Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR
|
|
- Eszter Tóthné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban nem csak a párosítatlan spinű elektronok képesek kölcsönhatásba lépni a mágneses térrel, hanem a párosítatlan spinű magok is. Teljesen jogosan merül fel a kérdés, hogy lehetséges-e mérni a különböző orientáltságú állapotaik közötti átmeneteket mérni? Igen! B=0-5T térerő mellett a ν=60-800mhz közötti, rádiófrekvenciás tartományban. Mágneses magrezonancia - NMR A jelenség alapja analóg az ESR spektroszkópia alapjaival. = + ħ = + ahol a γ N a mag giromágneses együtthatója I a mag mágneses kvantumszáma g N a mag g-tényezője, µ N a mag magneton, m p a proton tömege. = ħ 2
2 Mágneses magrezonancia - NMR ν Larmor x = = é =± = = ħ = B o - z Az I=½ -es mag két állapota közötti átmenetet energiája. A vektormodell szerint a mágneses momentum a foton frekvenciájával, a Larmor frekven- y ciával precesszál a mágneses térerő vektora, a z-irány körül. Az n-propil-bromid H-NMR színképe = =???,7 Br-H 2 -H 2 -H,87,0,0,0,5 H 99,98% parts per million δ=0 ppm,60, 2,67 2,2,75,29 0,82 0,6 δ/ppm Kémiai eltolódás A jelcsoportok integrált intenzitásának aránya megfelel a molekulában lévő különböző szénatomon lévő magok számának! H -H 2 -H 2 -Br primer +I +I effektus +I -I effektus szekunder A különböző kémiai környezet a mag körül eltérő elektroneloszlást és eltérő árnyékolást jelent a mag helyén! B lok. = B o +δb = B o + B o σ = B o (+σ) ahol σ az ún. árnyékolási tényező. 2
3 Kémiai eltolódás Ebből következik, hogy a rezonancia frekvencia függ az alkalmazott térerőtől, ezért nem lehet az x-tengelyen! Referencia jel szükséges! = é.. = é.. =. é.... H- és -NMR TMS tetrametil-szilán - (H ) Si A referencia mag rezonancia frekvenciájával jellemzik a spektrométert, azaz a működési frekvencia ν o = ν ref. = é. 0 Kémiai eltolódás Az x-tengelyen tehát a δ-skálát tüntetik fel, de = é. 0 valójában ez egyúttal frekvencia skála is, amit a kémiai eltolódás definícióját átrendezve kapunk meg: = é. = 0 A 0 6 tényező miatt a frekvenciát Hz-ben kapjuk meg! Kémiai eltolódás A kémiai eltolódást befolyásoló tényezők: A diamágneses árnyékolás a mag körül elhelyezkedő gömbszimmetrikus eloszlású elektronrendszer a Lenz-törvénye szerint. Minél nagyobb az elektronsűrűség annál erősebb a diamágneses árnyékolás, annál kisebb a lokális mágneses tér változhat az oxidációs állapottal, illetve a szomszédos atomok/csoportok induktív effektusa miatt. Pl. az H-NMR színképekben a szénatom rendűsége alapvetően befolyásolja a rajtuk lévő protonok kémiai eltolódását: δ(-h ) < δ(-h 2 - ) < δ(=h-) TMS!
4 Kémiai eltolódás A negatív vagy pozitív induktív effektusú szubsztituensek ehhez képest csökkentik vagy növelik az elektronsűrűséget (oxidációs állapot!) a kérdéses szénatomon, növelve vagy csökkentve a rajta lévő hidrogének kémiai eltolódását! Helyi paramágneses árnyékolás abban az esetben lehetséges, ha a mágneses tér olyan MO-kra tudja kényszeríteni, az elektronokat, amelyek nem voltak betöltve alapállapotban. Ez okozza az ún. TIP-et, a hőmérséklet független paramágneses szuszceptibilitást (temperature independent paramagnetic susceptibility) is! Kémiai eltolódás Vannak olyan esetek, amikor az eddig számításba vett hatások nem indokolják egy adott csoportban lévő magoknak a szokottól eltérő kémiai eltolódását. Ezekben az esetekben általában a kérdéses mag háromdimenziós környezetében olyan csoportok találhatók, amelyek telítetlen kötéseket, vagy nem kötő elektronpárokat tartalmaznak, és így saját mágneses terük van! Para- és diamágneses árnyékolást is okozhat ugyanaz a csoport! Anizotróp szomszédcsoport hatás! A kémiai eltolódás Anizotróp szomszédcsoport hatás: =, =O δ- δ+ δ-
5 A kémiai eltolódás Anizotróp szomszédcsoport hatás: δ- δ+ δ- A kémiai eltolódás Anizotróp szomszédcsoport hatás: benzol gyűrű δ- B o δ+ δ+ δ- A kémiai eltolódás Anizotróp szomszédcsoport hatás: benzol gyűrű δ(h )=,08 ppm δ(h )=,77 ppm 5
6 A kémiai eltolódás Anizotróp szomszédcsoport hatás: poli etilén gyűrű δ(-h 2 -)= ~, ppm δ(=h 2 )= 5-6 ppm δ= -,8 ppm δ=8,9 ppm Oldószerhatás Természetesen nemcsak molekulán belül érvényesülhet az anizotróp mágneses hatás, hanem két szomszédos molekula között is. Nem véletlen tehát, hogy a különböző oldószerekben eltérő kémiai eltolódásokat mérhetünk ugyanarra a magra az oldott anyagban, attól függően, hogy az oldószerben lévő anizotróp mágneses terű csoporthoz képest térben hol helyezkedik el a kérdéses mag! :2: =, Hz 7 Hz δ=,0 ppm Rel. Integr. Int.=,5 ν o = 200 MHz -H TMS 202 0,00 ν/hz 6
7 =, =, :2: Br-H 2 -H 2 -H 7 Hz n (a+b) n :5:0:0:5: 7 Hz = 7 Hz 7 Hz 67 7 ν/hz A mag-mag csatolás Két mágneses mag között a kölcsönhatás két módon lehetséges: A mágneses dipólus-dipólus kölcsönhatás, ami szilárd minták esetében lehet jelentős, míg folyadékfázisban kiátlagolódik. A spinpolarizációs mechanizmus, amikor a párosított spinű elektronpárok közvetítik a hatást A Fermi-féle kontakt két mag között nem lehetséges, de fontos a polarizált elektronpár esetében. Az MO s-pálya hozzájárulása erősíti a csatolást! NMR spinpolarizáció 7
8 satolási állandó A J=7 Hz körüli csatolási állandó a szabad belső rotációt végző alifás láncra jellemző időbeli átlagérték. Valójában a csatolási állandó függ a szomszédos szénatomokon lévő hidrogének diéderes szögétől! Ha valamiért gátolt a belső forgás, akkor a csatolási állandó nagyságából, a diéderes szög kiszámítható, pl. a Karplus egyenlet segítségével: = + cos + cos2 A=,22 Hz, B = -0,5 Hz, =,5 Hz H---H szögére ma már finomabb képletek is vannak más esetekre is! Ekvivalens magok Azon magok száma, amelyek szerepet játszanak a sávok hasításában, az ún. ekvivalens magok száma. Kémiai értelemben ekvivalens magok azok, amelyeket a molekula valamely szimmetriaművelete összeköt, azaz egymás helyére transzformál. Ez nem elégséges a mágnesesen ekvivalens mag fogalmához, ami a kémiai ekvivalencián túl azt is megköveteli, hogy az ekvivalens magok spin-spin csatolása is megegyezzen minden más maggal! Lássunk egy-egy példát! H Ekvivalens magok Az,-difluor-etilén esete: kémiailag ekvivalens magok (I H =I F =½) H transz-csatolás 9 F 2 kémiai ekvivalencia cisz-csatolás 9 F Mágnesesen nem ekvivalensek! 8
9 Ekvivalens magok Az difluor-metán esete: mágnesesen ekvivalens magok H H 9 F 9 F 2 kémiai ekvivalencia Azonos kötésszögek mágneses ekvivalencia Magasabb rendű csatolás Bonyolultabb molekuláknál, ahol sok egymáshoz nagyon közeli kémiai környezetű mágneses magok vannak a felhasadások mikéntje egyáltalán nem követi a fenti szabályt! X-H 2 -H 2 -H 2 -Y (a) (b) (c) δ a =,0 J a-b =0 Hz δ b =,2 J δ c =,2 b-c =2 Hz ν a =0 Hz ν b =2 Hz ν c =2 Hz ν o = 00 MHz ν b-a = Hz ν c-b = Hz,50,6,2,09 0,95 0,8 0,68 0,5 0,0 Elsőrendű csatolás Amikor érvényesülnek az ESR színkép hiperfinom szerkezeténél megismert szabályok, akkor elsőrendű a felhasadás. :2: H Ennek a feltétele, hogy -H 2 -Br A ν XA >> J AX fennálljon! X 2 δ A =,70 ppm ::: δ X =,50 ppm ν XA =80 Hz >> J AX J AX =7 Hz I A =I X =½ ν o = 00 MHz,80,0 2,80 2,0,80,0 0,80 0,0 ν X =50 Hz ν A =70 Hz δ/ppm 9
10 Elsőrendű csatolás A korábban tanult szabályok úgy érvényesek, hogy egyrészt az egyik mag hasítja a másikat, és viszont: = +. = + = + =. = = + A X 2 I A =I X =½ behelyettesítve: = +. =. = + = + = = + = n X =2 A X 2 spinrendszer A másik különbség, hogy az eredeti intenzitások a magok számával egyeznek. n A = =. = 8 2= 8 2= 67,5 Hz X 2 50 Hz 60,5 Hz 5,5 Hz 6,5 Hz (a+b) n 2 77 Hz 70 Hz 2 70 Hz A 6 Hz. = 2 = 2 = serefolyamatok NMR színkép Amint azt már tudjuk, a sávszélesség a gerjesztett állapot átlagos élettartamának a függvénye: Az NMR sávok igen keskenyek, 0, Hz nagyságrendbe esnek. Ennek megfelelően a τ átl. =,6 s = 2 á. A mérések szerint a gerjesztett állapot átlagos élettartama 0, és 0 másodperces tartományba esnek. Ezt csökkentik a különböző cserefolyamatok. 0
11 serefolyamatok NMR színkép A kémiai cserefolyamatok: HO-H 2 -H 99,99% serefolyamatok NMR színkép A kémiai cserefolyamatok: HO-H 2 -H + H 2 O serefolyamatok NMR színkép A kémiai cserefolyamatok: HO-H 2 -H + cc.hl
12 I T a T m 0 Hz Konformáció változás eltérő környezet T növelése gyorsítja cserét! H O cisz-helyzetű N transz-helyzetű A koaleszcencia bekövetkezése: 2 = Δ =0,025 H H ν/hz = =88,9 Ajánlott irodalom P.W. Atkins, Fizikai Kémia II. Szerkezet, Nemzeti Tankönyvkiadó, Bp., 2002, , 697. old ectroscopy J.W.Akitt, NMR and hemistry, An introduction to the Fourier transform multinuclear era, 2nd Ed., hapmann and Hall, London, 98, -5, 9-0. oldal. Kovács I. és Szőke J., Molekulaspektroszkópia, Akadémiai Kiadó, Bp., 987, , old. Dr. Máthé János, Molekulaspektroszkópiai és kvantumkémiai számítások, Tankönyvkiadó, Bp., 982, , 2-2. old. serefolyamatok NMR színkép Tiszta HO-H 2 -H szimulált színkép,80,75,70,65,60,55,50,5,0 5,50,80,0,0 2,70 2,00,0 0,60-0,0 2
Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben
06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy
Spektroszkópiai módszerek 2.
Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban
Mágneses módszerek a mőszeres analitikában
Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:
Mágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Elektronspinrezonancia (ESR) - spektroszkópia
Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z
Fizikai kémia 2. ZH V. kérdések I. félévtől
Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010
Készítette: NÁDOR JUDIT Témavezető: Dr. HOMONNAY ZOLTÁN ELTE TTK, Analitikai Kémia Tanszék 2010 Bevezetés, célkitűzés Mössbauer-spektroszkópia Kísérleti előzmények Mérések és eredmények Összefoglalás EDTA
I. Az NMR spektrométer
I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb
A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet.
1 A különböző anyagok mágneses térrel is kölcsönhatásba lépnek, ugyanúgy, ahogy az elektromos térrel. Ez a kölcsönhatás szintén kétféle lehet. A legjobban az ún. Gouy-mérlegben való viselkedés példázza
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
Mágneses magrezonancia (NMR) spektroszkópiák
1 A szerves vegyületek szerkezetének meghatározására kezdetben az elemi analízist és az analógiákon alapuló szerkezetbizonyító szintézist illetve lebontást alkalmazták. Bonyolultabb vegyületek szerkezetének
Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
Átmenetifém-komplexek ESR-spektrumának jellemzıi
Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag
FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,
FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino
Emlékeztető Paramágneses anyagok
Emlékeztető Paramágneses anyagok Ha az eredő spinkvantumszám S 0, vagyis a részecske rendelkezik eredő spinimpulzus momentummal, akkor mágneses momentuma is van. E vektorok abszolútértéke (hossza) S S(S
Vektorok, mátrixok, tenzorok, T (emlékeztető)
Vektorok, mátrixok, tenzorok, T (emlékeztető) A = T*B Tenzor: lineáris vektorfüggvény, amely két vektormennyiség közötti összefüggést ír le, egy négyzetmátrix, M reprezentálja. M M M M = M M M M M M 11
Elektronspin rezonancia
Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
Szénhidrogének II: Alkének. 2. előadás
Szénhidrogének II: Alkének 2. előadás Általános jellemzők Általános képlet C n H 2n Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C = C kötést
5.4. Elektronspektroszkópia
5.4. Elektronspektroszkópia Két módszer: UV-VIS spektroszkópia: M + hν M PES, XPS (ESCA): M + hν M + + e 5.4.1. UV-VIS ultraibolya-látható spektroszkópia Alapelvek: l. fizikai kémia és műszeres analitika
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond
lásd: enantiotóp, diasztereotóp
anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
A Mössbauer-effektus vizsgálata
A Mössbauer-effektus vizsgálata Tóth ence fizikus,. évfolyam 006.0.0. csütörtök beadva: 005.04.0. . A mérés célja három minta: lágyvas, nátrium-nitroprusszid és rozsdamentes acél Mössbauereffektusának
Alkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)
4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics
Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
A kovalens kötés polaritása
Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
Biomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák
Átmenetifém-komplexek mágneses momentuma
Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú
Kémiai kötés Lewis elmélet
Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,
Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok
MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék A mágneses magrezonancia spektroszkópia (röviden NMR angolul Nuclear Magnetic Resonace) egyike azon modern kémiai szerkezetvizsgálati
1D multipulzus NMR kísérletek
D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
ESR színképek értékelése és molekulaszerkezeti értelmezése
ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon
Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s
Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz
MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses
Elektronszínképek Ultraibolya- és látható spektroszkópia
Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
Biomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)
Szénhidrogének III: Alkinok. 3. előadás
Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia
NMR spektroszkópia (Nuclear Magnetic Resonance) Mágneses (atom)magrezonancia Spektroszkópia Anyagszerkezeti vizsgálatok 2016. őszi félév Balogh Szabolcs sz.balogh@gmail.com Pannon Egyetem, NMR Laboratórium
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?
Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter egyetemi tanár ELTE, Kémiai Intézet Elméleti Kémiai Laboratórium Van közös bennük? Egy kis történelem
Szalai István. ELTE Kémiai Intézet 1/74
Elsőrendű kötések Szalai István ELTE Kémiai Intézet 1/74 Az előadás vázlata ˆ Ismétlés ˆ Ionos vegyületek képződése ˆ Ionok típusai ˆ Kovalens kötés ˆ Fémes kötés ˆ VSEPR elmélet ˆ VB elmélet 2/74 Periodikus
SZERVES KÉMIAI ANALÍZIS
SZERVES KÉMIAI ANALÍZIS ANYAGMÉRNÖK ALAPKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŐSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK Miskolc, 2008. Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyzı,
Magmágneses rezonancia. alapjai. Magmágneses rezonanciához kapcsolódó Nobel-díjak. γ N = = giromágneses hányados. v v
Magmágneses rezonancia (MR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 211. szeptember 28. Magmágneses rezonanciához kapcsolódó obel-díjak * Otto Stern, USA: obel Prize in Physics 1943,
Rádióspektroszkópiai módszerek
Rádióspektroszkópiai módszerek NMR : Nuclear magneic resonance : magmágneses rezonancia ESR : electron spin resonance: elektronspin-rezonancia Mikrohullámú spektroszkópia Schay G. Rádióspektroszkópia elég
R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók
Eliminációs reakciók Amennyiben egy szénatomhoz távozó csoport kapcsolódik és ugyanazon a szénatomon egy (az ábrákon vel jelölt) bázis által protonként leszakítható hidrogén is található, a nukleofil szubsztitúció
Heterociklusos vegyületek
Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós
Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia
24/04/ Röntgenabszorpciós CT
CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Kémiai anyagszerkezettan
Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/
Szerves spektroszkópia
Szerves spektroszkópia ETR kód: kv1n1es5 Típus: kötelezően választható előadás (BSC, 5. félév) Heti óraszám: 2, Kreditérték: 2 Tantárgyfelelős: Vass Elemér Az előadás célkitűzése A szerves vegyületek szerkezetvizsgálatában
Az NMR spektroszkópia alapjai
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE, Szervetlen Kémiai Tanszék 2012. A mágneses magrezonacia spektroszkópia (röviden NMR az angol Nuclear Magnetic Resonace kifejezésbıl) egyike azon modern
M N. a. Spin = saját impulzus momentum vektor: L L nagysága:
Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
9. Fotoelektron-spektroszkópia
9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy
Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés
06.08.. Fizikai kémia. 6. Diffrakciós módszerek Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Bevezetés A kémiai szerkezet vizsgálatához használatos módszerek közül eddig a különöző
Stern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
Altalános Kémia BMEVESAA101 tavasz 2008
Folyadékok és szilárd anayagok 3-1 Intermolekuláris erők, folyadékok tulajdonságai 3-2 Folyadékok gőztenziója 3-3 Szilárd anyagok néhány tulajdonsága 3-4 Fázisdiagram 3-5 Van der Waals kölcsönhatások 3-6
A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós
A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll
A hidrogénmolekula. Energia
A hidrogénmolekula Emlékeztető: az atompályák hullámok (hullámfüggvények!) A hullámokra érvényes a szuperpozíció (erősítés és kioltás) elve! Ezt két H-atomra alkalmazva: Erősítő átfedés csomósík Energia
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
Összefoglaló előadás. Sav-bázis elmélet
Összefoglaló előadás Sav-bázis elmélet SAV-BÁZIS TULAJDNSÁGKAT BEFLYÁSLÓ TÉNYEZŐK Elméletek: 1. Brönsted Lowry elmélet: sav - + donor; bázis - + akceptor; Konjugálódó (vagy korrespondáló) sav-bázis pár:
IV. Elektrofil addíció
IV. Elektrofil addíció Szerves molekulákban a kettős kötés kimutatására ismert analitikai módszer a 2 -os vagy a KMnO 4 -os reakció. 2 2 Mi történik tehát a brómmolekula addíciója során? 2 2 ciklusos bromónium
Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?
Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu
2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György
Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek
Szacharóz OH HO O O OH HO O OH HO OH HO 1
Szacharóz 1 A jelek átfedése miatt oldószer váltás DMS helyett D2 Measured by... Evaluated by... NMR-01 Bruker Avance-500 103.59 92.08 81.28 DEPTq 300K ns=1k D2 115 110 105 100 95 90 85 80 75 70 65 60
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
Az NMR spektroszkópia a fehérjék szolgálatában. Bodor Andrea. ELTE Szerkezeti Kémia és Biológia Laboratórium Visegrád
Az NMR spektroszkópia a fehérjék szolgálatában Bodor Andrea ELTE Szerkezeti Kémia és Biológia Laboratórium 2011.01.18. Visegrád Nobel díjak tükrében 1952 Fizika: Módszer és elméleti alapok Felix Bloch
1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.
1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!
FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;
KÖLCSÖNHATÁS ÉS DINAMIKA. az NMR spektroszkópia, mint a modern szem. Bodor Andrea
KÖLCSÖNHATÁS ÉS DINAMIKA az NMR spektroszkópia, mint a modern szem Bodor Andrea ELTE Szerkezeti Kémiai és Biológiai Laboratórium A Magyar Tudomány Ünnepe, 2012.11.08. Edvard Munch: A Nap (1911-1916) AZ
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben