek νo Az elsőrendű kvadrupól kölcsönhatás energiája: a kölcsönhatás következtében fellépő kvadrupoláris energiát (tengelyszimmetrikus elektromos térgradiens esetén, η = 0) az alábbi egyenlet adja meg, I( I 1) ( 2I 1) 3:4: m 2 h U Q = ( 3cos θ 1)χ 8I χ=e2qqzz/h Az egyes átmenetek energiáit elsősorban az ún. kvadrupól csatolási állandó, χ értéke határozza meg (ez viszont az elektromos térgradiens, qzz és a mag kvadrupól momentumától, Q függ), ezt módosítja egy, az elektromos térgradiens és a külső tér relatív helyzetétől függő tag. A másodrendű hatás mértéke viszont a ν 2 Q /ν ο aránytól függ, tehát nagyobb térerőknél lényegesen csökken. M10

11 Kvadrupól magok spektrumai szilárd fázisban (2) I=3/2 eset: egykristály (2I=3=n): -1/2 1/2 3/4χ/[2I(I1)]*(3cos2θ-1) /2-1/2 1/2 3/2 νo I=1 eset: egykristály és polikristályos anyag (2I=2=n): θ 3/4χ/[2I(I1)]*(3 cos2θ-1) 0o 90o egykristály 54.74o 90o polikristályos anyag 0o mi=0 νo mi=1 θ[ ο ] (3cos 2 θ-1) M11

12 Kvadrupól magok spektrumai szilárd fázisban (3) A dipoláris és kvadrupoláris kölcsönhatások esetenként formailag hasonló eredményének magyarázata és feltételei Dipoláris A,X eset (I=1/2): dipoláris csatolás*(3 cos o 90o 2θ-1) 90o egykristály θ 0o polikristályos anyag 0o mi=-1/2 νo mi=1/2 Kvadrupoláris eset (I=1): kvadrupól felhasadás=3/4χ/[2i(i1)]*(3 cos 2 θ-1) 54.74o 90o 90o egykristály θ 0o polikristályos anyag 0o mi=0 ν o mi=1 M12

13 Kvadrupól magok spektrumai szilárd fázisban (4) Elsőrendű kvadrupoláris esetek (feles spinű magok I=3/2, 5/2, 7/2, stb.): -1/2 1/2 I=3/2 χ=kvadrupól csatolási állandó -3/2-1/2 1/2 3/2 3/4χ/[2I(I1)]*(3cos2θ-1) egykristály polikristályos anyag θ 0o 90o νo 90o 0o 54.74o A -3/2-1/2 és 1/2 3/2 átmenetek skálázódnak (3cos 2 θ-1) értékének megfelelően (gyakran nem is látszanak a spektrumban). A középső -1/2 1/2 átmenet viszont független θ-tól! (Ezért általában jól látszik.) M13

14 Másodrendű kvadrupoláris kölcsönhatás a központi átmeneteken. I=3/2 eset, egykristály és porminta spektrumai ν ν = 2 ν 1 3 Q II 12 /, 12 / 6 4 A( )cos B( )cos C( ) L 2 2 ( ) [ α β α β α ] α,β,γ = a labor és a PAS koord. rendszerek közötti átmenetet leíró szögek, η= aszimmetria paraméter, P.A.S=Principal Axis System ν Q = 3χ i /2I(I-1) kvadrupól rezonancia frekvencia, χ=e 2 qq/h kvadrupól csatolási állandó porminta 1/2-1/2 átmenet I=3/2 egykristály νl-16a/9 νl νla A(α) = -27/8(9/4)ηcos2α-(3/8)η 2 cos 2 2α B(α) = 30/8-η 2 /2-2ηcos2α-(3/4)η 2 cos 2 2α C(α) = -3/8 η 2 /2-(η/4) η/4)cos2α-(3/8)η 2 cos 2 2α Irodalom: F.Taullele in Multinuc. Magn. Resonance in Liquids and Solids, Kluwer,Dordrecht, Ch.XXI. M14

15 Kölcsönhatások és megszüntetésük szilárd fázisban, (II) kvadrupól magok (I>1/2, pl. 27 Al, 23 Na) 1. homo- és hereronukleáris dipoláris 2. kvadrupól felhasadások csatolások (1H-1H, 1H-X) 3. kémiai árnyékolási δ22 anizotrópia δ11 Proton és heteronukleáris lecsatolások δ22 δ khz de maradnak: a kvadrupól felhasadáso és a kémiai árnyékolási anizotrópia δ11 δ33 Forgatás a mágikus szöggel (MAS kísérlet) I=3/2, 5/2, 7/2... I=1, 2, 3... másodrendû kvadrupól hatás I=3/ khz ν o 1/2-1/2 átmenet νo νo forgatás két eltérő szög mellett (DAS, DOR kísérletek) M15

16 Kölcsönhatások és megszüntetésük szilárd fázisban, (I) dipoláris magok (I=1/2, pl. 13 C, 29 Si 31 P) homo- és hereronukleáris dipoláris csatolások (1H-1H, 1H-X) δ22 kémiai árnyékolási anizotrópia δ11 δ33 νizotróp khz árnyékolási tenzor, σ δ δ δ 33 δ11 nagyteljesítményű 1 H lecsatolás δ22 νizotróp kémiai árnyékolási anizotrópia δ33 gyors forgatás, νr a külsõ δ11 δ22 δ33 térhez képest 54,74o-os szöggel kiszámolhatóak δ22 MAS kísérlet δ11 δ33 νr νr νr νr νr νr νizotróp nagyfelbontású spektrum (forgási oldalsávokkal) M16

17 Jelenség: kvadrupól magokra nincs hatással az állandó elektromos tér csak az elektromos térgradiens... Homogén elektromos v. mágneses térben akkor jönnek létre spektroszkópiai átmenetek, ha az elektromágneses sugárzás elektromos vagy mágneses tere csavaró hatást gyakorol az abszorbáló kvantumrendszerek (atom, ion v. molekula) elektromos vagy mágneses dipól momentumaira Lineáris térgradiens esetében a dipólusok lineárisan eltolódnak, a kvadrupólusok elfordulnak, az oktopólusok viszont nem mozdulnak Irodalom: F.J.V.Macomber, The Dynamics of Spec.Transitions,Wiley-Inter. New-York, M17

18 Az árnyékolási anizotrópia (tartomány), σ és aszimmetria, η definiciói (Haeberlen 1 ): A mért kémiai eltolódás a kérdéses mag árnyékolási tenzorának a külső Bo tér irányához viszonyított helyzetétől is függ. HCS = γihi [σ(tenzor)] Bo, kifejezés. ahol a σ tenzor az árnyékolást térben leíró A koordináta rendszer alkalmas megválasztásával elérhető, hogy az árnyékolást térben leíró 3 * 3-as tenzornak csak a diagonálisán elhelyezkedő elemei legyenek nullától eltérő értékűek, így elegendő ezen három komponens, σ33 > σ22 > σ11 ismerete az árnyékolás térbeli jellemzésére. Ezekkel definiálták a kémiai árnyékolási anizotrópiát, σ és az árnyékolás aszimmetriáját leíró tényezőt, η amelyek segítségével leírhatóak a szilárdfázisú spektrumok. σ = σ 33 σ11 σ 2 22 σ η= σ σ 11 σ átl σ átl σ σ22 = 3 11 σ33 σátl az oldatállapotban észlelt kémiai eltolódással (σizotróp) azonos, amely a három térkomponens számtani átlaga. 1 U.Haeberlen,High Resolution NMR in Solids, Suppl. 1. Academic Press, New-York, M18

19 Új konvenciók a tenzor mennyiségek jelölésére (NMR, NQR, ESR): A Maryland javaslat (1992): J.Mason (Solid State NMR, 5, 285 (1993)): kémiai eltolódás abszolút árnyékolás δ/ppm =10 6 (ν minta -ν ref )/ν ref σ/ppm=10 6 (ν mag -ν minta )/ν mag Alapértékek (principal values): σ 11 σ 22 σ 33 és δ 11 δ 22 δ 33 Az anizotrópia ( ) helyett span (tartomány ): Ω = σ 33 - σ 11 = δ 11 - δ 33 > 0 Az aszimmetria (η) helyett skew (aszimmetria): κ = 3(σ iso -σ 22 )/(σ 33 -σ 11 ) illetve: κ = 3(δ 22 - δ iso )/(δ 11 -δ 33 ) κ = 1 κ= 0 σ 11 =σ 22 σ 33 σ 11 σ 22 σ 33 κ = - 1 σ 11 σ 22 =σ 33 Módosítás: R.K.Harris (Solid State NMR, 3, 177 (1998)): span = Ω = σ 33 σ 11 = δ 33 δ 11 skew = κ σ = 3 (σ iso σ 22 ) / Ω σ az árnyékolásra és skew = κ δ = 3 (σ iso σ 22 ) / Ω δ a kémiai eltolódásra M19

20 Elutasítás: C.Jameson, (Solid State NMR, 4, 265 (1998)): az árnyékolási tenzor az egy, a molekula elektronjai által meghatározott mennyiség. A kémiai eltolódás viszont egy kreált nem alapvető- mennyiség, amit azért hoztak létre, mert képtelenek vagyunk az árnyékolási tenzor elemeit közvetlenül mérni (mármint rezonancia kísérlet nélkül). Az árnyékolási tenzor eredendően aszimmetrikus, csak a szimmetrikus része és a rezonancia frekvenciák közötti kapcsolat használható az árnyékolás és a kémiai eltolódás közötti viszony leírására. Árnyékolási tartomány (span) = Ω = σ 33 σ 11 σ 33 σ 22 σ 11 Az árnyékolás átszámítása kémiai eltolódásra nem pontosan azonos kifejezést szolgáltat: Eltolódási tartomány (span) = Ω = (δ 11 δ 33 ) (1-σ ref ) ha δ 11 δ 22 δ 33 Ellenben az aszimmetriára (skew) igen, hiszen a (1-σ ref ) tényező kiesik az átszámításkor: Árnyékolási aszimmetria (skew) = κ 3 (σ iso σ 22 ) / σ 33 σ 11 (Ω σ ) Eltolódási aszimmetria (skew) = κ 3 (δ i22 δ iso ) / (δ 11 δ 33 ) (Ω δ ) Nincs értelme az árnyékolási és az eltolódási aszimmetriák különbségéről beszélni, ha az árnyékolásra elfogadunk egy szabályt abból automatikusan következik az eltolódásra vonatkozó is. M20

21 M21

I. Az NMR spektrométer

I. Az NMR spektrométer I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb

Részletesebben

Mágneses módszerek a mőszeres analitikában

Mágneses módszerek a mőszeres analitikában Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:

Részletesebben

Mágneses módszerek a műszeres analitikában

Mágneses módszerek a műszeres analitikában Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses

Részletesebben

Átmenetifém-komplexek ESR-spektrumának jellemzıi

Átmenetifém-komplexek ESR-spektrumának jellemzıi Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag

Részletesebben

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén

ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor

Részletesebben

A Mössbauer-effektus vizsgálata

A Mössbauer-effektus vizsgálata A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának

Részletesebben

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma

Mi mindenről tanúskodik a Me-OH néhány NMR spektruma Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Elektronspin rezonancia

Elektronspin rezonancia Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR

Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban

Részletesebben

Anizotrópfázisú NMR. Mérések szilárd és részlegesen rendezett fázisban

Anizotrópfázisú NMR. Mérések szilárd és részlegesen rendezett fázisban Magyar Kémiai Folyóirat - Előadások 143 Anizotrópfázisú NMR. Mérések szilárd és részlegesen rendezett fázisban Szalontai Gábor, a kémiai tudományok doktora Veszprémi Egyetem, NMR laboratórium gabor.szalontai@sparc4.mars.vein.hu

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

NMR vizsgálatok szilárd fázisban A CP/MAS kísérlet és alkalmazásai

NMR vizsgálatok szilárd fázisban A CP/MAS kísérlet és alkalmazásai NMR vizsgálatok szilárd fázisban A CP/MAS kísérlet és alkalmazásai Szalontai Gábor Veszprémi Egyetem Szilikát- és Anyagmérnöki Tanszék NMR Laboratórium Verziószám: 1.2 CD, 2002. január NMR vizsgálatok

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

lásd: enantiotóp, diasztereotóp

lásd: enantiotóp, diasztereotóp anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Elektronspinrezonancia (ESR) - spektroszkópia

Elektronspinrezonancia (ESR) - spektroszkópia Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

1D multipulzus NMR kísérletek

1D multipulzus NMR kísérletek D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán

Részletesebben

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós

Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.

Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III. Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA

Részletesebben

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics

Részletesebben

Az optika tudományterületei

Az optika tudományterületei Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus

τ Γ ħ (ahol ħ=6,582 10-16 evs) 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus 2.3. A vizsgálati módszer: Mössbauer-spektroszkópia (Forrás: Buszlai Péter, szakdolgozat) 2.3.1. A Mössbauer-effektus A Mössbauer-spektroszkópia igen nagy érzékenységű spektroszkópia módszer. Alapfolyamata

Részletesebben

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása)

Két 1/2-es spinből álló rendszer teljes spinje (spinek összeadása) Két /-es spinből álló rendszer teljes spinje spinek összeadása Két darab / spinű részecskéből álló rendszert írunk le. Ezek lehetnek elektronok, vagy protonok, vagy akármilyen elemi vagy nem elemi részecskék.

Részletesebben

Problémás regressziók

Problémás regressziók Universitas Eotvos Nominata 74 203-4 - II Problémás regressziók A közönséges (OLS) és a súlyozott (WLS) legkisebb négyzetes lineáris regresszió egy p- változós lineáris egyenletrendszer megoldása. Az egyenletrendszer

Részletesebben

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)

MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.

Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Mágneses magrezonancia-spektroszkópia (NMR) Szalontai Gábor: alapelvek nyolc órában

Mágneses magrezonancia-spektroszkópia (NMR) Szalontai Gábor: alapelvek nyolc órában Mágneses magrezonancia-spektroszkópia (NMR) Szalontai Gábor: alapelvek nyolc órában Előadásábrák (85 ábra, 2013 ősz) 1. Bevezetés, alkalmazási területek 2. Az alapjelenség, a magspinek viselkedése állandó

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk:

13. Előadás. A Grid Source panelen a Polarization fül alatt megadhatjuk a. Rendre az alábbi lehetőségek közül választhatunk: 13. Előadás Polarizáció és anizotrópia A Grid Source panelen a Polarization fül alatt megadhatjuk a sugár polarizációs állapotát Rendre az alábbi lehetőségek közül választhatunk: Polarizálatlan Lineáris

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

A fény és az anyag kölcsönhatása

A fény és az anyag kölcsönhatása A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Saj at ert ek-probl em ak febru ar 26.

Saj at ert ek-probl em ak febru ar 26. Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Koherens lézerspektroszkópia adalékolt optikai egykristályokban

Koherens lézerspektroszkópia adalékolt optikai egykristályokban Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes

Részletesebben

Szemcsehatárok geometriai jellemzése a TEM-ben. Lábár János

Szemcsehatárok geometriai jellemzése a TEM-ben. Lábár János Szemcsehatárok geometriai jellemzése a TEM-ben Lábár János Szemcsehatárok geometriai jellemzése Rácsok relatív orientációja Coincidence Site Lattice (CSL) O-lattice Határ közelítése síkkal Határsík orientációja

Részletesebben

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben

Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben 06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Szalontai Gábor: Heteronukleáris NMR 1. Li Be B C N O F Ne. Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Szalontai Gábor: Heteronukleáris NMR 1. Li Be B C N O F Ne. Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Szalontai Gábor: Heteronukleáris NMR 1. Mágneses magrezonancia-spektroszkópia Heteronukleáris NMR Spektroszkópia Válogatott fejezetek fémorganikus kémiai alkalmazásokból H 2 H He Li Be B C N O F Ne Na

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek

Részletesebben

Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II.

Tartalom. Tartalom. Anyagok Fényforrás modellek. Hajder Levente Fényvisszaverési modellek. Színmodellek. 2017/2018. II. Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév 1 A fény elektromágneses hullám Az anyagokat olyan színűnek látjuk, amilyen színű fényt visszavernek

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Átmenetifém-komplexek mágneses momentuma

Átmenetifém-komplexek mágneses momentuma Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről

A kvantummechanika kísérleti előzményei A részecske hullám kettősségről A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html

Részletesebben

Lin.Alg.Zh.1 feladatok

Lin.Alg.Zh.1 feladatok LinAlgZh1 feladatok 01 3d vektorok Adott három vektor ā = (0 2 4) b = (1 1 4) c = (0 2 4) az R 3 Euklideszi vektortérben egy ortonormált bázisban 1 Mennyi az ā b skalárszorzat? 2 Mennyi az n = ā b vektoriális

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 12. Infravörös spektroszkópia. Fizika BSc. A mérés dátuma: okt. 04. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 011. okt. 04. A mérés száma és címe: 1. Infravörös spektroszkópia Értékelés: A beadás dátuma: 011. dec. 1. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

9. Fotoelektron-spektroszkópia

9. Fotoelektron-spektroszkópia 9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy

Részletesebben