MATEMATIKAI KOMPETENCIATERÜLET A

Hasonló dokumentumok
MATEMATIKAI KOMPETENCIATERÜLET A

11. MODUL LINEÁRIS FÜGGVÉNYEK. Készítette: Csákvári Ágnes

I. Egyenes arányosság és a lineáris függvények kapcsolata

I. Egyenes arányosság és a lineáris függvények kapcsolata

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

E-tananyag Matematika 9. évfolyam Függvények

Függvények Megoldások

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

Descartes-féle, derékszögű koordináta-rendszer

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

11. modul: LINEÁRIS FÜGGVÉNYEK

Függvények ábrázolása, jellemzése I.

Matematika 8. osztály

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

MATEMATIKAI KOMPETENCIATERÜLET A

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

MATEMATIKAI KOMPETENCIATERÜLET A

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

Abszolútértékes és gyökös kifejezések Megoldások

A függvényekről tanultak összefoglalása /9. évfolyam/

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

Érettségi feladatok: Függvények 1/9

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Függvénytan elmélet, 9. osztály

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

1.1 A függvény fogalma

Exponenciális, logaritmikus függvények

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A

I. Egyenes arányosság és a lineáris függvények kapcsolata

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA KOMPETENCIATERÜLET A

Elemi függvények, függvénytranszformációk

Hozzárendelés, lineáris függvény

Matematika 9. matematika és fizika szakos középiskolai tanár. III. fejezet - Függvények (kb. 15 tanóra) > o < december 19.

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

2012. október 9 és 11. Dr. Vincze Szilvia

Függvény fogalma, jelölések 15

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI

MATEMATIKAI KOMPETENCIATERÜLET A

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

FÜGGVÉNYEK x C: 2

Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Függvények csoportosítása, függvénytranszformációk

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Exponenciális és logaritmikus kifejezések Megoldások

Teljes függvényvizsgálat

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

Követelmény a 7. évfolyamon félévkor matematikából

TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára

Kisérettségi feladatgyűjtemény

MATEMATIKAI KOMPETENCIATERÜLET A

Racionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, szeptember

Irracionális egyenletek, egyenlôtlenségek

I. Egyenlet fogalma, algebrai megoldása

Függvények határértéke, folytonossága FÜGGVÉNYEK TULAJDONSÁGAI, SZÉLSŐÉRTÉK FELADATOK MEGOLDÁSA

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Egyenletek, egyenlőtlenségek grafikus megoldása TK. II. kötet 25. old. 3. feladat

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

KOVÁCS BÉLA, MATEMATIKA I.

Boronkay György Műszaki Középiskola és Gimnázium

Abszolútértékes egyenlôtlenségek

Függvények vizsgálata

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Másodfokú függvények

Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1

2012. október 2 és 4. Dr. Vincze Szilvia

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Átírás:

MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam TANULÓK KÖNYVE. FÉLÉV

A kiadvány KHF/46-/009. engedélyszámon 008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterv A kiadvány a Nemzeti Fejlesztési terv Humánerőforrás-fejlesztési Operatív Program... központi program (Pedagógusok és oktatási szakértők felkészítése a kompetencia alapú képzés és oktatás feladataira) keretében készült, a sulinova oktatási programcsomag részeként létrejött tanulói információhordozó. A kiadvány sikeres használatához szükséges a teljes oktatási programcsomag ismerete és használata. A teljes programcsomag elérhető: www.educatio.hu címen. Szakmai vezető: Oláh Vera Szakmai tanácsadó: Somfai Zsuzsa Alkotószerkesztő: Csatár Katalin, Oláh Judit, Széplaki Györgyné, dr. Fried Katalin Grafika: Birloni Szilvia, Csákvári Ágnes, Darabos Noémi Ágnes, Gidófalvi Zsuzsa, Király és Társai Kkt, Vidra Gábor Lektor: Pálmay Lóránt Felelős szerkesztő: Teszár Edit H-AMAT090 Szerzők: Birloni Szilvia, Csákvári Ágnes, Darabos Noémi Ágnes, Gidófalvi Zsuzsa, Lövey Éva, Vidra Gábor Educatio Kht. 008. Tömeg: 560 gramm Terjedelem: 0,66 (A/5 ív) A tankönyvvé nyilvánítási eljárásban közreműködő szakértők: Tantárgypedagógiai szakértő: Kónya István Tudományos-szakmai szakértő: dr. Marosváry Erika Technológiai szakértő: Zarubay Attila

tartalom IV. FÜGGVÉNYEK. modul: Lineáris függvények (Csákvári Ágnes)... 5. modul: Abszolútérték-függvény (Csákvári Ágnes)... 7. modul: Másodfokú függvény (Csákvári Ágnes)... 57 V. VEKTOROK 4. modul: Vektorok (Vidra Gábor)... 8 5. modul: Egybevágósági transzformációk (Birloni Szilvia)... 95 VI. Algebrai azonosságok, egyenletek, egyenlőtlenségek, egyenletrendszerek 6. modul: Algebrai azonosságok (Darabos Noémi Ágnes és Vidra Gábor)... 7. modul: Egyenletek, egyenlőtlenségek, kétismeretlenes egyenletek (Darabos Noémi Ágnes)... 4 VII. statisztika 8. modul: Statisztika (Lövey Éva, Gidófalvi Zsuzsa)... 7 VIII. kör és részei 9. modul: A kör (Vidra Gábor)... 0 A könyvben kidolgozott MINTAPÉLDÁK segítenek a tananyag megértésében. A FELADATOK szintjét a sorszám előtti házikó mutatja: alapszintű feladatok: középszintű feladatok: emelt szintű feladatok: Ahol nincs ilyen jelzés, azt a példát mindenkinek ajánljuk.

. MODUL lineáris függvények Készítette: Csákvári Ágnes

6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE I. Egyenes arányosság és a lineáris függvények kapcsolata Mintapélda A csapból percenként 5 l víz folyik a fürdőkádba, melynek befogadó képessége 80 liter. Mennyi idő alatt telik meg az eredetileg üres kád? Készíts táblázatot és ábrázold grafikonon a kádban levő vízmennyiséget az eltelt idő függvényében! Megoldás: 80. Válasz a kérdésre: 6 perc alatt telik meg a kád, mert = 6. 5. Értéktáblázat készítése: T (perc) 4 8 6 L (liter) 5 0 5 0 40 60 80. Ábrázolás grafikonnal: 4. Hozzárendelési utasítás meghatározása: Az eltelt időt az tengelyen, a térfogatot (literben) az y tengelyen ábrázoltuk, tehát: a 5 vagy f () = 5.

. modul: LINEÁRIS FÜGGVÉNYEK 7 Mintapélda Egy 0 cm hosszú gyertyát meggyújtunk. A gyertya 4 óra alatt ég el. Fél óra alatt hány centimétert csökken? Készíts táblázatot és ábrázold grafikonon a gyertya hosszának alakulását az eltelt időtől függően! Megoldás: 0. Válasz a kérdésre: A gyertya óra alatt = 5 cm-t csökken, fél óra alatt,5 cm-rel 4 lesz alacsonyabb.. Értéktáblázat készítése: T (h) 0 0,5,5 4 M (cm) 0 7,5 5,5 0 5 0. Ábrázolás grafikonnal: 4. Hozzárendelési utasítás meghatározása: Az eltelt időt az tengelyen, a gyertya magasságát az y tengelyen ábrázoltuk, tehát: a 5 0. vagy f () = 5 0.

8 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda Egy személygépkocsi az autópálya 50 km-es szakaszán 0 km/h sebességgel halad. Mennyi idő alatt teszi meg ezt az utat? Készíts táblázatot és ábrázold grafikonon a sebességet az út függvényében! Megoldás: v. Válasz a kérdésre: Az autó 0,45 óra alatt teszi meg az utat, mert t = = 50 = 0, 4 & 5 &. s 0. Értéktáblázat készítése: s (km) 0 0 0 40 45 50 km v h 0 0 0 0 0 0 0. Ábrázolás grafikonnal: 4. Hozzárendelési utasítás meghatározása: A megtett utat az tengelyen, az autó sebességét az y tengelyen ábrázoltuk, így: a 0, vagyis f () = 0.

. modul: LINEÁRIS FÜGGVÉNYEK 9 II. A lineáris függvény Azokat a függvényeket, amelyeknek grafikonja egyenes, lineáris függvényeknek nevezzük, és az f() = m b képlettel adhatjuk meg, ahol m a függvény grafikonjának meredeksége, b pedig az y tengellyel való metszéspont második koordinátája. Ha m = 0, akkor az f ( ) = b. f() = m b hozzárendelést kapjuk, melyet konstans (nulladfokú) függvénynek nevezünk. Ekkor a függvény képe az tengellyel párhuzamos egyenes.. f() = b Ha m 0, akkor ez a lineáris függvény elsőfokú.. f() = m, ha m > 0 4. f() = m, ha m < 0 Ha m > 0, akkor a függvény szigorúan növő, vagyis növekvő értékekhez növekvő függvényértékek tartoznak. Ha m < 0, akkor a függvény szigorúan csökkenő, vagyis növekvő értékekhez csökkenő függvényértékek tartoznak. Minden f() = m függvény az egyenes arányosság függvénye, az arányossági tényező az m. (Minden érték esetén az f() érték m-szerese az -nek). A grafikonról leolvashatjuk, hogy egy egységnyi jobbra haladás esetén hány egységet megyünk az y tengely mentén pozitív m esetén felfelé, negatív m esetén lefelé.

0 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda 4 Ábrázoljuk és jellemezzük az f ( ) = 5 hozzárendeléssel megadott függvényt! Megoldás: Ábrázolása:. Az y tengelyt a 5 pontban metszi.. Ebből a pontból kiindulva a meredekség miatt egy egységnyi jobbra haladás esetén egységet lépünk felfelé az y tengely mentén.. A kapott két pontot összekötve, és meghosszabbítva a szakaszt, megkapjuk a lineáris függvény grafikonját. Jellemzése:. É.T.: R.. É.K.: R.. Zérushely: =,5. 4. Szigorúan növekvő (mivel a meredeksége pozitív előjelű). Mintapélda 5 Ábrázoljuk és jellemezzük a g ( ) = hozzárendeléssel megadott függvényt! 4 Megoldás: Ábrázolása:. Az y tengelyt a pontban metszi.. Ebből a pontból kiindulva a meredekség miatt 4 4 egységnyi jobbra haladás esetén egységet lépünk lefelé az y tengely mentén.. A kapott két pontot összekötve, és meghosszabbítva a szakaszt, megkapjuk a lineáris függvény grafikonját. Jellemzése:. É.T.: R.. É.K.: R.. Zérushely: = 4. 4. Szigorúan csökkenő (mivel a meredeksége negatív előjelű).

. modul: LINEÁRIS FÜGGVÉNYEK Feladatok. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! a) f () = ; b) () = f ; c) f () = ; d) f () =.. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! a) () = 5 f ; b) f () = 4 ; c) f () = 5 ; d) f () = 4.. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! f ; b) () f = ; c) () f = ; d) f () = a) () = 5 4. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! a) () = 4 f ; b) () = 5 f ; c) () = 6 f =. f ; d) ()

MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda 6, Ábrázoljuk koordináta-rendszerben az f() = 8, megadott függvény grafikonját! ha ha 5 > 5 hozzárendelési utasítással Megoldás: Ábrázoljuk először az () = f függvény grafikonját a ] ; 5] intervallumon, majd folytassuk az () = 8 f függvény grafi- konjával az ] 5; [ intervallumon. Közben megfigyelhetjük, hogy az = 5 helyen ugyanazt az értéket veszik fel a függvények: () 5 = 5 f, f () 5 = 5 8. = = Mintapélda 7 Ábrázoljuk koordináta-rendszerben az f() = függvény grafikonját! Megoldás: 5 5 hozzárendelési utasítással megadott Egyszerűsítsük a törtet! 5 f () = = ( 5 ) ( 5 ) = 5, 5 ( 5) 5. Ábrázoláskor figyeljünk arra, hogy a függvény az = 5 helyen nincs értelmezve. Ezt a szakadási pontot üres karikával jelöljük.

. modul: LINEÁRIS FÜGGVÉNYEK Feladatok 5. Ábrázold koordináta-rendszerben az alábbi hozzárendelési utasításokkal megadott függvények grafikonját! 6 a) f ( ) = ; b) f ( ) = ; c) f ( ) = ( ) ; 4 6 9 d) f ( ) = ; e) f ( ) = ; f) f ( ) =, ha ; 4, ha <, ha, ha > g) f ( ) = ; h) f ( ) =. 6, ha > 4, ha Mintapélda 8 Adjuk meg a lineáris függvény hozzárendelési utasítását, ha az a) átmegy a P( ; 5) ponton és az y tengelyt a 0 helyen metszi! b) átmegy a P( ; ) ponton és grafikonja párhuzamos az () = 6 utasítással megadott függvény grafikonjával! Megoldás: f hozzárendelési a) A lineáris függvény hozzárendelési utasításának általános alakja: f () m b =. Adott: P( ; 5), valamint b = 0. f () az helyen felvett függvényérték. Mivel a P pont rajta van a grafikonon, így = és f ( ) = 5. Ezeket behelyettesítve az általános egyenletbe kapjuk: 5 = m 0 m = 5. A keresett hozzárendelési utasítás: f () = 5 0. b) A lineáris függvény hozzárendelési utasításának általános alakja: f () m b Adott: P( ; ). Az előző példához hasonlóan = és f () =. Ha a keresett függvény grafikonja párhuzamos az () = 6 =. f függvény képével, akkor a meredekségük megegyezik. A keresett hozzárendelési szabályban a meredekség tehát szintén. Ezeket behelyettesítve az általános képletbe kapjuk: = () b, ebből b = 5. A keresett hozzárendelési utasítás: () = 5 g.

4 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Feladatok 6. Add meg a lineáris függvény hozzárendelési utasítását, ha az a) átmegy a P( 7; 4) ponton, és a meredeksége! b) átmegy a P( ; ) ponton és az tengelyt a 6 pontban metszi! c) átmegy a P( ; 6) ponton, és meredeksége 0! d) átmegy a P( 00; ) ponton és párhuzamos az tengellyel! e) átmegy a P(; 4) és a Q( 4; ) pontokon! 7. a) Az alábbi hozzárendelési utasításoknak megfelelően rajzold be a koordinátatengelyeket! () = 5 f ; () = f ; () f = ; b) Írd fel a következő grafikonok hozzárendelési utasításait. Add meg az értelmezési tartományt is!

. modul: LINEÁRIS FÜGGVÉNYEK 5 II. Kétismeretlenes lineáris egyenletrendszerek és lineáris egyenlőtlenségek grafikus megoldása. Kétismeretlenes lineáris egyenletrendszerek megoldása Mintapélda 8 Jancsi bankszámlát szeretne nyitni. Az egyik bank havi számlafenntartási díja 00 Ft, de havonta tranzakció (pénz felvétele, egyenleg lekérdezése, utalás stb.) ingyenes, minden további tranzakció 00 Ft. A másik banknál a havi számlafenntartási díj 00 Ft, de minden tranzakció 50 Ft. Melyik bankot érdemes választania, ha havonta 5 tranzakció történik? Havonta hány tranzakció esetén éri meg az első bank, illetve a második? Válaszaidat indokold! Megoldás: Értéktáblázat készítése: Egyik bank: Havonta a tranzakciók száma 4 5 6 Díj (Ft) 00 00 400 500 600 700 Másik bank: Havonta a tranzakciók száma 4 5 6 Díj (Ft) 50 400 550 700 850 000 Hozzárendelési szabályok: -szel jelöljük a tranzakciók számát. ( ) 00 00, Egyik bank: e () = ; 00, { ;} Másik bank: m() 00 50 =.

6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Grafikon készítése: Szöveges válasz: Havi 5 tranzakció esetén az első bankot érdemes választani, mert itt csak 650 Ft-ot kell fizetnie, míg az másik banknál 850 Ft-ot. Havi egy tranzakció esetén a második bankban, de vagy annál több tranzakció esetén az elsőben éri meg számlát nyitni. Feladatok Útmutató a következő 4 feladat megoldásához: Oldd meg a szöveges feladatokat a következőképpen: töltsd ki az értéktáblázatokat, határozd meg minden feladatban a két értéktáblázat értékpárjai közötti hozzárendelési utasítást! Ábrázold az ezek által meghatározott függvények grafikonjait közös koordináta-rendszerben! 8. Egy új autó 500 eft-ba kerül, de 6 évig garantáltan nem hibásodik meg, azaz rá fordított költségek elhanyagolhatóak. Utána minden évben 00 eft-ot kell ráköltenünk. Egy 8 éves használt autó ára csak 800 eft, de az éves szervizdíja átlagosan 00 eft. Melyik autóra kell többet költenünk, ha a költségeket az autók 0 éves koráig összeszámoljuk? Melyik az a legkésőbbi időpont, amikor még megéri a használt autót fenntartani? Válaszaidat indokold!

. modul: LINEÁRIS FÜGGVÉNYEK 7 Kitöltendő értéktáblázatok: Új autó év 0 6 7 8 0 5 költség (eft) Használt autó év 0 6 7 8 0 5 költség (eft) 9. Reggel a munkahelyemre villamossal és busszal egyaránt mehetek. A villamos azonnal indul, a buszra még várni kell 8 percet. Ha villamossal megyek, akkor a 4 km-es út 5 percbe telik, a busszal csak 7 perc. Melyikkel menjek, hogy minél hamarabb beérjek? Mennyi idő alatt tesz meg a busz, ill. a villamos km utat? Válaszaidat indokold! Kitöltendő értéktáblázatok: Villamos s (km) 0 0,5 4 5 t (min) Busz s (km) 0 0,5 4 5 t (min) 0. A soltvadkerti nyári táborba a csoport néhány tagja biciklivel megy, a többiek autóbusszal. A táv 00 km, a biciklisták 5 km/h óra sebességgel képesek haladni, és reggel 7 órakor indulnak az iskola elől. A busz 9-kor indul ugyanerről a helyről, de 80 km-t tesz meg óránként. Melyik csapat éri hamarabb a célt? Hány órával később ér le a másik? Hány km megtétele után és hány órakor éri utol az egyik a másikat? Válaszaidat indokold!

8 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Kitöltendő értéktáblázatok: Bicikli s (km) 0 0 40 60 70 80 00 t (h; perc) Autóbusz s (km) 0 0 40 60 70 80 00 t (h; perc). Kati szeretne beiratkozni könyvtárba. Az egyik könyvtárban 500 Ft az éves tagsági díj, és minden kölcsönzés 50 Ft. A másik könyvtárban 00 Ft a tagsági díj, de a kölcsönzési díj 50 Ft. Ha egy éven keresztül havonta 8 könyvet szeretne kikölcsönözni, akkor melyik könyvtárba érdemes beiratkoznia? Egy évben hány könyvet kölcsönözzön ki, hogy ugyanannyit fizessen? Hány könyv kölcsönzése esetén érdemes az első, illetve a második könyvtárat választania? Válaszaidat indokold! Kitöltendő értéktáblázatok: Egyik könyvtár Könyv(db) 0 5 7 8 9 Összeg(Ft) Másik könyvtár Könyv(db) 0 5 7 8 9 Összeg(Ft)

. modul: LINEÁRIS FÜGGVÉNYEK 9. Lineáris egyenlőtlenségek Mintapélda 0 Hol találhatók a síkban azok a pontok, amelyek koordinátáira teljesül az y 4 < egyenlőtlenség? Megoldás: Az egyenlőtlenséget y-ra rendezve kapjuk az y < 4 egyenlőtlenséget. Ha a < jel helyett = jelet írunk, akkor egy egyenest kapunk. Azokat a síkbeli pontokat keressük, amelyeknek y koordinátája kisebb, mint a baloldali kifejezés, vagyis az egyenes alatt találhatók. A megoldáshalmaz tehát az egyenes alatti félsík. Az egyenes pontjai nem tartoznak a megoldáshalmazba (ezt szaggatott vonallal jelöljük).. Hol találhatók a síkban azok a pontok, amelyek koordinátáira teljesül, hogy a) y < ; b) y 4; c) y ; e) y > 4?. Határozd meg a pontok y koordinátáit úgy, hogy az így kapott pont az alábbi hozzárendelési utasításokkal megadott függvények grafikonjai felett illetve alatt legyenek! Hozzárendelési utasítások: f () = 4 g () = h () = 4 i () = Pontok: P( ; ) Q(5; ) R( ; ) S(; ) T( 6; ) U(0; ) V(,5 ; ) 4. Ábrázold koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! Színezd ki a megoldási halmazt! a) y ; b) 4 > 0,5, c) y < 5, d) 4. 5. Ábrázold koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! Színezd ki a megoldási halmazt! a) 4 > ; b) 5; c) 5 7 < 5 ; d).

0 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE 6. Ábrázold koordináta-rendszerben az alábbi lineáris egyenlőtlenségeket! Színezd ki a megoldási halmazt! a) y > ; b) y és < ; c) y < és < < 5. 7. Jellemezd az adott ponthalmazokat! a) b)

. modul: LINEÁRIS FÜGGVÉNYEK IV. Előjel-, törtrész és egészrész függvény. Előjelfüggvény Azt a függvényt, amely a negatív valós számokhoz -et, a pozitív valós számokhoz -et, a 0-hoz pedig 0-át rendel, előjelfüggvénynek (szignum függvénynek) nevezzük., ha > 0 A valós számok halmazán értelmezett sgn( ) = 0, ha = 0 hozzárendelési utasítással, ha < 0 megadott függvény grafikonja a következő: Jellemzés: É.T.: R. É.K.: { ; 0; }. Zérushely: = 0. Monotonitás: monoton növekvő. Szélsőérték: minimumhely: minden < 0 esetén; minimumérték: ; maimumhely: minden > 0 esetén; maimumérték:. Paritás: páratlan, mert sgn( ) = sgn().. Egészrész-függvény Az valós számnak az egészrésze az a legnagyobb egész szám, amely nem nagyobb -nél. Az egészrész jele: [] A valós számok halmazán értelmezett f() = [] hozzárendelési utasítással megadott függvényt egészrész-függvénynek nevezzük. Grafikonja a következő:

MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Jellemzés: É.T.: R. É.K.: Z. Zérushely: 0 <. Monotonitás: Az értelmezési tartományán monoton növekvő, de szakaszonként állandó. Ha k egész szám, akkor k < k helyeken k értéket veszi fel. Szélsőérték: nincs szélsőértéke.. Törtrész-függvény Ha egy számból elveszük az egészrészét, akkor a törtrésze marad. Jelölése: [] = {} A valós számok halmazán értelmezett f() = {} hozzárendelési utasítással megadott függvényt törtrész-függvénynek nevezzük. Grafikonja a következő: Jellemzés: É.T: R. É.K: [0; [. Zérushely: Z. Monotonitás: Ha k Z, akkor a [k; k[ intervallumon szigorúan növekvő. Szélsőérték: minimumhely: Z; minimumérték: 0; maimuma nincs. A függvény periodikus, vagyis tetszőleges helyen ugyanazt a függvényértéket veszi fel, mint az -gyel, vagy bármely egész számmal nagyobb helyen. Az a legkisebb ilyen pozitív egész szám, ezt nevezzük a periódus hosszának. Jelöléssel: f( ) = f(), tetszőleges k Z esetén f() = f( k).

. modul: LINEÁRIS FÜGGVÉNYEK Mintapélda Ábrázold a következő függvényeket! a) f() = []; b) g() = {}; c) h() = sgn ( ). Megoldás: a) A függvény a 0 értéket a [0; 0,5[ intervallumon veszi fel, pl.: [0 [ = 0, de [0,5 [ =. Az értéket a [0,5; [ intervallumon veszi fel, pl.: [0,5 [ =, de [ [ = stb. A grafikon: b) Az alapfüggvény minden függvényértéke kétszeresére nő: c) A függvény grafikonját eltoljuk az tengely mentén egységgel:

4 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Feladatok 8. Ábrázold a következő függvényeket! a) f() = []; b) f() = [ ]; c) f() = [] ; d) f() = [] ; e) f() = [ ] ; f) f() = [ ]; g) f() = [ ]. 9. Ábrázold a következő függvényeket! a) f() = {}; b) f() = { }; c) f() = d) f() = {} ; e) f() = { }. ; 0. Ábrázold a következő függvényeket! a) f() = sgn(); b) f() = sgn( ); c) f() = sgn( ); d) f() = sgn() ; e) f() = sgn().

. modul: LINEÁRIS FÜGGVÉNYEK 5 Kisleikon Lineáris függvény: a konstans (nulladfokú) és az elsőfokú függvények összessége. Grafikonja egyenes. Lineáris függvény hozzárendelési utasítása (képlete) mindig megadható f () = m b alakban, ahol m a függvény grafikonjának meredeksége, b pedig az y tengellyel vett metszéspont. koordinátája. b = 0 esetén a grafikon átmegy az origón. Ha m = 0, akkor a függvény konstans függvény, grafikonja párhuzamos az tengellyel. Lineáris függvény grafikonjának meredeksége: megmutatja, hogy egy egységnyi jobbra haladás esetén hány egységet kell az y tengely mentén lépni pozitív m esetén felfelé, negatív m esetén lefelé. Lineáris függvény monotonitása: ha m > 0, akkor a függvény szigorúan növő, vagyis ha az helyébe bármely két különböző valós számot helyettesítünk, akkor a nagyobb értékhez nagyobb függvényérték tartozik. ha m < 0, akkor a függvény szigorúan csökkenő, vagyis ha az helyébe bármely két különböző valós számot helyettesítünk, akkor a nagyobb értékhez kisebb függvényérték tartozik. Pont és egyenes illeszkedése: A P( 0 ;y 0 ) pont rajta van az f () m b = hozzárendelési utasítással megadott lineáris függvény grafikonján, ha helyébe -t; 0 f() helyébe y-t 0 helyettesítve az egyenlőség teljesül. Ha y 0 > m0 b, akkor a P pont az egyenes felett helyezkedik el, ha y 0 < m0 b, akkor pedig alatta van. Egyenes arányosság: Ha két változó mennyiség összetartozó értékeinek hányadosa állandó, akkor azok egyenesen arányosak. Az egyenes arányosságot az f () = m, m 0 függvény írja le, ahol m az arányossági tényező. lineáris

6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Előjelfüggvénynek (szignumfüggvénynek) nevezzük a valós számok halmazán értelmezett, ha > 0 sgn( ) = 0, ha = 0 hozzárendelési utasítással megadott függvényt., ha < 0 Az valós számnak az egészrésze az a legnagyobb egész szám, amely nem nagyobb nél. Az egészrész jele: []. A valós számok halmazán értelmezett f() = [] hozzárendelési utasítással megadott függvényt egészrész-függvénynek nevezzük. Ha egy számból elveszük az egész részét, akkor a törtrésze marad. Jelölése: [] = {}. A valós számok halmazán értelmezett f() = {} hozzárendelési utasítással megadott függvényt törtrész-függvénynek nevezzük.

. MODUL abszolútérték- függvény Készítette: Csákvári Ágnes

8 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE I. Az abszolútérték-függvény definíciója Pozitív szám abszolútértéke maga a szám, negatív szám abszolútértéke a szám ellentettje, ami pozitív szám. 0 =0 a, ha a 0 a = a, ha a < 0 A valós számok halmazán értelmezett abszolútérték-függvényt az, ha 0 f () = =, ha < 0 hozzárendelési utasítással definiáljuk. Ez szemléletesen azt mutatja meg, hogy a szám milyen messze van a 0-tól a számegyenesen. Az abszolútérték-függvény ( f () = ) tulajdonságai 5 0,5 5 4 f() 5 0,5 5 4 0,6. 0 0,6. 0,6,6. Monotonitás: Ha < 0, akkor növekvő értékekhez csökkenő függvényértékek tartoznak. Ezért az f () = függvény ezen a tartományon szigorúan monoton csökkenő. Ha 0, akkor növekvő értékekhez növekvő függvényértékek tartoznak. Így a függvény ezen a tartományon szigorúan monoton növekvő.. Zérushely: Az f() = függvénynek az = 0 pontban van zérushelye. Ez szemléletesen azt is jelenti, hogy a függvény grafikonjának ebben a pontban van közös pontja az tengellyel.. Szélsőérték: Az f () = függvény a 0 helyen a 0 értéket veszi fel, az összes többi helyen pozitív. Ezért az f függvénynek az = 0-ban szélsőértéke, nevezetesen minimuma van.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 9 (Látható, hogy az f függvény negatív -ek esetén szigorúan monoton csökkenő, pozitív -ekre pedig szigorúan monoton növekvő.) Másképp: az f függvény az értelmezési tartományának = 0 helyén veszi fel a legkisebb függvényértékét, ekkor f() = 0. A g () = függvény a 0 helyen a 0 értéket veszi fel, az összes többi helyen negatív. Ezért a g függvénynek az = 0-ban szélsőértéke, nevezetesen maimuma van. (Látható, hogy a g függvény negatív -ek esetén szigorúan monoton növekvő, pozitív -ekre pedig szigorúan monoton csökkenő.) Másképp: a g függvény az értelmezési tartományának = 0 helyén veszi fel a legnagyobb értékét, ekkor g ()=0. Megállapításainkat értéktáblázattal is alátámasztjuk: 5 0,5 5 4 g() 5 0,5 5 4 0,6. 0 0,6. 0,6,6 4. A h () = függvénynek az = 0-ban helyi (lokális) maimuma van, és mai- mumértéke h(0)=. Ez azt jelenti, hogy az értelmezési tartományának az = 0 hely egy környezetében van olyan valódi részhalmaza, amelyen a h függvény nem vesz fel -nál nagyobb értéket, de ez a teljes értelmezési tartományra természetesen nem feltétlenül igaz. 6 5 4 0 4 5 6 h() 0 0

0 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda Az f () = 5 hozzárendelési szabály alapján töltsük ki az értéktáblázatot, illetve használjuk a tanult jelöléseket! Számítás előtt tippeljük meg az adott függvényértékhez tartozó helyek számát! 0 f() 5 4 9 0 0 4 0 ; ; 6 5 0 4 Megoldás: Függvényértékek számítása: f ( 0 ) = 0 5 = 5 f ( ) = 5 = 5 = 5 = 4 4 4 5 f ( ) = 5 = 5 = 5 = = 9 9 9 Adott függvényértékek esetén az értékek számítása: f () = 6 Tipp az helyek számára: 0 5 = 6 A tipp indoklása: a sohasem lehet pozitív, így a függvény 5 nél nagyobb értéket nem vehet fel. = = Ellentmondás, mert az abszolútérték-függvény értékkészlete a nemnegatív valós számok halmaza. f () = 5 Tipp az helyek számára: 5 = 5 = 0 = 0 = 0

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY f () = 0 Tipp az helyek számára: 5 = 0 = 5 0 = = 0 = 0 = A többi függvényértékhez tartozó helye(ke)t is ugyanígy kell kiszámolni. Feladatok Az.,.,., feladatok megoldásánál figyelj arra, hogy a függvény egy adott függvényértéket 0, vagy helyen is felvehet. Számítás előtt próbáld megtippelni az adott függvényértékhez tartozó helyek számát! Számításodat grafikonon ellenőrizheted.. Adott hozzárendelési szabály alapján töltsd ki az értéktáblázatot, illetve használd a tanult jelöléseket! a) a () = 0 / a() 6 0 b) b () = 4 0 4 b() 0 6 4 c) c () = 0 4 c() 0 4 d) d () = 5 6 0 0,75 d() 0 5 0

MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE. Adott hozzárendelési szabály alapján töltsd ki az értéktáblázatot, illetve használd a tanult jelöléseket! a) a () = a ( 8 ) =?; a ( ) =?; a ( 4 ) =? =?, ha a () = 4; ; 0; ; 4 b) b () = b ( 0,5 ) =?; b ( 0 ) =?; b ( 5 ) =? =?, ha b () = ; 0; ; ;. c) c () = 4 c ( ) =?; c ( 0 ) =?; c (,4 ) =? =?, ha c () = 5; 4; ; 0; 0,5. d) d () = 4 5 d ( 8 ) =?; d ( ) =?; d ( ) =? =?, ha d () = 4; 0; ; 5; 6.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY. Adott hozzárendelési szabály alapján töltsd ki az értéktáblázatot, illetve használd a tanult jelöléseket! a) a () = 6 8 a ( ) =?; a ( ) =?; a ( 0 ) =? =?, ha a () = 0; 6; 4; 0;. b) b () = b ( 5 ) =?; b ( ) =?; b ( ) =? =?, ha b () = 4; ; 0; ; 5. c) c () = c ( ) =?; c ( 0 ) =?; c ( 0, ) =? =?, ha c () = ; ; 4 ; 0; 0,5. d) d () = d ( ) =?; d ( 0 ) =?; d (,75 ) =? =?, ha d () = ; ; ; 0; 4.

4 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE II. Az abszolútérték-függvény transzformálása Az abszolútérték-függvény transzformálása: y tengely menti eltolás Ábrázoljuk közös koordináta-rendszerben az f () =, a g () = illetve a () = hozzárendelési utasításokkal megadott függvények grafikonját! Az ábrázoláshoz felhasználhatjuk az elkészített értéktáblázatot vagy az abszolútérték-függvény definícióját. 5 4, 0 g(), 0 h() 7 6, 5 4 4 5 7 0 8 4 5 6 7 g () =,, ha ha 0 < 0 h () =,, ha ha 0 < 0 Ha az f függvény értékeiből -at vonunk ki, akkor a g függvény megfelelő értékeit kapjuk meg, ha pedig -t adunk hozzá, akkor a h függvény megfelelő értéke lesz az eredmény. Ez a grafikonon az f () függvény grafikonjának eltolását eredményezi az y tengely mentén illetve egységgel. Általánosságban: a g () = a ( a 0 tól különböző, tetszőleges valós szám) függvény grafikonját az f () = függvény grafikonjából úgy kapjuk, hogy f grafikonját eltoljuk az y tengely mentén a egységgel a < 0 esetén lefelé, a > 0 esetén felfelé.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 5 Az abszolútérték-függvény transzformálása: tengely menti eltolás Ábrázoljuk közös koordináta-rendszerben az f () =, a g () = illetve a h () = hozzárendelési utasítással megadott függvények grafikonját! Az ábrázoláshoz felhasználhatjuk az elkészített értéktáblázatot vagy az abszolútérték-függvény definícióját. 5 4, 0 f() 5 4, 0 g() 4, 0 4 4 4 4 5 4 5 4 5 6 5 4, 0 4 f() 5 4, 0 4 h() 7 6, 5 4 0 4 5 5 4 5 5 5 g () = h () =, ha, ha, ha, ha < < Az értéktáblázatból is látható, hogy a g függvény ugyanazokat az értékeit egységgel korábban veszi fel, mint az f függvény. Ez azt is jelenti, hogy a g függvény grafikonját úgy

6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE kapjuk meg az f függvény grafikonjából, hogy azt eltoljuk az tengely mentén egységgel, másképp fogalmazva, negatív irányba egységgel. A h függvény ugyanazokat az értékeit egységgel később veszi fel, mint az f függvény. A h függvény grafikonját pedig az f függvény grafikonjának tengely menti egységgel, pozitív irányba történő eltolásával kapjuk meg. Általánosságban: a g () = a ( a 0 tól különböző, tetszőleges valós szám) függvény grafikonját az f () = függvény grafikonjából úgy kapjuk, hogy f grafikonját eltoljuk az tengely mentén a egységgel a előjelével ellentétes irányba: a < 0 esetén pozitív, a > 0 esetén negatív irányba. Az abszolútérték-függvény transzformálása: y tengely menti zsugorítás/nyújtás. Ábrázoljuk közös koordináta-rendszerben a következő függvények grafikonját! f () = ; g () = ; h () =. Az ábrázoláshoz felhasználhatjuk az elkészített értéktáblázatot vagy az abszolútérték definícióját! 0, g() 9 6 0,9 6 9,5 0 h(),5 0 g()=, ha, ha 0 < 0, ha h()=, ha 0 < 0

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 7. Ábrázoljuk közös koordináta-rendszerben a következő függvények grafikonját: f () = ; g () = ; h () =! Az ábrázoláshoz felhasználhatjuk az elkészített értéktáblázatot vagy az abszolútérték definícióját! 0, 0, g() 9 6 0,9 6 9,5 0,5 0 h(),5 0, ha 0, ha 0 g()= h()=, ha < 0, ha < 0 Észrevehetjük, hogy. az és az függvények grafikonja és tulajdonságaik megegyeznek. az f függvény értékeit -mal szorozva, a g függvény értékeit, míg del szorozva, a h függvény értékeit kapjuk meg. A definíciót felhasználva láthatjuk, hogy a megfelelő lineáris függvény meredekségét változtatta meg ez a szorzótényező. Ezeknek a függvényeknek a grafikonját megkaphatjuk az abszolútérték definíciójából is két lineáris függvény ábrázolásával. Általánosságban: az f () = függvényből a g () = a függvényt úgy kapjuk, hogy minden függvényértéket a-szorosára változtatunk. Szemléletesen: ha az a szorzótényező 0 és között van, akkor az abszolútérték-függvény grafikonja szétnyílik, -nél nagyobb, akkor a grafikon meredekebb lesz, negatív, akkor a grafikon az tengelyre is tükröződik. Megjegyzés: Ezeknek a függvényeknek a grafikonját megkaphatjuk egyetlen lineáris függvényből is a következő módon: először a lineáris függvény grafikonját nyújtjuk vagy zsugorítjuk, majd az tengely alatti (ahol a függvény negatív értékeket vesz fel) részt tükrözzük az tengelyre. Ezek a transzformációk megjelennek a lineáris függvényeknél is.

8 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE 4. Válaszolj a következő kérdésekre!. Mit értünk egy szám abszolútértékén? Mit jelent szemléletesen?. Mi az abszolútérték-függvény definíciója?. A függvény legyen adott f () = b hozzárendelési utasítással, ahol b egy tetszőleges valós szám. Ez a függvény mely y értékeket veszi fel 0, ill. helyen? 4. A függvény legyen adott f () = b hozzárendelési utasítással, ahol b egy tetszőleges valós szám. Milyen b értékek esetén lesz a függvénynek 0, ill. zérushelye? 5. Mi a különbség az f () = 5, illetve az f () = 5 hozzárendelési utasítással megadott függvények grafikonja között? 6. Az f () = függvénynek hol van szélsőértéke? Maimuma vagy minimuma van? Mekkora ez a függvényérték? 7. Hogyan változik az f () = függvény szélsőértéke a 6. feladatban található függvény szélsőértékéhez képest? 8. Az f () = c függvénynek milyen c értékek esetén van minimuma, illetve maimuma? 9. Hogyan változik az f () = függvény grafikonja, ha az t megszorozzuk egy ]0;[ intervallumbeli számmal? 0. Jellemezd az f () = c hozzárendelési utasítással megadott függvény monotonitását negatív, illetve pozitív c értékek esetén!

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 9 Mintapélda Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () =, [ 4;6 [ hozzárende- 4 lési utasítással megadott függvényt! Megoldás: Értéktáblázattal: 4 0 4 5 5,9 9 9 f() 0 4,75 4,45 4 4 4 4 Transzformációs lépések:. h () =. g () = 4. f () = 4 Definíció szerint: f () = 4 4, ha, ha 0 < 0 Jellemzés: É.T.: 4 < 6, ahol valós. É.K.: 4,5 < f () 0. Zérushely: = 0. Monotonitás: 4 < 0 intervallumon szigorúan monoton növekvő. 0 <6 intervallumon szigorúan monoton csökkenő. Szélsőérték: = 0 helyen maimuma van. A maimum értéke: f ( 0 ) = 0.

40 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () = hozzárendelési utasítással megadott függvényt! Megoldás: Értéktáblázattal: 4 0 4 f() 6 5 4 4 5 6 Transzformációs lépések:. h () =. g () =. f () = Definíció szerint:, ha f () =, ha 0 < 0 Jellemzés: É.T.: R. É.K.: f (). Zérushely: nincs. Monotonitás: 0 esetén szigorúan monoton növekvő. 0 < esetén szigorúan monoton csökkenő. Szélsőérték: = 0 helyen maimuma van. A maimum értéke: f ( 0 ) =.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 4 Mintapélda 4 Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () = 6 hozzárendelési utasítással megadott függvényt! Megoldás: Értéktáblázattal: 0 4 5 6 7 9 f() 0 7 4 4 7 Transzformációs lépések:. h () =. g () = 6. f () = 6 Definíció szerint: 6 = 5 f () = 6 = 7, ha, ha 6 < 6 Jellemzés: É.T.: R. É.K.: f (). Zérushely: nincs. Monotonitás: < 6 esetén szigorúan monoton csökkenő. 6 esetén szigorúan monoton növekvő. Szélsőérték: = 6 helyen minimuma van. A minimum értéke: f ( 6 ) =.

4 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda 5 Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () = hozzárendelési utasítással megadott függvényt! Megoldás: Transzformációs lépések:. l () =. h () =. g () = 4. f () = Definíció szerint:, ha f () =, ha < Jellemzés: É.T.: R. É.K.: f () 0. Zérushely: = 0. Monotonitás: < esetén szigorúan monoton növekvő. esetén szigorúan monoton csökkenő. Szélsőérték: = helyen maimuma van. A maimum értéke: f ( ) = 0.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 4 Mintapélda 6 Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () = 8, [ ; 5 [ hozzárendelési utasítással megadott függvényt! Megoldás: Transzformációs lépések:. l () =. h () =. g () = 4. f () = 8 Definíció szerint: 9 5 ( ) 8 = 8 = f () = 9 7 ( ) 8 = 8 = Jellemzés: É.T.: [ ; 5 [, ahol valós. É.K.: f () 8., ha, ha < 5 < Zérushely: nincs. Monotonitás: < 5 intervallumon szigorúan monoton csökkenő. < intervallumon szigorúan monoton növekvő. Szélsőérték: = helyen maimuma van. A maimum értéke: f ( ) = 8. = helyen minimuma van. A minimum értéke: f ( ) =.

44 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda 7 Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () = 5 4 hozzárendelési utasítással megadott függvényt! Megoldás: Jellemzés: É.T.: R. É.K.: 0 f (). Zérushely: = 9 és = helyeken. Monotonitás: Transzformációs lépések:. l () =. h () = 5. g () = 5 4 4. f () = 5 4 Definíció szerint:, ha, ha f ()= 9, ha 9, ha esetén szigorúan monoton növekvő. 5 < 9 < 5 < 9 5 < intervallumon szigorúan monoton csökkenő. 9 < 5 intervallumon szigorúan monoton növekvő < 9 esetén szigorúan monoton csökkenő. Szélsőérték: = 9 és = helyeken minimuma van. A minimum értéke: f ( 9 ) = f ( ) = 0. = 5 helyen lokális maimuma van. A maimum értéke: f ( 5 ) = 4.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 45 Mintapélda 8 Ábrázoljuk koordináta-rendszerben, és jellemezzük az f () = 5, [ 5;0[ hozzárendelési utasítással megadott függvényt! Megoldás: Definíció szerint: g () = =, ha, ha < h () = 5 = 5 5, ha, ha 5 < 5 Két függvény összege szerepel. Az egyik grafikonjának csúcspontja -nál, a másiké 5-nél van, ezért a számegyenest részre tagoljuk, és eszerint vizsgáljuk a függvényt. Összegezve: f () = 8 8, ha, ha, ha 5 < 0 < 5 5 <

46 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Jellemzés: É.T: [ 5; 0 [. É.K: f () 8. Zérushely: nincs. Monotonitás: 5 < 0 intervallumon szigorúan monoton növekvő. < 5 intervallumon állandó (konstans) értéket vesz fel. 5 < intervallumon szigorúan monoton csökkenő. Szélsőérték: < 5 intervallumon minimuma van. A minimum értéke: f () =. = 5 helyen maimuma van. A maimum értéke: f ( 5 ) = 8. Feladatok 5. Ábrázold koordináta-rendszerben, és jellemezd az alábbi hozzárendelési utasításokkal megadott függvényeket! Az ábrázoláshoz felhasználhatod az értéktáblázatot vagy az abszolútérték-függvény definícióját. a) f () = 5, 8 ; b) f () = 7 ; c) f () = ; d) f () = 4, 6 4; e) f () = ; 4 f) f () =, 5 [ 4; 8 [; g) f () =, ] 6; ]; h) f () = ; i) f () = ; j) f () = 4, 5 < < ; k) f () = ; l) f () = ; m) f () = 5. 6. Ábrázold koordináta-rendszerben, és jellemezd az alábbi hozzárendelési utasításokkal megadott függvényeket! Az ábrázoláshoz felhasználhatod az értéktáblázatot vagy az abszolútérték-függvény definícióját. a) f () = 4, < < 7; b) f () = ; c) f () = 4; d) f () =, [ 6;4]; e) f () =, < 5; f) f () = ; 4 g) f () = 5, < < 4; h) f () = 0; i) f () = ; 4 j) f () = 4, ] ; 5 ]; k) f () = ; l) f () =.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 47 7. Ábrázold koordináta-rendszerben, és jellemezd az alábbi hozzárendelési utasításokkal megadott függvényeket! Az ábrázoláshoz felhasználhatod az értéktáblázatot vagy az abszolútérték-függvény definícióját. 5 a) f () = 4 ; b) f () = 5 8, [ ; 8 [; c) f () = 5 ; d) f () = 5, [ 8; ]; e) f () = 4, [ 0;0[; f) f () = 4 8, [ ; 7 ]; 4 g) f () = 5 ; h) f () =, ] 5; 6 ]; i) f () = 4 5 ; j) f () =, 5 < 5. 8. Ábrázold koordináta-rendszerben, és jellemezd az alábbi hozzárendelési utasításokkal megadott függvényeket! Az ábrázoláshoz felhasználhatod az értéktáblázatot vagy az abszolútérték-függvény definícióját. a) f ( ) = 5 ; b) f () = ; c) f () = ; [ 6; 4 ]; d) f ( ) = ; ] 8; [; e) f () = 6 ; [ 5; 0 [; f) f () = ; g) f () = 4 ; h) f () =. 9. Rajzold be az ábrákba a grafikon és a hozzárendelési utasítás alapján a koordinátarendszer tengelyeit! a) f () = b) f () =

48 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE c) f () = 5 d) f () = 8 e) f () = 4 f) f () = g) f () = 6 h) f () = 4 i) f () = j) f () = 4

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 49 Mintapélda 9 Állítsuk sorrendbe az alábbi geometriai transzformációkat úgy, hogy az m () = 0 7 hozzárendelési utasítással megadott függvény grafikonját kapjuk az alapfüggvény grafikonjából! Megoldás: Egyik lehetőség: Másik lehetőség:. tengely menti eltolás. tengelyre történő tükrözés. tengelyre történő tükrözés. tengely menti eltolás. y tengely menti eltolás. y tengely menti eltolás Feladat 0. Állítsd sorrendbe az alábbi geometriai transzformációkat úgy, hogy a következő hozzárendelési utasításokkal megadott függvények grafikonját kapjad az alapfüggvény grafikonjából! Geometriai transzformációk: tengely menti eltolás y tengely menti eltolás tengelyre tükrözés y tengely menti zsugorítás/nyújtás Függvények: a () = ; b () = ; c () = ; d () = ; e () = ; f () = ; g () = ; h () = 4.

50 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda 0 Állítsuk sorrendbe az előbbi geometriai transzformációkat úgy, hogy az m () = 6 hozzárendelési utasítással megadott függvény grafikonját kapjuk az alapfüggvény grafikonjából! Megoldás: Első lehetőség: (ez a sorrend általános érvényű). tengely menti eltolás. tengelyre történő tükrözés. y tengely menti zsugorítás, nyújtás (Megjegyzés: a sablon használata miatt célszerű előbb tükrözni, s csak utána zsugorítani vagy nyújtani) 4. y tengely menti eltolás Többi lehetőség: az első három transzformáció sorrendje tetszőlegesen felcserélhető. Ez további 5 lehetséges sorrendet eredményez. ( =! = 5 ) Feladat. Állítsd sorrendbe az alábbi geometriai transzformációkat úgy, hogy a következő hozzárendelési utasításokkal megadott függvények grafikonját kapjad az alapfüggvény grafikonjából! Geometriai transzformációk: tengely menti eltolás y tengely menti eltolás tengelyre tükrözés y tengely menti zsugorítás/nyújtás Függvények: a) a () = ; b) b () = ; c) c () = ; 4 d) d () = 4 ; e) e () = ; f) f () =.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 5 III. Abszolútértékes egyenletek, egyenlőtlenségek grafikus megoldása Mintapélda Oldjuk meg grafikusan a 5 = egyenletet! Megoldás: A keresett értékek: = 8, illetve =. Mintapélda Oldjuk meg grafikusan a 5 Megoldás: egyenlőtlenséget! A keresett intervallum: 8. Mintapélda Oldjuk meg grafikusan a 5 > egyenlőtlenséget! Megoldás: A keresett intervallumok: < 8 vagy >. Feladat. Oldd meg grafikusan a következő egyenlőtlenségeket! a) ; b) > 4; c) 4 < 5 ; d) ; e) =.

5 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Mintapélda 4 Oldjuk meg az 4 = egyenletet!. megoldás (grafikus): A keresett értékek: = 8, 5.. megoldás (algebrai): Az abszolútérték definícióját alkalmazzuk (esetszétválasztás): I. 0 eset: = behelyettesítéssel adódik: 4 =, ebből = 6 = 5 II. < 0 eset: = ( ) behelyettesítéssel adódik: ( ) 4 =, ebből = 8 A megoldás tehát = 5, = 8. Mintapélda 5 Oldjuk meg grafikusan a 4 egyenlőtlenséget! Megoldás: A metszéspontok koordinátáját az előző mintapéldában már meghatároztuk. A keresett intervallumok: < 8 vagy 5 <

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 5 Mintapélda 6 Oldjuk meg grafikusan a 4 < egyenlőtlenséget! Megoldás: A metszéspontok koordinátáját a. mintapéldában már meghatároztuk. A keresett intervallumok: 8 5. Feladatok. Oldd meg grafikusan a következő egyenlőtlenségeket, egyenletet! a) 5 < ; b) ; c) 4 = ; d) >. 4. Oldd meg grafikusan a következő egyenleteket, egyenlőtlenségeket! a) = 5; b) 5 = 5; c) < 5 5 ; 5. Színezd ki a megadott tartományokat úgy, hogy ha az egyenlőség megengedett, akkor a tartomány határa a tartomány színe legyen, mivel a tartomány határvonala is beletartozik a megoldáshalmazba. Ha nem megengedett, akkor fekete színű legyen! a) < és y 4; b) és y < 4; c) és y > 4. Mintapélda 6 Színezzük ki azon pontok halmazát, melyek koordinátáira teljesül, hogy < 4 és y <! A színezéshez használjuk fel a 5. feladatban leírtakat! Megoldás:

54 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Feladatok 6. Oldd meg grafikusan a következő egyenleteket, egyenlőtlenségeket! a) 8 = ; b) = ; c) 8 < ; d) 8 > vagy. 7. Oldd meg grafikusan a következő egyenleteket, egyenlőtlenségeket! a) 5 > 6 ; b) ; c) 8 7 < 5 ; d) 4 5 ; e) =. 8. Színezd ki a megadott tartományokat úgy, hogy ha az egyenlőség megengedett, akkor a tartomány határa a tartomány színe legyen, mivel a tartomány határvonala is beletartozik a megoldáshalmazba. Ha nem megengedett, akkor fekete színű legyen! a) < 4 és y ; b) 4 és y > ; c) 4 és y.

. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY 55 Kisleikon Pozitív szám abszolútértéke maga a szám, negatív szám abszolútértéke a szám ellentettje, ami pozitív szám. 0 =0. a, ha a 0 a = a, ha a < 0 Legyen tetszőleges valós szám. Ekkor az abszolútérték-függvény:, ha 0 f () = =, ha < 0 Tulajdonságai:. Monotonitás Ha < 0, akkor növekvő értékekhez csökkenő függvényértékek tartoznak. Ezért az f () = függvény ezen a tartományon szigorúan monoton csökkenő. Ha 0, akkor növekvő értékekhez növekvő függvényértékek tartoznak. Így a függvényt ezen a tartományon szigorúan monoton növekvőnek nevezzük.. Zérushely: Az f () = függvénynek az = 0 pontban van zérushelye. Ez szemléletesen azt is jelenti, hogy a függvény grafikonjának ebben a pontban van közös pontja az tengellyel.. Szélsőérték: Az f () = függvény a 0 helyen a 0 értéket veszi fel, az összes többi helyen pozitív. Ezért az f függvénynek az = 0-ban szélsőértéke, nevezetesen minimuma van. (Látható, hogy az f függvény negatív -ek esetén szigorúan monoton csökkenő, pozitív -ekre pedig szigorúan monoton növekvő.) Másképp: az f függvény az értelmezési tartományának = 0 helyén veszi fel a legkisebb függvényértékét, ekkor f () = 0

. MODUL másodfokú függvények Készítette: Csákvári Ágnes

58 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE I. A másodfokú alapfüggvény definíciója, grafikonja és tulajdonságai A másodfokú alapfüggvény Minden valós számhoz rendeljük hozzá a négyzetét! Ekkor a hozzárendelési utasítás f () = alakban írható fel. Adjunk meg táblázatban néhány értéket : 6 0,5 5 4 f () 56 0,5 5 6 9 4 0,6 0 0,969 0 4 9, 4 9 7,69 Mivel minden szám négyzete nemnegatív, ezért az f () = függvény értékkészlete a nemnegatív valós számok halmaza. Ha koordináta-rendszerben ábrázoljuk az összes olyan értékpárt, amelynek első tagja egy tetszőleges valós szám, második tagja pedig annak négyzete, a következő görbét kapjuk: Ennek a görbének a neve parabola. Az ábrán látható, hogy a másodfokú függvény grafikonja szimmetrikus az y tengelyre, hiszen = ( ). A parabola szimmetriatengelyén lévő pontját tengelypontnak nevezzük. Másodfokú hozzárendelési utasítással találkozhatunk az a oldalú négyzet területének, ill. az a oldalú kocka felszínének kiszámításakor, de a fizikában is találkozunk vele a szabadesés és az egyenletesen gyorsuló test mozgását leíró út idő kapcsolatnál. A másodfokú alapfüggvény tulajdonságai. Monotonitás Ha 0, akkor növekvő értékekhez csökkenő függvényértékek tartoznak. Ezért a függvény ezen a tartományon szigorúan monoton csökkenő. Ha 0, akkor növekvő értékekhez növekvő függvényértékek tartoznak. Így a függvényt ezen a tartományon szigorúan monoton növekvőnek nevezzük.

. modul: MÁSODFOKÚ FÜGGVÉNYEK 59. Zérushely Az értelmezési tartománynak azon eleme, ahol a függvényérték 0. Az f () = függvénynek az = 0 pontban zérushelye van. Ez szemléletesen azt is jelenti, hogy a függvény grafikonjának ezen a helyen közös pontja van az tengellyel.. Szélsőérték Az f () = függvény a 0 helyen a 0 értéket veszi fel, az összes többi helyen pozitív. Ezért az f függvénynek az = 0-ban szélsőértéke, nevezetesen minimuma van. Másképpen: az f függvény az értelmezési tartományának = 0 helyén veszi fel a legkisebb függvényértékét. Tekintsük a g () = függvényt! Adjunk meg táblázatban néhány értéket, és ezek segítségével ábrázoljuk a függvényt! 6 0,5 5 4 g () 56 0,5 5 6 4 9 0,6 0 0,969 0 4 9, 4 9 7,69 A g függvény a 0 helyen a 0 értéket veszi fel, az összes többi helyen negatív. Ezért a g függvénynek az = 0 helyen szélsőértéke, nevezetesen maimuma van. A g függvény nempozitív -ek esetén szigorúan monoton növekvő, nemnegatív -ekre pedig szigorúan monoton csökkenő. Másképpen: a g függvény az értelmezési tartományának = 0 pontjában veszi fel a legnagyobb értékét. Mintapélda Az f () = ( ) hozzárendelési utasítás alapján töltsük ki az értéktáblázatot, illetve használjuk a tanult jelöléseket! Figyeljünk arra, hogy a függvény egy adott függvényértéket 0, vagy helyen is felvehet. Számítás előtt tippeljük meg az adott függvényértékhez tartozó helyek számát!

60 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE a) b) 0 4,5 6 f () f () 4,5 6 Megoldás: a) Függvényértékek kiszámítása: f ( 0 ) = ( 0 ) = ( ) = 9 = f ( 4,5 ) = ( 4,5 ) = (,5 ) =,5 = 4,5 A többi függvényértéket is ehhez hasonlóan kell kiszámítani. Az eredmény: 0 4,5 6 f () 8 4,5 b) értékek kiszámítása: f () = Tipp az helyek számára: 0 Gondolkozzunk! Az ( ) előjele pozitív, ezért a függvény grafikonja felfelé nyílik. Ez mutatja, hogy minimuma van. Az utána következő miatt ez a minimumérték, tehát ennél kisebb értéket nem vehet fel. Így f () = függvényértéket egyetlen helyen fogja felvenni, a többit két helyen. ( ) = ( ) = Ellentmondás, mert egy szám négyzete 0 vagy pozitív. f () = ( ) = ( ) = 0 = 0 = A fenti tipp ellenőrzése

. modul: MÁSODFOKÚ FÜGGVÉNYEK 6 f () = A fenti tipp ellenőrzése ( ) = ( ) = = = = 4 = A további értékeket is ehhez hasonlóan lehet kiszámítani. Az eredmény: 0,5; 4,5 4; 5; f () 4,5 6 Feladatok A. és a. feladatban figyelj arra, hogy a függvény egy adott függvényértéket 0, vagy helyen is felvehet. Számítás előtt tippeld meg az adott függvényértékhez tartozó helyek számát! Számításodat grafikonon ellenőrizheted.. Adott hozzárendelési szabály alapján töltsd ki az értéktáblázatot, illetve a tanult jelöléseket használva számítsd ki a függvényértékeket a megadott helyeken! a) a () = 6 5 0 a() b) b () = ( 4 ) 0 4 4,5 6 b() c) c () = 8 c ( ) =?; c ( ) =?; c ( ) =?; c ( ) =?; c ( ) =? d) d () = 4 d ( ) =?; d ( 0 ) =?; d ( ) =?; d ( ) =?; d ( 4 ) =?

6 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE e) e () = 4 e ( ) =?; e ( 0 ) =? ; e (,4) =? f) f () = ( ) f ( ) =?; f ( 0 ) =?; f (0,) =? g) g () = ( ) g ( 6) =?; g ( 5 ) =?; g ( ) =?; g ( 0 ) =?; g ( ) =? h) h () = ( ) h ( 6) =?; h ( 5) =?; h ( ) =?; h ( 0 ) =?; h ( ) =? i) k () = ( 4) 5 k ( 8) =?; k ( ) =?; k ( ) =? j) l () = ( ) l ( ) =?; l ( 0 ) =?; l (,75 ) =?. Adott hozzárendelési szabály alapján töltsd ki az értéktáblázatot, illetve a tanult jelöléseket használva számítsd ki a függvényértékekhez tartozó helyeket! a) a () = a () 0 4 6 b) b () = ( 4) b () 4,5 6 c) c () = 8 =?, ha c () = 0; 0; 8; 4,5; 9. d) d () = 4 =?, ha d () = 0; 4; ; ;. 6

. modul: MÁSODFOKÚ FÜGGVÉNYEK 6 e) e () = 4 =?, ha e () = 5; 4; ; 0; 0,5. f) f () = ( ) =?, ha f () = 5; ; 0; ;. g) g ( ) = ( ) 4 =?, ha g () = ; ; ; 0; 0,5. h) h () = ( ) 5 =?, ha h () = ; 0; ; ;. 9 i) k () = ( 4) 5 =?, ha k ( ) = 4; 0; ; 5; 6. j) l () = ( ) =?, ha l () = ; ; ; 0; 4.. Adott hozzárendelési szabály alapján töltsd ki az értéktáblázatot! a) f () = ( ) 0 4 f () 0 4 b) g () = ( ) 5 6 0 0,75 g () 0 5 0

64 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE 4. Egy 4 m széles, m magas kamion szeretne áthajtani az alagúton, mégpedig az autóút közepén haladva. Az alagút formája követi az f () = 4 másodfokú függvény grafikonját, ha az egység mindkét koordinátatengelyen méter. Át tud-e menni a kamion az alagúton? 5. Egy 0 m magas árbocú vitorlás megkísérelné az átkelést a 8 m széles folyón átívelő híd alatt. A vitorlás szélessége m. A híd íve követi az f () = másodfokú függvény grafikonját, ha az egység mindkét koordinátatengelyen méter. Át tud-e úszni a vitorlás a híd alatt a folyó közepén? Át tud e kelni a folyó partjától 0 m-re? (A vitorlás árboca 0 m-re van a parttól.) 6. A Lucullus tengerjáró hajó át szeretne kelni a Seholsincs-szoroson. A hajó 7 méterre süllyed a tenger szintje alá. A szélessége pedig 0 m a tengerszinten. Át tud-e kelni a hajó a szoroson, ha a tengerszoros medrének íve követi az f () = 8 függvény grafikonját, és az egység mindkét koordinátatengelyen méter? 7. Peti elhajítja a labdáját. A labda mozgásának íve az f () = másodfokú 4 függvény grafikonját követi, és az egység mindkét koordinátatengelyen méter. Peti 80 cm magas, és a fejével egy magasságból indítja a labdát, vagyis,8 méter magasságból. Hány métert repül előre a labda, amikor ismét olyan magasságba kerül, ahonnét elindult? 8. Egy műugró bajnok 0 m magasból ugrik a vízbe. Hány másodperce van a gyakorlata végrehajtására, mielőtt beleesne a vízbe? (s = (g/) t, ahol g = 9,8 m/s ) 9. Egy ember vitorlázórepülővel szeretne leereszkedni a domb tetejéről a völgybe. Milyen magas (km-ben megadva) a domb, ha a domb oldala és a völgy az f () = ( 5) függvény grafikonját követi, és az egység mindkét koordinátatengelyen kilométer? A domb tetőpontjának talppontja (tetőpont tengelyre való vetülete) és a völgy aljának a távolsága 0,5 km. 0. Hányszorosára változik a négyzet területe, ha az oldalait másfélszeresére növeljük? Készíts értéktáblázatot, illetve grafikont a változás mértéke és a terület kapcsolatáról!

. modul: MÁSODFOKÚ FÜGGVÉNYEK 65 II. A másodfokú alapfüggvény transzformációi. Ábrázoljuk közös koordináta-rendszerben, illetve értéktáblázattal az f () =, a g () =, illetve h () = függvények grafikonjait! Az ábrázoláshoz felhasználhatjuk az elkészített értéktáblázatot. Összehasonlítjuk a megfelelő függvényértékeket: 4 0 4 g() 6 6 h() 8 6 6 8 Ha az f függvény értékeiből -at vonunk ki, akkor a g függvény értékeit kapjuk meg, ha pedig -t adunk hozzá, akkor a h függvény lesz az eredmény. Ez egyben a grafikon y tengely menti eltolását is jelent, illetve egységgel. Általánosságban: a g () = v ( v 0 tól különböző, tetszőleges valós szám) függvény grafikonját az f () = függvény grafikonjából úgy kapjuk, hogy f grafikonját eltoljuk az y tengely mentén v egységgel v < 0 esetén lefelé, v > 0 esetén felfelé.. Ábrázoljuk közös koordináta-rendszerben az f () =, a g () = ( ), illetve a h () = ( ) függvények grafikonjait! Az ábrázoláshoz felhasználhatjuk az elkészített értéktáblázatot.

66 MATEMATIKA A 9. ÉVFOLYAM TANULÓK KÖNYVE Összehasonlítjuk a megfelelő függvényértékeket: 4 0 4 f () 6 9 4 0 4 9 6 g () 9 4 0 4 9 6 5 4 0 4 f () 6 9 4 0 4 9 6 h () 6 5 6 9 4 0 4 Az értéktáblázatból látható, hogy a g függvény az értékeit egységgel korábban veszi fel, mint az f függvény. Ez azt jelenti, hogy a g függvény grafikonját úgy kapjuk meg az f függvény grafikonjából, hogy azt eltoljuk az tengely mentén egységgel, másképp fogalmazva, negatív irányba egységgel. A h függvény az értékeit egységgel később veszi fel, mint az f függvény. A h függvény grafikonját pedig az f függvény grafikonjának tengely menti egységgel, pozitív irányba történő eltolásával kapjuk meg. Általánosságban: a g () = ( u) ( u 0 tól különböző tetszőleges valós szám) függvény grafikonját az f () = függvény grafikonjából úgy kapjuk, hogy f grafikonját eltoljuk az tengely mentén u egységgel u előjelével ellentétes irányba: u < 0 esetén pozitív, u > 0 esetén negatív irányba.