Kereső algoritmusok a diszkrét optimalizálás problémájához
|
|
- Béla Szekeres
- 6 évvel ezelőtt
- Látták:
Átírás
1 Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Kereső algoritmusok a diszkrét optimalizálás problémájához A diszkrét optimalizálási probléma Soros megoldás Párhuzamos megoldási lehetőségek és problémák A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, könyv anyaga alapján A kereső eljárások pontosabb tárgyalása Futó Iván (szerk.): Mesterséges Intelligencia, Aula, fejezetéből származnak miklos.arpad@nik.uni-obuda.hu
2 Hallgatói tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő anyag vázlatát képezik. Ismeretük szükséges, de nem elégséges feltétele a sikeres zárthelyinek, illetve vizsgának. Sikeres zárthelyihez, illetve vizsgához a jelen bemutató tartalmán felül a kötelező irodalomként megjelölt anyag, a gyakorlatokon szóban, illetve a táblán átadott tudnivalók ismerete, valamint a gyakorlatokon megoldott példák és az otthoni feldolgozás céljából kiadott feladatok önálló megoldásának képessége is szükséges. miklos.arpad@nik.uni-obuda.hu 2
3 Diszkrét optimalizálás A diszkrét optimalizálási problémák komoly számítási igényűek. Jelentős elmélettel és gyakorlati fontossággal rendelkeznek (ütemezési feladatok, pályatervezés, digitális áramkörökhöz tesztpéldák generálása, logisztikai feladatok, stb.). A kereső algoritmusok a feltételeknek megfelelő megoldások terét szisztematikusan vizsgálják. miklos.arpad@nik.uni-obuda.hu 3
4 Definíció A diszkrét optimalizációs probléma (DOP) a következő módon fejezhető ki: (S, f). S bizonyos feltételeknek eleget tévő megoldások véges, vagy megszámlálhatóan végtelen halmaza, f költségfüggvény S minden eleméhez valós R értéket rendel. A DOP megoldása olyan x opt megoldás keresése, hogy f(x opt ) f(x) minden x S esetén. Gyakran NP-teljes probléma. miklos.arpad@nik.uni-obuda.hu 4
5 Diszkrét optimalizáció: példa Egyértékű lineáris programozási feladat (0/1 integer-linearprogramming problem): adott A m n mátrix, b m 1 vektor és c n 1 vektor. A cél egy olyan x n 1 vektor meghatározása, amelynek elemei csak 0 és 1 értékekből állhatnak, a vektor teljesíti a következő feltételt: Ax b és az f függvénynek minimuma kell legyen: f(x) = c T x *: Duális megfogalmazás miklos.arpad@nik.uni-obuda.hu 5
6 DOP és a gráfkeresés Az S lehetséges elemeinek száma nagyon nagy. A DOP gyakran úgy is megfogalmazható, hogy egy gráfban minimum költségű utat keressünk egy kezdőponttól egy vagy több lehetséges cél csomópontig. Az S minden x elemét tekinthetjük egy útnak a kezdőponttól valamely célig. A gráf csomópontjai állapotok Az állapotok vagy végpontok, vagy nem végpontok Bizonyos állapotok lehetséges megoldáshoz tartoznak, mások nem Az élekhez költségek tartoznak, amelyek az egyik állapotból a másikba történő átmenet ráfordításai. A gráfot állapottérnek nevezzük. miklos.arpad@nik.uni-obuda.hu 6
7 Állapottér gráf: példa Egyértékű lineáris programozási feladat A = b = 2 c = Az A, b és c értékeihez kapcsolódó feltételek: 5x 1 + 2x 2 + x 3 + 2x 4 8 x 1 - x 2 - x 3 + 2x 4 2 3x 1 + x 2 + x 3 + 3x 4 5 A minimalizálandó f függvény pedig: f(x) = 2x 1 + x 2 - x 3-2x 4 miklos.arpad@nik.uni-obuda.hu 7
8 Állapottér gráf: példa Az állapotok az x vektor egyes koordinátáihoz rendelt lehetséges értékek (0 vagy 1) => faként reprezentálható A problémának megfelelő gráf X 1 = 0 X 1 = 1 X 2 = 0 X 2 = 1 Végpont (nem cél) Nem végpont (cél) Végpont (cél) X 3 = 0 X 3 = 1 X 3 = 0 X 3 = 1 X 4 = 0 X 4 = 1 X 4 = 0 X 4 = 1 f(x) = 0 f(x) = 2 miklos.arpad@nik.uni-obuda.hu 8
9 Lineáris programozás a) A és B textília jellegű termékeket azonos alapanyagból gyártjuk. Ebből A-hoz 2 m, B-hez 5 m szükséges minden egyes méter késztermék előállításához, és amelyből hetente legfeljebb méter áll rendelkezésünkre. b) Egységnyi termelési költségek A-ra 20 Ft/m és B-re 30Ft/m, amelyek heti összegzett költsége nem haladhatja meg a Ft-ot. c) A gyártáshoz felhasználunk bizonyos segédanyagot, amelyből A-hoz 1 m-t, B-hez 1/2 m-t használunk fel. A felhasznált segédanyagok heti mennyisége nem haladhatja meg a 700 m-t. d) Előzetes felmérés szerint A-ból hetente legalább 100 m-re van szükség. e) A rendelkezésre álló gépparkkal a B-ből hetente legfeljebb 400 m gyártható. f) A termelés nyeresége termékegységre vetítve A terméken 2 Ft, B-n 6 Ft. Termékek Korlátozások A (méter) B (méter) Erőforrások Relációk a) alapanyag b) term.klts. c) segédanyag d) termelendő e) termelendő 2 m/m 20 Ft/m 1 m/m X m/m 30 Ft/m ½ m/m ---- X m Ft 700 m 100 m/hét 400 m/hét f) nyereségek 2 Ft/m 6 Ft/m Max.
10 A feltételek matematikai megfogalmazása: max 0 0; 6 2 ) ( 400 ) ( 100 ) ( ) ( ) ( ) ( z x x z x x f x e x d x x c x x b x x a x 1 x 2 (d) (e) (c) (b) (a) Lineáris programozás
11 8-as kirakó (tili-toli) Egy kezdeti állapotból találjuk meg azt a legrövidebb lépéssorozatot, amely a célkonfigurációba vezet. Állapottér: gráf célpont célállapot duplikált állapot duplikált állapot miklos.arpad@nik.uni-obuda.hu 11
12 Kereső algoritmusok tere A keresési tér gráf vagy fa? A gráf fává történő kiterítése gyakran nagyméretű feladathoz vezet. Első példa. miklos.arpad@nik.uni-obuda.hu 12
13 Kereső algoritmusok tere A gráf fává történő kiterítése gyakran nagyméretű feladathoz vezet. Második példa. miklos.arpad@nik.uni-obuda.hu 13
14 Kereső stratégiák I. Nem módosítható keresés Nincs visszalépés. Pl. hegymászó algoritmus (gradiens keresés). Visszalépéses keresés Törli a zsákutcát. Ha körre futunk, akkor visszalépés. Mélységi korlátot használhatunk (heurisztika). Azonos szinten célszerű sorrendi heurisztikát használni. Kis memória igényű. Nem garantálja az optimális megoldást (csak növekvő mélységi korláttal és iterálva). miklos.arpad@nik.uni-obuda.hu 14
15 Négy-királynő probléma Visszalépéses keresés + azonos sorban haladva, mindig balról jobbra helyezzük el a királynőket. Feketével jelöltük a már lerakott királynőket, fehérrel pedig azokat a helyeket ahová szabad elhelyezni királynőt a következő lépésben. miklos.arpad@nik.uni-obuda.hu 15
16 Kereső stratégiák II. Nem informált gráfkeresés Nem informált gráfkeresések a gráf kiértékelő függvényben (f(n) = g(n) + h(n)) beépülő heurisztikát nem használunk. Csúcsok NYÍLT és ZÁRT listája. Mélységi keresés (Depth-First Search: DFS) Egységnyi élköltséget tekintünk. f(n):= -g(n) minden n NYÍLT csúcsra. Mélységi korlát használható, iterációs változatban is. Fa állapottérnél előnyös. Szélességi keresés Egységnyi élköltséget tekintünk. f(n):= g(n) minden n NYÍLT csúcsra. miklos.arpad@nik.uni-obuda.hu 16
17 Iteratív mélységi keresés Gyakran a megoldás a gyökérhez közeli, de másik ágon van. Az egyszerű mélységi keresés nagy részt dolgozna fel mielőtt erre az ágra jut. Iteratív módon növeljük a mélységi határt, ameddig keresünk. Ha nem találunk megoldást, akkor a határt növeljük és ismételjük a folyamatot. miklos.arpad@nik.uni-obuda.hu 17
18 Mélységi keresés: tárolási követelmény és adatstruktúra A mélységi keresés minden lépésénél a még ki nem próbált alternatívákat el kell tárolni. Ha m egy állapot tárolásához szükséges adatterület, és d a maximális mélység, akkor a mélységi kereséshez szükséges teljes tér O(md) nagyságrendű. Ha a keresendő állapottér fa, akkor a mélységi keresést veremmel hatékonyan lehet reprezentálni. A verem memória szükséglete egyenesen arányos a fa mélységével. miklos.arpad@nik.uni-obuda.hu 18
19 Mélységi keresés: tárolási követelmény és adatstruktúra Stack alja Aktuális állapot a, Stack teteje a, b, (a) Mélységi keresés fa esetén; pontozottan jelennek meg a már felkeresett csúcsok; A verem a még ki nem próbált alternatívákat tárolja csak (a); a verem a ki nem próbált alternatívákat és szüleiket (szürkített) tárolja (b). miklos.arpad@nik.uni-obuda.hu 19
20 Mélységi keresés korláttal: példa Korlát: miklos.arpad@nik.uni-obuda.hu 20
21 Szélességi keresés: példa miklos.arpad@nik.uni-obuda.hu 21
22 Heurisztikus gráfkereső stratégiák Az f(x) kiértékelő függvénybe valamilyen heurisztikát építünk be (f(x) = g(x) + h(x)). Gyakran például becsülhető a cél elérésének költsége az aktuális csúcsból. A becslést heurisztikus becslésnek nevezik. Ha a becslés garantáltan alábecsül, akkor megengedő heurisztikáról beszélünk. Elképzelés: ha heurisztikát használunk, akkor a rossz, vagy nem sokat ígérő utakra nem költünk. miklos.arpad@nik.uni-obuda.hu 22
23 Diszkrét optimizálás példához heurisztika A 8-as kirakóhoz (megengedő) heurisztika W(n) (n NYÍLT), ahol W a rossz helyek száma A 8-as kirakóhoz megengedő heurisztika A rács minden pontja a koordinátáival azonosítható. Az (i, j) és a (k, l) pozíciók távolsága: i - k + j - l. Ez a Manhattan távolság. A kezdeti és cél pozíciók közötti Manhattan távolságok összege (P-vel fogjuk jelölni) megengedő heurisztika. miklos.arpad@nik.uni-obuda.hu 23
24 Kereső stratégiák III. Heurisztikus gráfkereső stratégiák Előretekintő keresés A* f(n) = h(n) minden n NYÍLT csúcsra. Kiértékelő fgv. f(n) = g(n) + h(n) minden n NYÍLT csúcsra, ahol h(n) megengedő heurisztika. Garantálja az optimális megoldást. Nagy a memória igény. Meglátogatott csúcsokkal (állapotokkal) arányos. Mind fák, mind gráfok estében hatékony. miklos.arpad@nik.uni-obuda.hu 24
25 Előretekintő keresés f = W W hibásak száma, hátralévő mozgások alsó becslését adja miklos.arpad@nik.uni-obuda.hu 25
26 A* példa P heurisztikával miklos.arpad@nik.uni-obuda.hu 26
27 Párhuzamos diszkrét optimalizáció: motiváció DOP általában NP-teljes probléma. Segít-e a párhuzamosítás? Sok problémánál az átlagos eset polinomiális idejű. Sokszor viszonylag kis állapotterünk van, de valós idejű megoldásra van szükségünk. Többletráfordítás A soros és párhuzamos keresés közötti munkamennyiség gyakran különböző. Ha W a soros munka és W P a párhuzamos, a többletráfordítás s = W P /W. A sebességnövekedés határa p (W/W P ). miklos.arpad@nik.uni-obuda.hu 27
28 Párhuzamos mélységi keresés A keresési teret miként osszuk fel processzorok között? A különböző ágakat lehet párhuzamosan keresni. De az ágak nagyon eltérő méretűek lehetnek. Nehéz becsülni az ágak méretét a gyökerükből. Dinamikus terhelés kiegyenlítés szükséges. miklos.arpad@nik.uni-obuda.hu 28
29 Párhuzamos mélységi keresés A statikus dekompozíció strukturálatlan fakeresést és nem kiegyensúlyozott terheléshez vezet. miklos.arpad@nik.uni-obuda.hu 29
30 Párhuzamos mélységi keresés: dinamikus terhelés kiegyenlítés Amikor egy processzor befejezi munkáját, akkor egy másiktól kér. Osztott memóriás modellnél ez lockolással és a munka szétvágásával történik (lásd később). Ha valamely processzor megoldáshoz ér, akkor a többi terminál. Az eddig fel nem dolgozott részeket saját veremben tárolhatja minden processzor. Kezdetben az egész teret egy processzorhoz rendeljük. miklos.arpad@nik.uni-obuda.hu 30
31 Párhuzamos mélységi keresés: dinamikus terhelés kiegyensúlyozás (load balancing) Várakozó üzenetek kiszolgálása Befejezte az elérhető számításokat Processzor kiválasztása és számítási igény Kérés Meghatározott mennyiségű számítás Processzor aktív Processzor inaktív Számítás Várakozó üzenetek kiszolgálása Megszakítás 31
32 Párhuzamos mélységi keresés: munkafelosztás Mélységi felosztás Aktuális állapot Mélységi keresés: a két részfa a verem reprezentációval. miklos.arpad@nik.uni-obuda.hu 32
33 Terhelés kiegyenlítés A munka kiosztásának sémája: Aszinkron (lokális) körbeforgó: minden processzor egy számlálót tart karban ((target +1) mod p ) és az igényét a felé közvetíti. Nagyszámú munkaigényt generál. Globális körbeforgó: A rendszer tart karban egy számlálót és az igények körbeforgó módon kerülnek kezelésre. Legkevesebb munkaigényt generálja. Véletlen ciklikus: Véletlenszerűen kerül kiválasztásra egy processzor. Megfelelő kompromisszum. miklos.arpad@nik.uni-obuda.hu 33
34 Sebesség anomáliák párhuzamos keresésnél Soros mélységi keresés Kezdő csúcs S Párhuzamos mélységi keresés Kezdő csúcs S Cél csúcs G Cél csúcs G A soros mélységi keresés 13 csúcsot generált, míg a párhuzamos mélységi keresés 2 processzorral (R és L) csak 9 csúcsot A párhuzamos mélységi keresés kevesebb csomópontot jár be, mint a soros. miklos.arpad@nik.uni-obuda.hu 34
35 Sebesség anomáliák párhuzamos keresésnél Kezdő csúcs S Kezdő csúcs S Cél csúcs G Cél csúcs G A soros mélységi keresés 7csúcsot generált, míg a párhuzamos mélységi keresés 12 csúcsot A párhuzamos mélységi keresés több csomópontot jár be, mint a soros. miklos.arpad@nik.uni-obuda.hu 35
36 Felhasznált és javasolt irodalom [1] A. Grama, A. Gupta, G. Karypis, V. Kumar Introduction to Parallel Computing Addison-Wesley, ISBN , 2003, 2nd ed., angol, 636 o. [2] B. Wilkinson, M. Allen Parallel Programming Prentice Hall, ISBN , 2004, 2nd ed., angol, 496 o. [3] S. Akhter, J. Roberts Multi-Core Programming (Increasing Performance through Software Multi-threading) Intel Press, ISBN , 2006, angol, 340 o. [4] Iványi A. Párhuzamos algoritmusok ELTE Eötvös Kiadó, ISBN , Budapest, 2003, magyar, 334 o. [5] J. Albahari Threading in C# [online: ] 36
37
38
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Bevezetés. Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Bevezetés Motiváció Soros és párhuzamos végrehajtás, soros és párhuzamos programozás Miért? Alapfogalmak
Problémamegoldás kereséssel. Mesterséges intelligencia március 7.
Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési
Intelligens Rendszerek Elmélete IRE 4/32/1
Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Mesterséges intelligencia 2. laborgyakorlat
Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
G Y A K O R L Ó F E L A D A T O K
Döntéselmélet G Y A K O R L Ó F E L A D A T O K Lineáris programozás I Egy vállalat kétféle terméket gyárt, az A és B termékeket. A következő adatok ismertek: A vállalat éves munkaóra-kapacitása 1440 óra,
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Párhuzamos algoritmusok tervezésének alapjai
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Párhuzamos algoritmusok tervezésének alapjai Bevezetés Részfeladatok és dekompozíció Processzek és leképzés
Képfeldolgozás és párhuzamosíthatóság
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Képfeldolgozás és párhuzamosíthatóság A képfeldolgozás olyan alkalmazási terület, amely számos lehetőséget
2. Visszalépéses keresés
2. Visszalépéses keresés Visszalépéses keresés A visszalépéses keresés egy olyan KR, amely globális munkaterülete: egy út a startcsúcsból az aktuális csúcsba (az útról leágazó még ki nem próbált élekkel
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Párhuzamos programozási feladatok
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Párhuzamos programozási feladatok B. Wilkinson és M. Allen oktatási anyaga alapján feladat javaslatok
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
2. Visszalépéses stratégia
2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:
Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
Függvények növekedési korlátainak jellemzése
17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,
Objektumorientált Programozás VI.
Objektumorientált Programozás VI. Tömb emlékeztető Egyszerű programozási tételek Összetett programozási tételek V 1.0 ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók
Adatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
Adaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Diszkrét, egészértékű és 0/1 LP feladatok
Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók / Keretrendszerek
Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok
Hálózatok tervezése VITMM215 Maliosz Markosz 2012 12.10..10.27 27. Adott: VPN topológia tervezés fizikai hálózat topológiája Költségmodell: fix szakaszköltség VPN végpontok 2 VPN topológia tervezés VPN
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 69/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Keresések Gregorics Tibor Mesterséges intelligencia
Keresések ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus
Objektumorientált Programozás III.
Objektumorientált Programozás III. Vezérlési szerkezetek ismétlés Matematikai lehetőségek Feladatok 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Kényszerkielégítési problémák (Constraint Satisfaction Problem, CSP) http://mialmanach.mit.bme.hu/aima/ch05 Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Dr. habil. Maróti György
infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.
B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 06/7. félév 7. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom. A projektütemezés alapjai..
Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi
people.inf.elte.hu/gt/mi Szakirodalom Könyvek Fekete István - - Nagy Sára: Bevezetés a mesterséges intelligenciába, LSI Kiadó, Budapest, 1990, 1999. ELTE-Eötvös Kiadó, Budapest, 2006. Russel, J. S., Norvig,
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Elemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel vakon http://mialmanach.mit.bme.hu/aima/ch03s03 3. fejezet 3.4 alfejezet Pataki Béla, (Hullám Gábor) BME I.E. 414, 463-26-79 pataki@mit.bme.hu,
1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?
2012. 06. 20. 1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére? A heurisztika olyan, a feladathoz kapcsolódó ötlet, amelyet közvetlenül építünk be egy algoritmusba, azért,
Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás
Algoritmizálás, adatmodellezés tanítása 8. előadás Elágazás és korlátozás A backtrack alkalmas-e optimális megoldás keresésére? Van költség, és a legkisebb költségű megoldást szeretnénk előállítani. Van
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Vizuális, eseményvezérelt programozás XI.
Vizuális, eseményvezérelt programozás XI ÓE-NIK, 2011 1 Hallgatói tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendő anyag vázlatát képezik Ismeretük szükséges,
Amortizációs költségelemzés
Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával
Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási
2014. szeptember 24. és 26. Dr. Vincze Szilvia
2014. szeptember 24. és 26. Dr. Vincze Szilvia Mind a hétköznapi, mind a tudományos életben gyakran előfordul, hogy bizonyos halmazok elemei között kapcsolat figyelhető meg. A kapcsolat fogalmának matematikai
Bevezetés az informatikába
Bevezetés az informatikába 9. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.
Térinformatikai algoritmusok Elemi algoritmusok
Cserép Máté 2016. szeptember 14. Analóg programozásnak nevezzük azt, amikor egy feladat megoldásához egy már ismert és megoldott feladat megoldását használjuk fel. Általában nem pontosan ugyanazt a feladatot
Párhuzamos programozási modellek
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Párhuzamos programozási modellek Osztályozás Párhuzamos rendszerek Flynn-féle osztályozása Párhuzamos
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - ha segítenek útjelzések Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII,
Programozás I. Gyakorlás egydimenziós tömbökkel Többdimenziós tömbök Gyakorló feladatok V 1.0 ÓE-NIK-AII, 2016 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a
NP-teljesség röviden
NP-teljesség röviden Bucsay Balázs earthquake[at]rycon[dot]hu http://rycon.hu 1 Turing gépek 1/3 Mi a turing gép? 1. Definíció. [Turing gép] Egy Turing-gép formálisan egy M = (K, Σ, δ, s) rendezett négyessel
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Approximációs algoritmusok
Approximációs algoritmusok Nehéz (pl. NP teljes) problémák optimális megoldásának meghatározására nem tudunk (garantáltan) polinom idejű algoritmust adni. Lehetőségek: -exponenciális futási idejű algoritmus
Hálózati Folyamok Alkalmazásai. Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék
Hálózati Folyamok Alkalmazásai Mályusz Levente BME Építéskivitelezési és Szervezési Tanszék Maximális folyam 7 7 9 3 2 7 source 8 4 7 sink 7 2 9 7 5 7 6 Maximális folyam feladat Adott [N, A] digráf (irányított
A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai
A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás V 1.0 OE-NIK,
Programozás I. Matematikai lehetőségek Műveletek tömbökkel Egyszerű programozási tételek & gyakorlás OE-NIK, 2013 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk
Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD
M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
OOP I. Egyszerő algoritmusok és leírásuk. Készítette: Dr. Kotsis Domokos
OOP I. Egyszerő algoritmusok és leírásuk Készítette: Dr. Kotsis Domokos Hallgatói tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendı anyag vázlatát képezik. Ismeretük
22. GRÁFOK ÁBRÁZOLÁSA
22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom 1. Párhuzamosan
Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
Mesterséges intelligencia 3. laborgyakorlat
Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
Gráfok 1. Tárolási módok, bejárások. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 1. Tárolási módok, bejárások előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Gráfok 1. Tárolási módok Szélességi
Visszalépéses keresés
Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési
Descartes-féle, derékszögű koordináta-rendszer
Descartes-féle, derékszögű koordináta-rendszer A derékszögű koordináta-rendszerben a sík minden pontjához egy rendezett valós számpár rendelhető. A számpár első tagja (abszcissza) a pont y tengelytől mért
Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma
Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
, , A
MI Nagy ZH, 2011. nov. 4., 14.15-16, A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz