Spektroszkópiai módszerek 2.
|
|
- Imre Halász
- 8 évvel ezelőtt
- Látták:
Átírás
1 Spektroszkópiai módszerek 2.
2 NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában leggyakrabban használt magok 1 H és 13 C
3 az energiaszintek közti távolság függése a külső mágneses tértől = B 0 /2 az energiaszintek közötti távolság néhány Hz-től néhány száz Hz-ig terjed, a mágnes térerejétől (frekvenciájától) függően ez a rádiófrekvenciás tartomány
4
5 fontos NMR-aktív magok és néhány tulajdonságuk
6 az 1 H NMR spektrumokból nyerhető információk: - a protonok kémiai környezete - az egymástól kémiailag különböző környezetben lévő protonok relatív száma - az egymástól kémiailag különböző környezetben lévő protonok "szomszédsági viszonyai"
7
8
9 1 H NMR - integrált
10 deuterált oldószereket használunk: (D 2 O, CDCl 3, stb.) - ne feledjük, a D atommag is NMR aktív, csak más frekvenciákon rezonál
11
12 a kémiai eltolódást befolyásoló tényezők (durva közelítés) a kapcsolódó atom(ok) elektronegativitása a kapcsolódó atomok száma
13 a kémiai eltolódást befolyásoló tényezők (finomabb közelítés) a proton(oka)t hordozó (szén)atomhoz kapcsolódó csoport elektronszívó képessége határozza meg a kémiai eltolódást (ez legfeljebb csak nagyjából jellemezhető az elektronegativitással)
14
15
16 finomságok CH 3 -csoport a rotáció gátoltságának hatása ppm mind a 9 protonra
17 CH 2 -csoport CH-csoport = = = =4.7
18 az alkén- és az aromásrégió alapeset
19 finomságok
20 aromásrégió elektronszívó és az elektronküldő csoportok hatása
21 az elektronegativitások alapján pont ellenkező sorrendet várnánk a magános elektronpár a fluornál van olyan méretű atomi pályán (2p), mint a benzol -elektronjai (2p), ezért jelentős a visszadonálás; a visszadonálás annál kisebb mértékű minél "messzebbről" történne
22 alkénrégió elektronszívó és az elektronküldő csoportok hatása
23 aldehidrégió elektronszívó és az elektronküldő csoportok hatása
24 bár a következő molekulák nem aldehidek, van olyan protonjuk (esetleg protonjaik) amely (amelyek) az aldehidrégióban rezonál(nak)
25
26 proton heteroatom rezonanciák
27
28 csatolások csak a szomszédos atomokon lévő protonok csatolnak
29 variációk ugyanarra a témára AX spinrendszer két egyforma dublet nagyon kölönböző kémiai eltolódású protonok csatolásával
30
31 variációk ugyanarra a témára
32 n+1 szabály: ha szomszédos atomon lévő protonok száma n, akkor az illető proton jele n+1 csúcsra hasad
33 a dublet dubletje (dd) vagy másként: torzult triplet AMX spinrendszer
34 a csatolás kötésen keresztül történik (through bond): minél párhuzamosabbak a kötések, annál erősebb a kölcsönhatás (annál nagyobb a csatolási állandó) a csatolási állandó nagysága (a kölcsönhatás erőssége) három tényezőtől függ: a protonok (a kötések mentén vett) távolságától a két C-H kötés közötti szögtől a szubsztituensek elektronegativitásától vicinális csatolás
35 az elektronegatív szubsztituensek csökkentik a C H kötés elektronsűrűségét, így gyengítik a kölcsönhatást
36 a 3 J csatolási állandó alkalmas lehet konformáció-, illetve konfigurációmeghtatározásra összefüggés van a 3 J csatolási állandó és a diéderes szög között Karplus-összefüggés
37 mi az a diéderes szög? csatolási állandók
38 felhasználás konformációmeghatározásra ezt a konformációt várjuk felhasználás konfigurációmeghatározásra 1 H NMR adatok: 1H tt J= 8.8 Hz és 3.8Hz axiális helyzetű protonok csatolódása ezt is kapjuk
39 más szöget is érdemes megmérni minél jobban szétterül a két hidrogén, annál kisebb a csatolódás lehetősége, azaz annál kisebb a csatolási állandó
40 konfigurációmeghatározás háromtagú gyűrű esetén diéderes szög: 109 o diéderes szög: 0 o kisebb csatolási állandók, mint a ciklopropánoknál, mert a C C kötés hoszszabb, és van egy elektronegatív szubsztituens (a gyűrűoxigén) is
41 konfigurációmeghatározás négytagú gyűrű esetén ugyanaz a helyzet, mint a háromtagú gyűrűk esetén, azaz a cisz csatolás nagyobb, mint a transz, de a csatolási állandók nagyobbak, mint a háromtagú gyűrűknél (kevésbé terülnek szét a hidrogének) konfigurációmeghatározás öttagú gyűrű esetén az öttagú gyűrű flexiblis, ezért a cisz csatolás kb. ugyanakkora, mint a transz
42 a hosszútávú csatolás többnyire zérus kivéve néhány speciális esetet:
43 geminális csatolás H A és H B nem azonosak nincs lehetőség rotációra a kettős kötés körül
44
45 hasonló kémiai környezetben lévő protonok 1 H NMR spektruma két alapszabály azonos protonok nem csatolódnak egymással (pl. a CH 3 -csoport protonjai) azonos környezetben lévő ugyanolyan szomszédok nem csatolódnak egymással pl. de van csatolódás itt háztetőt formáz
46 azt, hogy milyen lesz két csatolódó proton spektruma a kémia eltolódáskülönbségek és a csatolási állandó viszony határozza meg:
47 csatolódhatnak-e a protonok más NMR-aktív maggal, illetve csatolódhatnak-e NMR-aktív magok egymással? a válasz mindkét kérdésre igen, de ezeket a lehetőségeket csak néha használjuk ki miért? 13 C 13 C: nagyon kicsi intenzitású csúcsok, mert nagyon kicsi a 13 C izotóp gyakorisága 1 H 13 C: a J CH általában nagy, nagyon sok átfedő csúcsot kapunk, így nehéz az értelmezés 1 H 31 P: az 1 J PH nagyon nagy, sokszor nehéz az értelmezés 13 C 19 F: az 1 J CF nagyon nagy, sokszor nehéz az értelmezés (az 1 H 19 F csatolással nincs gond)
48 A Nuclear Overhauser Effektus (NOE)
49 Az NMR ( 1 H és 13 C) spektroszkópia a legalkalmasabb az aldehidek és ketonok azonosítására, addig a savszármazékokat pedig IR spektroszkópiával lehet a legjobban megkülönböztetni
50 Infravörös spektroszkópia egy molekula csak akkor mutat elnyelést az infravörös tartományban, ha legalább egy olyan rezgése van, ami megváltoztatja a molekula dipólmomentumát
51 *=1/ = /c
52
53
54
55 a elektronpárok és a magános elektronpárok karbonilcsoportra gyakorolt hatásai is jól vizsgálhatók
56 a gyűrűfeszültség is tükröződik a karbonilsáv frekvenciaértékében a gyűrűfeszültség növekedésével nő a -kötés s-karaktere, így erősödik a kötés
57
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Mágneses módszerek a mőszeres analitikában
Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
Fizikai kémia Mágneses magrezonancia spektroszkópia alapjai. Mágneses magrezonancia - NMR. Mágneses magrezonancia - NMR
Fizikai kémia 2.. Mágneses magrezonancia spektroszkópia alapjai Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 205 Mágneses magrezonancia - NMR Amint azt a korábbiakban megismertük a molekulákban
Mágneses magrezonancia (NMR) spektroszkópiák
1 A szerves vegyületek szerkezetének meghatározására kezdetben az elemi analízist és az analógiákon alapuló szerkezetbizonyító szintézist illetve lebontást alkalmazták. Bonyolultabb vegyületek szerkezetének
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN
MÁGNESES MAGREZONANIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging (MRI) 4) Magnetic Resonance Spectroscopy (MRS) NMR
Mágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia
Szerves vegyületek szerkezetfelderítése NMR spektroszkópia Az anyag összeállításához Krajsovszky Gábor, Mátyus Péter és Perczel András diáit is felhasználtuk. 1 (hullámhossz) -sugárzás röntgensugárzás
Heterociklusos vegyületek
Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,
Szacharóz OH HO O O OH HO O OH HO OH HO 1
Szacharóz 1 A jelek átfedése miatt oldószer váltás DMS helyett D2 Measured by... Evaluated by... NMR-01 Bruker Avance-500 103.59 92.08 81.28 DEPTq 300K ns=1k D2 115 110 105 100 95 90 85 80 75 70 65 60
FELADATMEGOLDÁS. Tesztfeladat: Válaszd ki a helyes megoldást!
FELADATMEGOLDÁS Tesztfeladat: Válaszd ki a helyes megoldást! 1. Melyik sorozatban található jelölések fejeznek ki 4-4 g anyagot? a) 2 H 2 ; 0,25 C b) O; 4 H; 4 H 2 c) 0,25 O; 4 H; 2 H 2 ; 1/3 C d) 2 H;
lásd: enantiotóp, diasztereotóp
anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,
FEHÉRJÉK A MÁGNESEKBEN. Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium. Alkímia Ma, Budapest,
FEHÉRJÉK A MÁGNESEKBEN Bodor Andrea ELTE, Szerkezeti Kémiai és Biológiai Laboratórium Alkímia Ma, Budapest, 2013.02.28. I. FEHÉRJÉK: L-α aminosavakból felépülő lineáris polimerek α H 2 N CH COOH amino
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE Szervetlen Kémiai Tanszék A mágneses magrezonancia spektroszkópia (röviden NMR angolul Nuclear Magnetic Resonace) egyike azon modern kémiai szerkezetvizsgálati
Kémiai kötések. Kémiai kötések. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Kémiai kötések A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Cl + Na Az ionos kötés 1. Cl + - + Na Klór: 1s 2 2s 2 2p 6 3s 2 3p 5 Kloridion: 1s2 2s2 2p6 3s2 3p6 Nátrium: 1s 2 2s
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
Elektronspinrezonancia (ESR) - spektroszkópia
Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z
Szerves spektroszkópia
Szerves spektroszkópia ETR kód: kv1n1es5 Típus: kötelezően választható előadás (BSC, 5. félév) Heti óraszám: 2, Kreditérték: 2 Tantárgyfelelős: Vass Elemér Az előadás célkitűzése A szerves vegyületek szerkezetvizsgálatában
A kémiai kötés. Kémiai kölcsönhatás
A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS KOVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Ionos kötés Na Cl Ionpár képződése e - Na + Cl - Na:
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond
Fémorganikus kémia 1
Fémorganikus kémia 1 A fémorganikus kémia tárgya a szerves fémvegyületek előállítása, szerkezetvizsgálata és kémiai reakcióik tanulmányozása A fémorganikus kémia fejlődése 1760 Cadet bisz(dimetil-arzén(iii))-oxid
Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer A kémiai kötés Kémiai
JÁTÉK KISMOLEKULÁKKAL: TELÍTETT HETEROCIKLUSOKTÓL A FOLDAMEREKIG*
JÁTÉK KISMOLEKULÁKKAL: TELÍTETT HETEROCIKLUSOKTÓL A FOLDAMEREKIG* FÜLÖP FERENC, a Magyar Tudományos Akadémia levelező tagja Szegedi Tudományegyetem, Gyógyszerésztudományi Kar, Gyógyszerkémiai Intézet,
Az NMR spektroszkópia alapjai
Az NMR spektroszkópia alapjai Dr. Rohonczy János ELTE, Szervetlen Kémiai Tanszék 2012. A mágneses magrezonacia spektroszkópia (röviden NMR az angol Nuclear Magnetic Resonace kifejezésbıl) egyike azon modern
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
SZERVES KÉMIAI ANALÍZIS
SZERVES KÉMIAI ANALÍZIS ANYAGMÉRNÖK ALAPKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŐSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI TANSZÉK Miskolc, 2008. Tartalomjegyzék 1. Tantárgyleírás, tárgyjegyzı,
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
ESR színképek értékelése és molekulaszerkezeti értelmezése
ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK. Rausch Péter kémia-környezettan
AZ ANYAGI HALMAZOK ÉS A MÁSODLAGOS KÖTÉSEK Rausch Péter kémia-környezettan Hogy viselkedik az ember egyedül? A kémiában ritkán tudunk egyetlen részecskét vizsgálni! - az anyagi részecske tudja hogy kell
A kovalens kötés elmélete. Kovalens kötésű molekulák geometriája. Molekula geometria. Vegyértékelektronpár taszítási elmélet (VSEPR)
4. előadás A kovalens kötés elmélete Vegyértékelektronpár taszítási elmélet (VSEPR) az atomok kötő és nemkötő elektronpárjai úgy helyezkednek el a térben, hogy egymástól minél távolabb legyenek A központi
Kémiai kötés Lewis elmélet
Kémiai kötés 10-1 Lewis elmélet 10-2 Kovalens kötés: bevezetés 10-3 Poláros kovalens kötés 10-4 Lewis szerkezetek 10-5 A molekulák alakja 10-6 Kötésrend, kötéstávolság 10-7 Kötésenergiák Általános Kémia,
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
Összefoglaló előadás. Sav-bázis elmélet
Összefoglaló előadás Sav-bázis elmélet SAV-BÁZIS TULAJDNSÁGKAT BEFLYÁSLÓ TÉNYEZŐK Elméletek: 1. Brönsted Lowry elmélet: sav - + donor; bázis - + akceptor; Konjugálódó (vagy korrespondáló) sav-bázis pár:
3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
Fizikai kémia 2. ZH V. kérdések I. félévtől
Fizikai kémia 2. ZH V. kérdések 2016-17 I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
NMR spektroszkópia a fehérje biokémiában
NMR spektroszkópia a fehérje biokémiában Závodszky Péter Beinrohr László MTA SzBK Enzimológiai Intézet NMR spektroszkópia a fehérje biokémiában Závodszky Péter Beinrohr László MTA SzBK Enzimológiai Intézet
Vegyületek - vegyületmolekulák
Vegyületek - vegyületmolekulák 3.Az anyagok csoportosítása összetételük szerint Egyszerű összetett Azonos atomokból állnak különböző atomokból állnak Elemek vegyületek keverékek Fémek Félfémek Nemfémek
A testek részecskéinek szerkezete
A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok
Szénhidrogének III: Alkinok. 3. előadás
Szénhidrogének III: Alkinok 3. előadás Általános jellemzők Általános képlet C n H 2n 2 Kevesebb C H kötés van bennük, mint a megfelelő tagszámú alkánokban : telítetlen vegyületek Legalább egy C C kötést
IV. Elektrofil addíció
IV. Elektrofil addíció Szerves molekulákban a kettős kötés kimutatására ismert analitikai módszer a 2 -os vagy a KMnO 4 -os reakció. 2 2 Mi történik tehát a brómmolekula addíciója során? 2 2 ciklusos bromónium
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
NMR a peptid- és fehérje-kutatásban
NMR a peptid- és fehérje-kutatásban A PDB adatbázisban megtalálható NMR alapú fehérjeszerkezetek számának alakulása az elmúlt évek során 4000 3500 3000 2500 2000 1500 1000 500 0 1987 1988 1989 1990 1991
Atomszerkezet. Atommag protonok, neutronok + elektronok. atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok
Atomszerkezet Atommag protonok, neutronok + elektronok izotópok atompályák, alhéjak, héjak, atomtörzs ---- vegyérték elektronok periódusos rendszer csoportjai Periódusos rendszer energia szintek atomokban
4.2. Az Al(III) kölcsönhatása aszparaginsav-tartalmú peptidekkel
4.2. Az Al(III) kölcsönhatása aszparaginsav-tartalmú peptidekkel A kisméretű peptidek közül az oldalláncban negatív töltésű karboxilcsoportokat tartalmazó AspAsp és AspAspAsp ligandumok komplexképződését
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
Szerves Kémiai Problémamegoldó Verseny
Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776
Kormeghatározás gyorsítóval
Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 9. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval
Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
MTA -ELTE FEÉRJEMODELLEZŐ KUTATÓCSOPORT - ÁLTALÁNOS ÉS SZERVETLEN KÉMIAI TANSZÉK EÖTVÖS LORÁND TUDOMÁNYEGYETEM Sohár Pál Varázslat, amitől láthatóvá válnak és életre kelnek a molekulák: Az NMR spektroszkópia
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekIKözgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
Biomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák
Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben
06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy
Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
Modern Fizika Laboratórium Fizika és Matematika BSc 12. Infravörös spektroszkópia
Modern Fizika Laboratórium Fizika és Matematika BSc 1. Infravörös spektroszkópia Mérést végezték: Bodó Ágnes Márkus Bence Gábor Kedd délelőtti csoport Mérés ideje: 03/0/01 Beadás ideje: 03/4/01 Érdemjegy:
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n. 2008. április 29.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 13. mérés: Molekulamodellezés PC-n Értékelés: A beadás dátuma: 2008. május 6. A mérést végezte: 1/5 A mérés célja A mérés célja az
Az anyagi rendszerek csoportosítása
Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
I. Az NMR spektrométer
I. Az NMR spektrométer I. Az NMR spektrométer fő részei Rádióelektronikai konzol Munkaállomás Mágnes 2 I. Ultra-árnyékolt mágnesek Kettős szupravezető tekerccsel csökkenthető a mágnes szórt tere. Kisebb
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
Az anyagi rendszer fogalma, csoportosítása
Az anyagi rendszer fogalma, csoportosítása A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 1 A rendszer fogalma A körülöttünk levő anyagi világot atomok, ionok, molekulák építik
1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont
1. feladat Összesen 15 pont Egy lombikba 60 g jégecetet és 46 g abszolút etanolt öntöttünk. A) Számítsa ki a kiindulási anyagmennyiségeket! B) Határozza meg az egyensúlyi elegy összetételét móltörtben
1D multipulzus NMR kísérletek
D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
Elektronspin rezonancia
Elektronspin rezonancia jegyzıkönyv Zsigmond Anna Fizika MSc I. Mérés vezetıje: Kürti Jenı Mérés dátuma: 2010. november 25. Leadás dátuma: 2010. december 9. 1. A mérés célja Az elektronspin mágneses rezonancia
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
Emlékeztető Paramágneses anyagok
Emlékeztető Paramágneses anyagok Ha az eredő spinkvantumszám S 0, vagyis a részecske rendelkezik eredő spinimpulzus momentummal, akkor mágneses momentuma is van. E vektorok abszolútértéke (hossza) S S(S
Cikloalkánok és származékaik konformációja
1 ikloalkánok és származékaik konformációja telített gyűrűs szénhidrogének legegyszerűbb képviselője a ciklopropán. Gyűrűje szabályos háromszög alakú, ennek megfelelően szénatomjai egy síkban helyezkednek
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
JÁTÉK KISMOLEKULÁKKAL: TELÍTETT HETEROCIKLUSOKTÓL A FOLDAMEREKIG*
JÁTÉK KISMLEKULÁKKAL: TELÍTETT ETERCIKLUSKTÓL A FLDAMEREKIG* FÜLÖP FEREC, a Magyar Tudományos Akadémia levelező tagja Szegedi Tudományegyetem, Gyógyszerésztudományi Kar, Gyógyszerkémiai Intézet, Szeged,
Szerves Kémiai Problémamegoldó Verseny
Szerves Kémiai Problémamegoldó Verseny 2015. április 24. Név: E-mail cím: Egyetem: Szak: Képzési szint: Évfolyam: Pontszám: Név: Pontszám: / 3 pont 1. feladat Egy C 4 H 10 O 3 összegképletű vegyület 0,1776
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Koherens lézerspektroszkópia adalékolt optikai egykristályokban
Koherens lézerspektroszkópia adalékolt optikai egykristályokban Kis Zsolt MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33 2015. június 8. Hogyan nyerjünk információt egyes
5. elıadás KRISTÁLYKÉMIAI ALAPOK
5. elıadás KRISTÁLYKÉMIAI ALAPOK KRISTÁLYKÉMIAI ALAPFOGALMAK Atomok: az anyag legkisebb olyan részei, amelyek még hordozzák a kémiai elem jellegzetességeit. Részei: atommag (mely protonokból és neutronokból
Készítette: NÁDOR JUDIT. Témavezető: Dr. HOMONNAY ZOLTÁN. ELTE TTK, Analitikai Kémia Tanszék 2010
Készítette: NÁDOR JUDIT Témavezető: Dr. HOMONNAY ZOLTÁN ELTE TTK, Analitikai Kémia Tanszék 2010 Bevezetés, célkitűzés Mössbauer-spektroszkópia Kísérleti előzmények Mérések és eredmények Összefoglalás EDTA
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Biomolekuláris szerkezeti dinamika
Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)
Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
5.4. Elektronspektroszkópia
5.4. Elektronspektroszkópia Két módszer: UV-VIS spektroszkópia: M + hν M PES, XPS (ESCA): M + hν M + + e 5.4.1. UV-VIS ultraibolya-látható spektroszkópia Alapelvek: l. fizikai kémia és műszeres analitika
Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok
MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills
R nem hidrogén, hanem pl. alkilcsoport
1 Minimumkövetelmények C 4 metán C 3 - metilcsoport C 3 C 3 C 3 metil kation metilgyök metil anion C 3 -C 3 C 3 -C 2 - C 3 -C 2 C 3 -C 2 C 3 -C 2 C 2 5 - C 2 5 C 2 5 C 2 5 etán etilcsoport etil kation
1. KARBONILCSOPORTOT TARTALMAZÓ VEGYÜLETEK
1. KARBILSPRTT TARTALMAZÓ VEGYÜLETEK 1.1. A karbonilcsoport szerkezete A szénsav acilcsoportja a karbonilcsoport: vagy 1. ábra: A karbonilcsoport A karbonilcsoport az alábbi vegyületcsaládokban fordul
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését!
I. Atomszerkezeti ismeretek (9. Mozaik Tankönyv:10-30. oldal) 1. Részletezze az atom felépítését! Az atom az anyagok legkisebb, kémiai módszerekkel tovább már nem bontható része. Az atomok atommagból és
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
Kormeghatározás gyorsítóval
Beadás határideje 2012. január 31. A megoldásokat a kémia tanárodnak add oda! 1. ESETTANULMÁNY 10. évfolyam Olvassa el figyelmesen az alábbi szöveget és válaszoljon a kérdésekre! Kormeghatározás gyorsítóval
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
Az atom- olvasni. 1. ábra Az atom felépítése 1. Az atomot felépítő elemi részecskék. Proton, Jele: (p+) Neutron, Jele: (n o )
Az atom- olvasni 2.1. Az atom felépítése Az atom pozitív töltésű atommagból és negatív töltésű elektronokból áll. Az atom atommagból és elektronburokból álló semleges kémiai részecske. Az atommag pozitív
Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére. Tartalomjegyzék: - etanol - (D)-glükópiranóz
Példák egyszerű szerves vegyületek 1 H és 13 C jelhozzárendelésére Tartalomjegyzék: - etanol - (D)-glükópiranóz triplett kvartett 1) Az indirekt (skaláris) magspin-magspin csatolást, J-t, az elektronfelhő