Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
|
|
- Frigyes Magyar
- 8 évvel ezelőtt
- Látták:
Átírás
1 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011
2 Az Előadások Témái 94/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák hálók / Játékok modellezése Bizonytalanság kezelése Fuzzy rendszerek Grafikus modellek Tanuló rendszerek Szimulált kifűtés, Genetikus algoritmusok A perceptron modell Neurális hálók, önszerveződés Gépi tanulás
3 Admin trívia Vizsga Szóbeli (60%) + Gyakorlat (40%) Laborgyakorlatok: 1 Gráfok ábrázolása - dedukciós algoritmus 18% 2 Játékelmélet 10% 3 Matlab - tanulási algoritmus 12% 4 Opcionális feladatok - max. 3/személy sok% 9/363 Bemutatók ( 20 pont) Alkalmazások bemutatása, melyek adaptív, gépi tanulásos vagy mestint módszereket alkalmaznak.
4 Blogbányászat Ok-okozati viszonyokat tanul a gép Amerikai kutatók 3 blogok elemzésére tanítják rendszerüket, mely történetmesélésre összpontosítva, nyelvi jegyek alapján szelektál közülük. A gyűjtött adatokból a kialakuló trendekre és viselkedésformákra következtet a rendszer. A tanítás menete: 1 Blog-bejegyzéseket osztályoztak manuálisan a történet / nem történet osztályokba.. Eredmény: a narratívák azonosítása. 2 A történetek elemei között az oksági kapcsolatok keresése. Pl: késő volt, lefeküdtem.. Eredmény: tények + oksági kapcsolatok. A rendszer sosem unatkozik Távlati cél egy rendszer kidolgozása, mely napi rendszerességgel gyűjt és rendszerez adatokat.ez fontos, mert más forrásokból hozzáférhetetlen, működése hasonló Google sertésinfluenza-követő programjához. Mire jó a blogbányászat? A blog-ok általában azonnali reagálást jelentenek, ezért garantált a gyűjtött bányászott információ aktualitása. Az élet legkülönbözőbb területeit érintik: filmek, könyvek, termékek, nemzetiségi-, vallási ellentétek, kábítószer-kereskedelem... 96/363 3 Andrew Gordon Kreatív Technológiák Intézete Link
5 97/363 hálók háló: Futó:, pp. 186 az emberi információtárolás és keresés modellezése (Quillian & Collins); gyakori név az asszociatív háló. kognitív pszichológiai kísérletek az alapjai ; Tulajdonságok: objektumokhoz tulajdonságokat rendelünk; hierarchia az objektumok szintjén absztrakció a tulajdonságok a legfelsőbb szinten asszociálódnak.
6 98/363 Quillian és Collins kísérlete: Kísérlet: kérdések a madarakról és a reakcióidők mérése. Kérdések: 1 Tud-e a kanári énekelni? 1.3mp 2 Tud-e a kanári repülni? 1.4mp 3 Van-e a kanárinak bőre? 1.mp Hosszabb asszociációs lánc az utolsó kérdésnél. Magyarázat: egy szemantikus hálóban a bőre és az énekel tulajdonságok nem egyforma távolságra vannak a kanári-tól.
7 99/363 hálók háló: Futó:, pp. 186 az emberi információtárolás és keresés modellezése (Quillian & Collins); gyakori név az asszociatív háló. kognitív pszichológiai kísérletek az alapjai ; Tulajdonságok: objektumokhoz tulajdonságokat rendelünk; hierarchia az objektumok szintjén absztrakció a tulajdonságok a legfelsőbb szinten asszociálódnak.
8 100/363 Kanári szemantikus háló háló: Irányított gráf, ahol Csúcsok: objektumok, objektumosztályok és tulajdonságok értékei; Élek: a csúcsok közötti kapcsolat neve. egy Madár Állat Kanári Strucc tud van tud repülni tud van szárnya egy egy van tollazata tud tud nem_tud méret lélegezni bõre mozogni énekelni repülni repülni nagy
9 101/363 Wordnet Nagy szemantikus háló
10 102/363 Feladatmegoldás szemantikus hálókkal Feladat: lekérdezés megválaszolása adott tárgyköri tudással. Tárgyköri tudás: egy taxonomikus hierarchia azaz egymásba ágyazott objektumok halmaza számítógépes reprezentációja. Adatbázis Lekérdezés: egy célháló illesztése a szemantikus hálóba. Illesztés
11 103/363 Milyen feladatokra megfelelő Klasszikus logika nyelvén: x ( x MADARAK x REPUL ) egy Állat Kivételek kezelése (strucc) nehézkes. Madár tud repülni Melyik alkalmazás modellezhető szemantikus hálóval: játékok, osztályozás, vízelemző rendszerek, nyelvelemzés rendszerkonfigurálás?.
12 104/363 Összefoglaló szemantikus hálók Fogalmak és kapcsolataik modellezése. Asszociatív memóriák. Információk egyszerű reprezentációja!smiley! programozási paradigma jött létre. Ezt használjuk információ reprezentálására? Történelem
13 10/363 Definciós hálók Kitérő Porfirius (i.sz. 300 körül) - magyarázata Arisztotelész Kategóriá jához. Típus és különbözőség szerint rajzolt egy definiciós hálót, ahol alá- és fölérendelt kategóriákat különböztetett meg.
14 106/363 Keretalapú Ismeretreprezentáció Futó. pp Minsky - látás egy pszichológiai modelljének a leírása. A tanulmányozott világ fizikai vagy fogalmi entitásainak egy strukturált szimbolikus modellje. hasonlít a szemantikus hálókhoz annak továbbfejlesztése. Új elem a procedurális reprezentáció. Majdnem OOP - a különbség, hogy az OOP keretrendszer célja a kódolás és nem a tudásreprezentáció. Level Object
15 FRAME-es reprezentáció frame Személy instance-of: Class azonosító: személyi vezetéknév: keresztnév: end frame Főiskolás is-a: Személy közös-cím: levél-cím: end frame Kosárcsapat instance-of: Class edző: Személy játékosok: collection-of Személy end frame Főiskolás-kosárcsapat instance-of: Kosárcsapat edző: Oktató játékosok: collection-of Főiskolás frame Szöcskék instance-of: Főiskolás-kosárcsapat frame Kosarazó játékosok: Péter, Tamás,... is-a: Személy end havi-juttatás: end frame Péter instance-of: Főiskolás instane-of: Kosár-center levél-cím: frame Kosár-center is-a: Kosárlabdázó end magasság: 193 havi-juttatás: end 107/363
16 108/363 Démonok Démonok Eljárások, melyeket osztályokhoz illetve azok attribútumaihoz lehet hozzárendelni. paraméterezés : mikor lépjenek működésbe (milyen esemény bekövetkeztekor). when-needed-demon when-changed-demon when-deleted-demon when-added-demon Frame-rendszer működése: rendszer összes démonának együttes működése (pl. útkereszteződés működtetése).
17 109/363 FRAME-ek tulajdonságai Egy keret vagy osztály vagy példány. Különbség az is-a illetve az instance-of között. Többszörös öröklődés - amikor egy osztály lehet több osztálynak az utóda. Példányok a hierarchia alján - nem lehet tovább példányosítani. Mi történik egy hiányos osztályleírás esetén? A rendszer a megszorítások alapján kiegészíti vagy nem a hiányzó információkat (pl. Péter nem főiskolás).
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
VII. Keretalapú ismeretábrázolás
Collins és Quillian kísérlete VII. Keretalapú ismeretábrázolás Tud-e a kanári énekelni? 1.3 mp Képes-e a kanári? 1.4 mp Van-e a kanárinak bőre? 1.5 mp A kanári egy kanári? 1.0 mp A kanári egy madár? 1.2
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 206/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 69/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 262/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 146/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
za TANTÁRGY ADATLAPJA
za TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái -hálók 306/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364
/364 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 200/20 Az Előadások Témái 2/364 : mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 169/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók / Keretrendszerek
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Az Előadások Témái. Mesterséges Intelligencia. A mesterséges intelligencia. ... trívia. Vizsga. Laborgyakorlatok: Bemutatók (5 20 pont)
Az Előadások Témái Mesterséges ntelligencia Csató Lehel Matematika-nformatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái : mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók / Keretrendszerek
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/33 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 110/33 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364
1/364 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 1 Tudnivalók Bevezető Fejlődés Könyvészet Eredmények 2/364 Bevezető: mi a mesterséges intelligencia...
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel
Intelligens Rendszerek I. Tudásábrázolás szemantikus hálókkal, keretekkel és forgatókönyvvel 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai
Objektum orientált programozás Bevezetés
Objektum orientált programozás Bevezetés Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 03. 04. OOPALAP / 1 A program készítés Absztrakciós folyamat, amelyben a valós világban
Absztrakció. Objektum orientált programozás Bevezetés. Általános Informatikai Tanszék Utolsó módosítás:
Objektum orientált programozás Bevezetés Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 03. 04. OOPALAP / 1 A program készítés Absztrakciós folyamat, amelyben a valós világban
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Magyar Matematika-Informatika Intézet Babeş Bolyai Tudományegyetem, Kolozsvár 2015/2016 1/370
1/370 Magyar Matematika-Informatika Intézet Babeş Bolyai Tudományegyetem, Kolozsvár 2015/2016 Az Előadások Témái 1 Tudnivalók Bevezető Fejlődés Könyvészet Eredmények Bevezető: mi a mesterséges intelligencia
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 324/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Fotódokumentáció. Projektazonosító: KMOP-1.1.1-08/1-2008-0049
Fotódokumentáció Projektazonosító: KMOP-1.1.1-08/1-2008-0049 Laborkísérletekhez használt reaktorrendszer előkészítése A laborkísérletek elvégzéséhez szükséges volt egy kisméretű FCR (food chain reactor
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. A Wolfram Alpha tudásgép. https://www.wolframalpha.
Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. A Wolfram Alpha tudásgép https://www.wolframalpha.com/ Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás
Az emberi emlékezet BME- 2008/2009; Tavaszi félév Albu Mónika malbu&cogsci.bme.hu
Az emberi emlékezet BME- 2008/2009; Tavaszi félév Albu Mónika malbu&cogsci.bme.hu K Kognitív o g n v T Tudom u d o m á n y i K Tanszék ö z p o n t v Tudományi B u d a p e s ti M ű s z a k i é s G a z d
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Gépi tanulás és Mintafelismerés
Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés
CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
Parametrikus tervezés
2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók
A TANTÁRGY ADATLAPJA
1. A képzési program adatai A TANTÁRGY ADATLAPJA 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Pszichológia és Neveléstudományok Kar 1.3 Intézet Alkalmazott Pszichológia Intézet 1.4
modell, amiben csak bináris sok-egy kapcsolatok (link, memberowner,
Informatika szigorlat 10-es tétel: Adatmodellezés Adatmodellezésnek azt az absztrakciós folyamatot nevezzük, amelyben a valós (mikró)világ tényeit, valamint a tények közötti kapcsolatokat tükröző adatokat,
OOP. Alapelvek Elek Tibor
OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN
DIGITÁLIS TEREPMODELL A TÁJRENDEZÉSBEN DR. GIMESI LÁSZLÓ Bevezetés Pécsett és környékén végzett bányászati tevékenység felszámolása kapcsán szükségessé vált az e tevékenység során keletkezett meddők, zagytározók,
A számítógépes feladatok a várt megoldáshoz egyértelmű utalásokat tartalmazzanak.
A szóbeli tételsor tartalmi és formai jellemzői Szóbeli tételek: Minden tétel két feladatból ( A és B ) áll: Az A feladat az adott témakör általános bemutatását és a témakör meghatározott részeinek részletesebb
1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)
Számítógépes döntéstámogatás. Bevezetés és tematika
SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01
Mi legyen az informatika tantárgyban?
Mi legyen az informatika tantárgyban? oktatás fő területei: digitális írástudás; számítástudomány; információs technológiák. Digitális írástudás szövegszerkesztés, adat vizualizáció, prezentáció, zeneszerkesztés,
Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék
Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:
Információ megjelenítés Alapok
Információ megjelenítés Alapok Szavak és képek Duális kódolás elmélete (Paivio) Szerkezetek Vizuális Vizuális Rendszer Képi információ Imagens Nem-verbális válasz Szóbeli Halló Rendszer Információ beszédből
Mesterséges Intelligencia Elektronikus Almanach. Konzorciumi partnerek
Mesterséges Intelligencia Elektronikus Almanach Konzorciumi partnerek 1 Konzorcium Budpesti Mőszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Pszichológia és Neveléstudományok Kar 1.3 Intézet Alkalmazott Pszichológia Intézet 1.4
Takács Árpád K+F irányok
Takács Árpád K+F irányok 2016. 06. 09. arpad.takacs@adasworks.com A jövőre tervezünk Az AdasWorks mesterséges intelligencia alapú szoftverterfejlesztéssel és teljes önvezető megoldásokkal forradalmasítja
7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban. - valamilyen jelenségről, ill.
7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban Pedagógiai értékelés fogalma: Az értékelés során értéket állapítunk meg: közvetlenül: közvetve: - valamilyen
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai
Szakterületi modell A fogalmak megjelenítése. 9. fejezet Applying UML and Patterns Craig Larman
Szakterületi modell A fogalmak megjelenítése 9. fejezet Applying UML and Patterns Craig Larman 1 Néhány megjegyzés a diagramokhoz Ez a tárgy a rendszer elemzésről és modellezésről szól. Noha például egy
III. OOP (objektumok, osztályok)
III. OOP (objektumok, osztályok) 1. Természetes emberi gondolkozás Az Objektumorientált paradigma alapelvei nagyon hasonlítanak az emberi gondolkozásra. Érdemes ezért elsőként az emberi gondolkozás elveit
BSc Témalaboratórum (BME VIMIAL00) Előzetes tájékoztató előadás 2018 ősz. Dr. Ráth István
BSc Témalaboratórum (BME VIMIAL00) Előzetes tájékoztató előadás 2018 ősz Dr. Ráth István rath@mit.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
10-es Kurzus. OMT modellek és diagramok OMT metodológia. OMT (Object Modelling Technique)
10-es Kurzus OMT modellek és diagramok OMT metodológia OMT (Object Modelling Technique) 1 3 Modell és 6 Diagram Statikus modell : OMT Modellek és diagramok: Statikus leírása az összes objektumnak (Név,
Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben.
Tartalom Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Előszó 1. Az adatbányászatról általában 19 1.1. Miért adatbányászat? 21 1.2. Technológia a rejtett információk
Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán
Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény BABEȘ-BOLYAI TUDOMÁNYEGYETEM 1.2 Kar FIZIKA 1.3 Intézet MAGYAR FIZIKA INTÉZET 1.4 Szakterület ALKALMAZOTT MÉRNÖKI TUDOMÁNYOK
MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI
MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI MESTERSÉGES INTELLIGENCIA ÉS HATÁRTERÜLETEI INTERJÚK KUTATÓKKAL AKADÉMIAI KIADÓ Szerkesztette Kömlõdi Ferenc Az elõszót írta: Tatai Gábor ISBN Kiadja az Akadémiai
Programfejlesztési Modellek
Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció
Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.
Mesterséges Intelligencia Elektronikus Almanach Neurális hálózatokh 1 BME 1990: Miért neurális hálók? - az érdeklıdésünk terébe kerül a neurális hálózatok témakör - fıbb okok: - adaptív rendszerek - felismerési
Objektumorientált paradigma és a programfejlesztés
Objektumorientált paradigma és a programfejlesztés Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján Objektumorientált
"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."
"A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:
A TECHNOLÓGIÁVAL SEGÍTETT OKTATÁS MÓDSZEREI. Dr. Főző Attila László
A TECHNOLÓGIÁVAL SEGÍTETT OKTATÁS MÓDSZEREI Dr. Főző Attila László Digitális írástudás/műveltség (digital literacy) IKT IKT eszközökkel segített oktatás Digitális pedagógia LLL Digitális/IKT készségek
TSIMMIS egy lekérdezés centrikus megközelítés. TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek
TSIMMIS egy lekérdezés centrikus megközelítés TSIMMIS célok, technikák, megoldások TSIMMIS korlátai További lehetségek 1 Információk heterogén információs forrásokban érhetk el WWW Társalgás Jegyzet papírok
Mi a mesterséges intelligencia? Történeti áttekintés. Mesterséges intelligencia február 21.
Mi a mesterséges intelligencia? Történeti áttekintés Mesterséges intelligencia 2014. február 21. Bevezetés Homo sapiens = gondolkodó ember Gondolkodás mint az emberi faj sajátja Hogyan gondolkozunk? Hogyan
Bánsághi Anna anna.bansaghi@mamikon.net. 2014 Bánsághi Anna 1 of 31
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 9. ELŐADÁS - OOP TERVEZÉS 2014 Bánsághi Anna 1 of 31 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív paradigma
Google App Engine az Oktatásban 1.0. ügyvezető MattaKis Consulting http://www.mattakis.com
Google App Engine az Oktatásban Kis 1.0 Gergely ügyvezető MattaKis Consulting http://www.mattakis.com Bemutatkozás 1998-2002 között LME aktivista 2004-2007 Siemens PSE mobiltelefon szoftverfejlesztés,
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
Kognitív megközelítés
Kognitív megközelítés Kognitív megközelítés Tanulóképe: A gyerekek magas szintű képességekkel rendelkeznek. A gyerekek hogyan : manipulálják, monitorálják az információt, és milyen stratégiákat alkalmaznak.
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
12.3. Az automatizált technológiai tervezés módszerei A variáns módszer
12.3. Az automatizált technológiai tervezés módszerei A technológiai tudás és a tervezési feladat egymáshoz rendeltetését, a feladatok típusait, a tervezési műveleteket, a megoldások környezetfüggőségét
SYLLABUS. Partiumi Keresztény Egyetem, Nagyvárad Bölcsészettudományi Kar Az óvodai és elemi oktatás pedagógiája
SYLLABUS I. Intézmény neve Kar Szak Tantárgy megnevezése Partiumi Keresztény Egyetem, Nagyvárad Bölcsészettudományi Kar Az óvodai és elemi oktatás pedagógiája A pszichológia alapjai A tantárgy típusa DF
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási
Fogalmi modellezés. Ontológiák Alkalmazott modellező módszertan (UML)
Fogalmi modellezés Ontológiák Alkalmazott modellező módszertan (UML) Fogalom képzés / kialakítás Cél: Példák: A fogalom képzés segít minket abban, hogy figyelmen kívül hagyjuk azt, ami lényegtelen idealizált
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Objektum orientált alapelvek
Krizsán Zoltán 1 [2012. február 12.] Általános Informatikai Tanszék Miskolci Egyetem Objektumorientált programozás C# alapokon tananyag Tartalom Bevezetés Programozási nyelvek A programozási eszközök absztrakciós
SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL
infokommunikációs technológiák SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL Dr. Jaskó Szilárd Pannon Egyetem, MIK, Nagykanizsai kampusz Kanizsa Felsőoktatásáért Alapítvány 2015 VIRTUÁLIS STRUKTÚRA 2 VIRTUÁLIS
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Nyelvtörténet: a szociolingvisztika és a pszicholingvisztika keresztmetszetében
Nyelvtörténet: a szociolingvisztika és a pszicholingvisztika keresztmetszetében Fehér Krisztina Nyelvelmélet és diakrónia, PPKE Budapest, 2013. november 19. A nyelvtörténet-írási tradíció konceptuális
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése
Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése Készítette: Bognár Gergő Témavezető: Veszprémi Anna Eötvös Loránd Tudományegyetem Informatikai Kar Algoritmusok és Alkalmazásaik Tanszék Budapest,
Mit tapasztalt elemér?
Mit tapasztalt elemér? Országos oktatási IKT helyzetkép Informatika Szakmaiság - Eredményesség ISZE, Budapest, 2011. március 5. TÁMOP-3.1.1-08/1-2008-0002 Ki is az az elemér? Az OFI-ban, a TÁMOP keretei
Önálló labor feladatkiírásaim tavasz
Önálló labor feladatkiírásaim 2016. tavasz (ezekhez kapcsolódó saját témával is megkereshetnek) Mészáros Tamás http://www.mit.bme.hu/~meszaros/ Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika
Multimédiás adatbázisok
Multimédiás adatbázisok Multimédiás adatbázis kezelő Olyan adatbázis kezelő, mely támogatja multimédiás adatok (dokumentum, kép, hang, videó) tárolását, módosítását és visszakeresését Minimális elvárás
Modell alapú tesztelés mobil környezetben
Modell alapú tesztelés mobil környezetben Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék A terület behatárolása Testing is an activity performed
Programozás III. - NGB_IN001_3
Programozás III. - az objektumorientált programozásba Varjasi Norbert Széchenyi István Egyetem Informatika Tanszék Programozás III. - 1. el adás institution-log Tartalom 1 El adások és gyakorlatok Zárthelyi
Objektumorientált paradigma és programfejlesztés Bevezető
Objektumorientált paradigma és programfejlesztés Bevezető Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján
Junior Java Képzés. Tematika
Junior Java Képzés Tematika I. Szakmai törzsanyag A tematika tartalmaz algoritmuselméletet, programozási tételeket, tipikus adatfeldolgozó feladatokat, programozási nyelvi alapelemeket, technológiai ismereteket,
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79