Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Hasonló dokumentumok
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Magyar Matematika-Informatika Intézet Babeş Bolyai Tudományegyetem, Kolozsvár 2015/2016 1/370

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

2. Visszalépéses keresés

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Kereső algoritmusok a diszkrét optimalizálás problémájához

Mesterséges intelligencia 2. laborgyakorlat

Kereső algoritmusok a diszkrét optimalizálás problémájához

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

3. Gráfkeres stratégia

2. Visszalépéses stratégia

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia MI

Az Előadások Témái. Mesterséges Intelligencia. A mesterséges intelligencia. ... trívia. Vizsga. Laborgyakorlatok: Bemutatók (5 20 pont)

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

za TANTÁRGY ADATLAPJA

V. Kétszemélyes játékok

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Keresések Gregorics Tibor Mesterséges intelligencia

A TANTÁRGY ADATLAPJA

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?

Intelligens Rendszerek Elmélete IRE 4/32/1

Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364

Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Kétszemélyes játékok

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez

Számítógépes döntéstámogatás. Genetikus algoritmusok

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Eloadó: Dr. Várterész Magdolna

Programozási módszertan. Mohó algoritmusok

Számítógép és programozás 2

Mesterséges Intelligencia MI

Kereső algoritmusok a diszkrét optimalizálás problémájához

Gépi tanulás és Mintafelismerés

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

A számítástudomány alapjai

Mesterséges Intelligencia I. (I602, IB602)

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.

Általános algoritmustervezési módszerek

NeMa: Fast Graph Search with Label Similarity

Mesterséges intelligencia 3. laborgyakorlat

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...

Számítógép és programozás 2

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Iványi Antal alkotó szerkeszt INFORMATIKAI ALGORITMUSOK

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Mesterséges intelligencia

A mesterséges intelligencia alapjai

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Adatszerkezetek 2. Dr. Iványi Péter

Dijkstra algoritmusa

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Számítógépes döntéstámogatás. Bevezetés és tematika

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Térinformatikai algoritmusok Elemi algoritmusok

Bevezetés az informatikába

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Mesterséges Intelligencia MI

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

Algoritmuselmélet 1. előadás

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Az optimális megoldást adó algoritmusok

Mesterséges intelligencia 1 előadások

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Adatszerkezetek 7a. Dr. IványiPéter

Algoritmusok bonyolultsága

MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

A gráffogalom fejlődése

Algoritmuselmélet 1. előadás

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

Diszkrét matematika 2.C szakirány

Közösség detektálás gráfokban

24. MINIMÁLIS KÖLTSÉGŰ UTAK I.

Számítsuk ki a nyelvet! Matematika, fizika és algoritmusok a nyelvben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

Mesterséges intelligencia

Edényrendezés. Futási idő: Tegyük fel, hogy m = n, ekkor: legjobb eset Θ(n), legrosszabb eset Θ(n 2 ), átlagos eset Θ(n).

end function Az A vektorban elõforduló legnagyobb és legkisebb értékek indexeinek különbségét.. (1.5 pont) Ha üres a vektor, akkor 0-t..

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Mesterséges Intelligencia 1

Átírás:

1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011

Az Előadások Témái 69/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók / Keretrendszerek Játékok modellezése Bizonytalanság kezelése Fuzzy rendszerek Grafikus modellek Tanuló rendszerek Szimulált kifűtés, Genetikus algoritmusok A perceptron modell Neurális hálók, önszerveződés Gépi tanulás

Admin...... trívia 70/363 Vizsga http://www.cs.ubbcluj.ro/~csatol/mestint Szóbeli (60%) + Gyakorlat (0%) Laborgyakorlatok: 1 Gráfok ábrázolása - dedukciós algoritmus 18% 2 Játékelmélet 10% 3 Matlab - tanulási algoritmus 12% - max. 3/személy sok% Bemutatók (5 20 pont) Alkalmazások bemutatása, melyek adaptív, gépi tanulásos vagy mestint módszereket alkalmaznak.

Bioinformatika A számítástudomány és a molekuláris biológia között 2 David Haussler & Judea Pearl Kifejlesztették az emberi genomot feltérképező programokat. A lehetőséget a számítógéptechnológia és a biokémia fejlődése biztosította. A genom biológiai összetevőinek felderítését és elemzését a tudós által kidolgozott valószínűségi megközelítés alapozta meg. Az emberi génállomány mintegy hárommilliárd alappárt képez: a kettős spirál-alakú DNS négy alap-nukleotidból (A, C, G, T) épül fel; Minden egyes nukleotid része egy párnak. A mennyiség nagyon nagy, a munka csak számítógépes módszerekkel végezhető el. agent.ai 71/363 2 Pearl J (2000):Causality: Models, Reasoning, and Inference, The CUP Press

72/363 Bioinformatika 2001. júliusában közölték a módszer vázlatait, majd az emberi és egyéb organizmusok (egér, patkány, stb.) génszekvenciáit elemző, jegyzetekkel ellátott interaktív webalapú keresőket fejlesztettek. Tudományos fórumot teremtettek, míg programjaikat gyakran használják különböző biomedikális kutatásoknál, kísérleteknél. A gének evolúciója A CBSE kutatásai az interdiszciplináris megközelítés jegyében folynak. Biológia, információs és nanotechnológia fúziójára, minél kisebb szerkezetek létrehozására törekednek. Az emberi genom evolúciójának jobb megértése az egyik fo"irány: a cél érdekében permanensen fejlesztik az új statisztikai és algoritmikus módszereket.

Gráfkeresés 2 1 6 Feladatok: 3 5 7 egy megoldás megtalálása minimális út keresése Módszerek: 73/363

7/363 I ( Futó:, 73.o) Visszalépés backtracking hátránya, hogy nem találja meg az optimális utat. Gráfkereső algoritmus: a startcsúcsból indul feltárja a reprezentációs gráfot 1 kiválaszt egy csúcsot, melynek utódai n NYILT nem ismertek, 2 kiterjeszti a választott csúcsot G G Γ(n) s G NYILT NYILT \ {n} NYILT NYILT Γ(n) addig keres, amíg egy célcsúcsot nem talál és van kiterjeszthető csúcs.

75/363 II Kommutatív rendszer a kiterjesztések bármilyen sorrendben végrehajthatók. = A vezérlési stratégia nem informatív, Másodlagos stratégia továbblépés. Módosítás: n argmin f(m) m NYILT ahol f : NYILT R kiértékelő függvény, amely egy csúcs jósága, pl. az s-ből m-be vivő legkisebb út hossza. dinamikus függvény. (felületes def.)

76/363 III Bevezetjük: kitüntetett szülő csúcsot (parent) (az s-ből egy utat specifikál). költségfüggvényt: g(m) az s-ből m-be vivő út költsége. Az n csúcs minden k utód-csúcsára k Γ(n): Ha k új csúcs, vagy Ha nem új és g(k) > g(n) + c(n, k), akkor p(k) n g(k) g(n) + c(n, k) p : G G p(s) = nil g : G R k G k G

IV Probléma: ha k zárt, korábban megkerestük utódjait és rövidebb utat találtunk, a g,p függvények nem helyesek a k utódain; a feszítőfa nem optimális. Megoldások: 1 k összes leszármazottját újraértékeljük; 2 a k csúcsot visszatesszük a NYILT halmazba. Hátrány: Nagyobb futási idő; p nem mindig optimális. 77/363 3 Olyan f választása, mely garantálja, hogy nem lesz ilyen k.

IV Probléma: ha k zárt, korábban megkerestük utódjait és rövidebb utat találtunk, a g,p függvények nem helyesek a k utódain; a feszítőfa nem optimális. Megoldások: 1 k összes leszármazottját újraértékeljük; 2 a k csúcsot visszatesszük a NYILT halmazba. Hátrány: Nagyobb futási idő; p nem mindig optimális. 77/363 3 Olyan f választása, mely garantálja, hogy nem lesz ilyen k.

78/363 G {s}, NYILT {s}, g(s) 0, p(s) nil. While nem ures(nyilt ), n arg min m NYILT f(m) If cél(n) then kilép. NYILT NYILT \ {n} For k Γ(n) If k G or g(k) > g(n) + c(n, k) p(k) n g(k) g(n) + c(n, k) NYILT NYILT {k} endfor G G Γ(n) endwhile

79/363 Az általános algoritmus tulajdonságai Tulajdonságok Az általános gráfkereső algoritmus egy csúcsot véges sokszor terjeszt ki; véges gráfban mindig terminál; mindegyik n NYILT csúcs kiterjesztése előtt s n van m csúcs az optimális úton, mely 1 m NYILT, 2 g(m) = g (m), 3 minden m-et előző csúcs az úton zárt; Egy véges gráfban, ha létezik megoldás, akkor az algoritmus egy célcsúcs megtalálásával terminál. Csökkenő kiértékelőfüggvény használata mellett optimális és konzisztens a feszítőfa. Bizonyítás

80/363 Nevezetes gráfkereső algoritmusok Futó: pp. 83 Nem-informált gráfkeresések 1 keresés 2 keresés 3 keresés Heurisztikus keresések 1 keresés 2 oritmus 3 A algoritmus A c algoritmus

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 5 6

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 5 6

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 5 6

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 5 6

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 5 6

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 7 8 5 6

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 7 8 5 6

gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 7 8 5 6 81/363 A harmadik iteráció végén tehát a zárt csúcsok halmaza {1,, 5}; a nyílt csúcsok halmaza {2, 3, 6, 7, 8}; a szülő-függvény (z, p(z)) párok: {(2, 1), (3, 1), (, 1), (5, ), (6, ), (7, 5), (8, 5)}

81/363 gráfkeresésre 2 1 k l nyílt csúcsok zárt csúcsok 3 p() szülő 7 8 5 6 A következő csúcs kiválasztása a nyílt halmazból bármilyen kritérium alapján történhet. A kritérium alapja az f( ) függvény. A függvény megválasztásával különböző keresési stratégiákhoz jutunk.

82/363 keresés Mindig a legmélyebben fekvő nyílt csúcsot választjuk, Ha minden él költsége ugyanannyi (pl. c(m, n) = 1), akkor a kiértékelő függvény: f(n) = g(n) n NYILT, Szükséges (? mikor) a mélységi korlát bevezetése, Az algoritmus nem mindig talál megoldást, Iteratív növelése a mélységi korlátnak megoldást talál (?optimális?).

83/363 keresés Példák Kiterjesztési sorrend: Ellenpélda: 2 1 7 8 B A C E 3 6 9 12 D F G 5 10 11 Ha megjegyezzük a csúcsokat: A, B, D, F, E, C, G; Ha nem: A, B, F, E, A, B,... http://en.wikipedia.org/wiki/depth_first_search

83/363 keresés Példák Kiterjesztési sorrend: Ellenpélda: 2 1 7 8 B A C E 3 6 9 12 D F G 5 10 11 Ha megjegyezzük a csúcsokat: A, B, D, F, E, C, G; Ha nem: A, B, F, E, A, B,... http://en.wikipedia.org/wiki/depth_first_search

keresés A mélységi keresés ellentettje, Mindig a legmagasabban fekvő nyílt csúcsot választjuk, 5 9 10 2 6 1 3 7 11 12 Ha minden él költsége ugyanannyi (pl. c(m, n) = 1), akkor a kiértékelő függvény: 8 f(n) = g(n) n NYILT 8/363 Az algoritmus mindig talál megoldást amennyiben ez létezik.

85/363 keresés Súlyozott változata a szélességi keresésnek, A kiértékelő függvény (általános c(m, n) esetén): f(n) = g(n) n NYILT Az algoritmus mindig talál megoldást amennyiben ez létezik, Dijkstra algoritmusa (1959).

86/363 keresés Heurisztikus kereső algoritmus, A kiértékelő függvény csak a heurisztika: f(n) = h(n) n NYILT h(n) heurisztikus függvény. pl. f(n) = W(n) a 8 as kirakójátékban; A keresőgráf kisebb, mint az egyenletes keresés esetében; A keresőgráf nem optimális; Erősen függ a választott keresőfüggvénytől.

87/363 A algoritmus Futó: pp. 90... ötvözi az egyenletes keresés óvatosságát az előretekintő keresés célratörésével, egyesítve előnyös tulajdonságaikat. Kiértékelő függvény: ahol h(n) > 0. f(n) = g(n) + h(n) n NYILT h(n) becsüli az n-ből a cél csúcsba vivő optimális út költségét.

88/363 A algoritmus tulajdonságai Tulajdonságok f (n) = g (n) + h (n) - a startból a célba az n-en keresztül vivő optimális út költségének a becslése. Ha az oritmus nem terminál, akkor minden NYILT halmazba került csúcs véges sok lépés után kiterjesztésre kerül. Az oritmus mindig talál megoldást feltéve, hogy létezik megoldás.

A* algoritmus 89/363 oritmus kiértékelő függvénye, ahol A heurisztikus függvény bármely csúcsban alulról becsüli a a célba vezető optimális út költségét, azaz h(n) < h (n) n G A fenti kritérium a heurisztika megengedhetősége. Egy gráfkereső algoritmus megengedhető, ha megoldás A tulajdonságai létezése esetén megtalálja az optimális megoldást. Bármely kiterjesztésre választott csúcsra f(n) f (n). Mindig optimális megoldással terminál, feltéve ha az létezik.

90/363 A c algoritmus Korlátozás a heurisztikus függvényre: h(n) kielégíti a monoton megszorítás (monotone restriction) feltételét, ha h(n) h(m) c(n, m) (n, m) A Egy n csúcs nem kedvezőtlen, ha egy utód m csúcs nagyon kedvező. A c algoritmus: az olyan oritmus, ahol h(n) monoton megszorításos és h(t) = 0 minden terminális csúcsra.

91/363 A c algoritmus tulajdonságai A c tulajdonságai Ha teljesül a monoton megszorítás, akkor egy n csúcsba vezető optimális út mentén a g + h növekvő. Bármely n kiterjesztésre választott csúcshoz az optimális út van megjelölve: g(n) = g (n) Mindig optimális megoldással terminál, feltéve ha az létezik.

92/363 Gráfkereső összefoglaló a heurisztika nagyon fontos egy algoritmus alkalmazhatósága a választott heurisztikán áll vagy bukik. Heurisztikus Nem-informált A A A C

Gyakorló gráfokkal Az A algoritmust használva jussunk el egy I 1 I 2 I 3 számból egy J 1 J 2 J 3 számba. Keressük meg az {1,..., N} halmaz k részbe való felosztását. Fejtsük meg a SEND + MORE = MONEY feladatot.. (10 pont) Írjunk programot, mely megoldja a háromszög-kirakós játékot.. (12 pont) Rubik-kígyó megoldása.. (10 pont) 93/363. http://...//labor.pdf