Matematika. Számonkérés. Írásbeli vizsga januárban. 1. konzultáció. Irodalom

Hasonló dokumentumok
Gráfelméleti alapfogalmak

Diszkrét matematika 2.C szakirány

Diszkrét matematika 1. estis képzés

Diszkrét matematika 2.C szakirány

Operációkutatás. 1. konzultációs hét. Irodalom. A gráf definíciója. NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.

Diszkrét matematika 2.

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

Gráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma

Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2.

Diszkrét matematika II. gyakorlat

1. tétel - Gráfok alapfogalmai

Gráfelméleti feladatok. c f

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2. estis képzés

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

SzA II. gyakorlat, szeptember 18.

24. tétel. Kombinatorika. A grá fok.

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Síkbarajzolható gráfok Április 26.

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

ELTE IK Esti képzés tavaszi félév. Tartalom

Diszkrét matematika 2. estis képzés

Gráfelméleti feladatok programozóknak

Diszkrét matematika 2.

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

Diszkrét matematika 1. estis képzés

Adatszerkezetek 2. Dr. Iványi Péter

1. Gráfelmélet alapfogalmai

Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei

bármely másikra el lehessen jutni. A vállalat tudja, hogy tetszőlegesen adott

III. Gráfok. 1. Irányítatlan gráfok:

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

A számítástudomány alapjai

Alapfogalmak a Diszkrét matematika II. tárgyból

17. előadás: Vektorok a térben

Diszkrét matematika 2.C szakirány

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

HÁLÓZAT Maximális folyam, minimális vágás

2. csoport, 8. tétel: Gráfok

Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna

Diszkrét Matematika GYAKORLAT, Levelező MSc hallgatók számára. 3. Feladatsor

Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.

Síkba rajzolható gráfok

1. Gráfmodellek. 1.1 Königsbergi hidak (Euler, 1736)

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

Gráfelméleti alapfogalmak-1

Gráfelmélet/Diszkrét Matematika MSc hallgatók számára. 3. Előadás

1. zárthelyi,

Bonyolultságelmélet gyakorlat 06 Gráfos visszavezetések II.

Gráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.

Algoritmusok bonyolultsága

KOVÁCS BÉLA, MATEMATIKA I.

Diszkrét matematika 2.

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Diszkrét matematika 2.C szakirány

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

Diszkrét matematika II. feladatok

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Operációkutatás. 4. konzultáció: Sorbanállás. Exponenciális elsozlás (ismétlés)

Síkbarajzolható gráfok, duális gráf

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 12.

DISZKRÉT MATEMATIKA 2 KIDOLGOZOTT TÉTELSOR 1. RÉSZ

Algoritmuselmélet. Bonyolultságelmélet. Katona Gyula Y.

Algoritmuselmélet 11. előadás

Ramsey-féle problémák

Diszkrét matematika 2.

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

Hálózatszámítási modellek

Melykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}

Gráfelmélet jegyzet 2. előadás

Gráfelmélet Megoldások

22. GRÁFOK ÁBRÁZOLÁSA

Az értékelés a következők szerint történik: 0-4 elégtelen 5-6 elégséges 7 közepes 8 jó 9-10 jeles. A szóbeli vizsga várható időpontja

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

Diszkrét matematika II., 8. előadás. Vektorterek

Séta, út, vonal, kör

Elmaradó óra. Az F = (V,T) gráf minimális feszitőfája G-nek, ha. F feszitőfája G-nek, és. C(T) minimális

Bevezetés a számításelméletbe (MS1 BS)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása

Gráfalgoritmusok ismétlés ősz

KOMBINATORIKUS OPTIMALIZÁLÁS

A zsebrádiótól Turán tételéig

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 13.

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

Átírás:

1 Matematika NYME KTK, Egyetemi kiegészítő alapképzés 2002/2003. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (30) 509 7361 takach@emk.nyme.hu http://titanic.nyme.hu/ takach Számonkérés Írásbeli vizsga januárban Feladatok Elméleti kérdések Bizonyítások 1. konzultáció Gráfelmélet Alapfogalmak Euler-vonal Hamilton-kör Legrövidebb út Minimális feszítőfa Algoritmusok! Hozzárendelési feladat Folyamprobléma Irodalom F. S. Hillier és G. J. Lieberman. Bevezetés az operációkutatásba.

2 LSI Oktatóközpont, Budapest, 1994. Szükséges részek: 10. fejezet, azaz 237 247, 258 261 oldal. A többi anyagrészhez: ld. tantárgy honlapja A gráf definíciója 1. DEFINÍCIÓ. Legyen V egy véges halmaz, E pedig V -beli rendezetlen elempárok véges rendszere. Ekkor a G=(V, E) párt gráfnak nevezzük. V elemei a gráf csúcsai, E elemei a gráf élei. Ha e = (v 1, v 2 ) egy él, akkor azt mondjuk, hogy az e él a v 1 és a v 2 csúcsokat köti össze. Egy labdarúgó tornán 6 csapat vesz részt. Ez a gráf azt írja le, hogy mely csapatok mérkőztek meg egymással az első négy fordulóban. V = {A, B, C, D, E, F } E = {(A, B), (A, C), (A, D), (A, F ), (B, C), (B, E), (B, F ), (C, D), (C, E), (D, E), (D, F ), (E, F )} Rendezetlen elempáron azt értjük, hogy nem teszünk különbséget a (v 1, v 2 ) és a (v 2, v 1 ) pár között, a rendszer pedig abban különbözik a halmaztól, hogy egy elem többször is szerepelhet benne. Gráfelméleti alapfogalmak 2. DEFINÍCIÓ. Egy gráf egy csúcsa izolált csúcs, ha nem indul ki belőle él. (W ) Többszörös élről beszélünk, ha két pontot több él köt össze.((y, V ) ) A hurokél önmagába visszatérő él, azaz két végpontja azonos.((x, X)) Az üres gráf csupa izolált pontokból álló gráf, azaz E =. Az egyszerű gráfok nem tartalmaznak sem hurokélet, sem többszörös élet.

3 Gráfelméleti alapfogalmak 3. DEFINÍCIÓ. A teljes gráfok olyan egyszerű gráfok, amelyekben bármely két különböző csúcs között vezet él. K n : n csúcsú teljes gráf. Egy G egyszerű gráf komplementere az a Ḡ gráf, amely teljes gráffá egészíti ki; tehát G és Ḡ csúcsai megegyeznek, továbbá két csúcs között pontosan akkor vezet él Ḡ-ben, ha G-ben nem vezet él. A G 1 = (V, E ) gráf a G = (V, E) gráf részgráfja, ha E E; tehát G 1 -et G-ből néhány él elhagyásával kapjuk. A G 1 és G 2 gráfok izomorfak, ha létezik a csúcsok között olyan bijekció, hogy két G 1 -beli csúcs között pontosan akkor vezet él, ha a megfelelő két G 2 -beli csúcs is össze van kötve. Síkgráfok 4. DEFINÍCIÓ. Egy gráf síkgráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. G síkgráf, mert a vele izomorf H a síkba van rajzolva. Ha egy gráf lerajzolható a síkba, akkor lerajzolható úgy is, hogy minden éle egyenes szakasz legyen. (K)

4 Síkgráfok K 5 és K 3,3 nem rajzolhatók le a síkba. Az is belátható, hogy ha egy gráf nem rajzolható síkba, akkor K 5 vagy K 3,3 valahol "benne van" a gráfban. Fokszámok 5. DEFINÍCIÓ. Egy csúcs fokszáma a belőle kiinduló élek száma. Megjegyzés. Egy n-pontú teljes gráfban minden csúcs fokszáma n 1, és összesen ( ) n 2 élet tartalmaz. 6. TÉTEL. Egy gráf páratlan fokú csúcsainak száma páros. Bizonyítás. Felhasználjuk az alábbi segédtételt. 7. SEGÉDTÉTEL. Egy gráf csúcsai fokszámainak összege megegyezik az élek számának kétszeresével. Ezek után a tétel bizonyítása a következő: Jelölje a gráf csúcsait A 1,... A n, a megfelelő fokszámokat ρ(a 1 ),..., ρ(a n ). Tegyük fel, hogy ρ(a 1 ),..., ρ(a k ) páratlan számok, ρ(a k+1 ),..., ρ(a n ) párosak. A segédtétel szerint ρ(a 1 ) +... + ρ(a n ) páros, így páros számokat elhagyva ρ(a 1 ) +... + ρ(a k ) is páros lesz. Páratlan számok összege pedig csak akkor lehet páros, ha páros sok van belőlük. Fokszámok 8. TÉTEL. Legyen G egy n-csúcsú egyszerű gráf, n 2. Ekkor van legalább két olyan csúcs, melyek fokszáma megegyezik. Bizonyítás. Minden egyes csúcs fokszáma 0, 1,..., n 1 lehet, vagyis n-féle. Egy 0-fokú csúcs izolált csúcs, egy (n 1)-fokú pedig minden másik csúccsal össze van kötve. Tehát nem lehet a gráfban egyszerre 0-fokú és (n 1)-fokú csúcs is, vagyis csak (n 1) féle lehet a fokszám. Ekkor a skatulya-elv szerint van két azonos fokszámú csúcs.

5 Gráfok bejárása 9. DEFINÍCIÓ. Sétán két csúcsot összekötő élsorozatot értünk. Speciális séták: vonal: olyan séta, melyben minden él legfeljebb egyszer szerepel (a csúcsok többször is szerepelhetnek). zárt vonal: olyan vonal, melynek kezdő és végpontja azonos. nyílt vonal: olyan vonal, melynek kezdő és végpontja különböző. út: minden csúcsot legfeljebb egyszer érintő séta. kör: olyan séta, melynek a kezdő és végpontja azonos, a többi csúcsot legfeljebb egyszer érinti. 10. DEFINÍCIÓ. Egy gráf összefüggő, ha bármely két csúcs között vezet út. Königsbergi hidak Eulertől megkérdezték Königsberg lakói, hogy miért nem tudnak átmenni a város hídjain úgy, hogy mindegyiken pontosan egyszer mentek át: Euler-vonal Melyik ábra (gráf) rajzolható le egy vonallal a ceruza felemelése nélkül?

6 A kukásautónak egy körzet minden utcáján végig kell mennie, és be kell gyűjteni a szemetet. Meg tudja-e ezt tenni úgy, hogy minden utcán csak egyszer megy végig? Euler-vonal 11. DEFINÍCIÓ. Euler-vonal: olyan vonal (séta), melyben minden él pontosan egyszer szerepel. Szükséges feltétel Euler-vonal létezésére: zárt Euler-vonal esetén minden pontba pont ugyanannyiszor megyünk be mint ki minden pont foka páros. Belátható, hogy ez elegendő is! 12. TÉTEL. Egy összefüggő gráfban pontosan akkor létezik zárt Euler-vonal, ha minden csúcs fokszáma páros. Egy összefüggő gráfban pontosan akkor létezik nyitott Euler-vonal az A csúcsból a B csúcsba, ha csak A és B fokszáma páratlan. Ha egy összefüggő gráfban a páratlan fokszámú csúcsok száma 2k, akkor a gráf k darab diszjunkt vonal egyesítése. Algoritmusok "Algoritmus" zárt Euler-vonal keresésére: Tetszőleges csúcsból kiindulva rajzolom fel a gráfot, ügyelve arra, hogy a le nem rajzolt rész összefüggő maradjon. "Algoritmus" nyílt Euler-vonal keresésére: Ugyanaz, mint a zártra, de a kiindulópont szükségszerűen az egyik páratlan fokú csúcs. Utazó ügynök probléma Egy ügynöknek meg kell látogatnia bizonyos városokat útja során (és végül haza kell térnie). Adott: mely városokból mely másik városokba van járat(közvetlen út) milyen költséggel tud eljutni egyik városból másikba (repülőjegy, autóút ára).

7 Cél: az utak összköltségét minimalizálni. Ez a feladat sok alkalmazás során felmerül, és csak bizonyos speciális esetekben ismeretesek jó algoritmusok a megoldására. Ha bármely két város közt, melyek között van összeköttetés, az 1 költségű, és az ügynöknek minden várost meg kell látogatnia, akkor a feladat a Hamilton-kör létezésére vezet. Hamilton-kör 13. DEFINÍCIÓ. A Hamilton-kör olyan kör, amely minden csúcson átmegy (szükségszerűen pontosan egyszer). A Hamilton-kör létezésére nem ismert egyszerű szükséges és elégséges feltétel, s ugyancsak nincs gyors algoritmus sem Hamilton-kör keresésére. Elégséges, de nem szükséges feltétel Hamilton-kör létezésére: 14. TÉTEL. Legyen G n-csúcsú egyszerű összefüggő gráf. Ha minden csúcs fokszáma legalább n/2, akkor a gráfban létezik Hamilton-kör. Hamilton-kör Szükséges, de nem elégséges feltétel Hamilton-kör létezésére: 15. TÉTEL. Ha egy G = (V, E) gráfban van Hamilton-kör, akkor bármely S V ponthalmaz esetén S pontjait és a belőlük kiinduló csúcsokat elhagyva a maradék gráfnak legfeljebb annyi össefüggő komponense van, mint S. Másképpen: Ha egy G = (V, E) gráfban létezik olyan S V ponthalmaz, hogy S pontjait és a belőlük kiinduló csúcsokat elhagyva a maradék gráfnak S -nál több össefüggő komponense van, akkor a gráfban nincs Hamilton-kör. Legrövidebb út keresése Alapfeladat: Adott egy összefüggő gráf, egy kezdő- és egy végső csúcs, valamint az élekhez rendelt távolságok. Keressük a legrövidebb utat a kezdő és a végső csúcs között. Figyelem! Nem a felhasznált élek számát kell minimalizálni, hanem a hosszaik összegét. Átfogalmazások: Az elemekhez rendelt számok jelképezhetnek költségeket illetve időtartamokat is. Ilyenkor a minimális költségű illetve a legkevesebb idő alatt bejárható utat keressük. Algoritmus. A gráf minden élére meghatározzuk a kezdőponttól oda vezető legrövidebb utat. A kezdőponttól mért távolságok szerint növekvő sorrendben vesszük a pontokat. 1. iterációs lépés: Meghatározzuk a kezdőponthoz legközelebbi pontot.

8 n. iterációs lépés: Meghatározzuk a kezdőponthoz n. legközelebbi pontot. Bemenet: A legközelebbi n 1 csúcs, beleértve a legrövidebb útvonalakat is. (Ezeket nevezzük megoldott pontoknak (beleértve a kezdeti pontot is), a többit megoldatlan pontnak mondjuk.) Jelöltek: minden megoldott ponthoz a legközelebbi megoldatlan pont (ha van ilyen). Döntés: minden jelöltre kiszámítjuk a jelölő kezdő távolság és a jelölt jelölő távolság összegét, és ezek közül a minimálisat választjuk. A jelölő csúcsot is feljegyezzük. A legrövidebb út: Ha az iterációban elérek a végső pontig, akkor készen vagyok. (Visszafejtés!) n Jelölő Jelölt Távolság Győztes Távolság Összeköttetés 1 O A 2 A 2 OA 2 O C 4 C 4 OC A B 2 + 2 = 4 B 4 AB 4 A D 2 + 7 = 9 B E 4 + 3 = 7 E 7 BE C E 4 + 4 = 8 5 A D 2 + 7 = 9 B D 4 + 4 = 8 D 8 BD E D 7 + 1 = 8 D 8 ED 6 D T 8 + 5 = 13 T 13 DT E T 7 + 7 = 14 Visszafejtés Az összeköttetés oszlop tartalma: OA, OC, AB, BE, BD, ED, DT

9 Azaz OABEDT és OABDT a két legrövidebb út. Fák 16. DEFINÍCIÓ. Fának nevezzük az olyan összefüggő gráfokat, amikben nincs kör. A fák szükségszerűen egyszerű gráfok, hiszen a hurokél 1-hosszú kör, a többszörös él 2-hosszú kör. Fák jellemzése 17. TÉTEL. Legyen G egy n-csúcsú gráf. Ekkor a következő állítások ekvivalensek 1. G fa; 2. G összefüggő és n 1 éle van; 3. G összefüggő, de tetszőleges élét elhegyva már nem lesz összefüggő. 4. G-ben nincs kör, de egy tetszőleges új élet hozzávéve már lesz benne kör.

10 1. Feszítő fák 18. DEFINÍCIÓ. Legyen G egyszerű, összefüggő gráf. Az F fa a G gráf feszítő fája, ha F olyan részgráfja G-nek, mely a G minden csúcsát és bizonyos éleit tartalmazza. Minimális kifeszítő fa keresése Feladat: Adott egy n csúcsú, egyszerű összefüggő gráf, valamint az élekhez rendelt valós számok, amelyek az élek hosszai. Keressük azt a kifeszítő fát, amelyben az élek összhossza minimális. 1. ALGORITMUS (KRUSKAL-FÉLE MOHÓ ALGORITMUS): Rendezzük hosszuk szerint növekvő sorrendbe az éleket. Válasszunk ki sorban éleket, de olyan élet ne válasszunk ki, melynek kiválasztásával kör keletkezne. Az előző pontot ismételjük n 1-szer. 2. ALGORITMUS: ld. [HL], 10.4. Ez szintén mohó algoritmus, de végig összefüggő részgráfot alkotnak a kiválasztott élek. Páros gráfok 19. DEFINÍCIÓ. Egy G = (V, E) gráfot páros gráfnak nevezünk, ha van olyan V = B J felbontás, hogy B J =, továbbá minden él egyik végpontja B-ben, a másik J-ben van. Jelölése: G = (B, J; E).

11 Vegyük észre, hogy ha B és J nem adott, akkor nem egyszerű feladat eldönteni, hogy a gráf páros-e. Hozzárendelési feladat páros gráfokban 20.DEFINÍCIÓ. A G = (B, J; E) páros gráf éleinek egy M halmaza lefedést (matchinget, független élrendszert, párosítást) alkot, ha nincs két olyan M-beli él, amelyeknek van közös végpontja. Egy csúcs lefedetlen az M élrendszerben, ha nem végpontja egyetlen M-beli élnek sem. Egy lefedés teljes lefedés, ha a gráf minden csúcsát lefedi. (Teljes lefedés csak akkor létezhet, ha B = J teljesül.) Javító útak 21. DEFINÍCIÓ. Adott egy M párosítás egy páros gráfban. Ha egy út felváltva tartalmaz M-hez tartozó és M-hez nem tartozó éleket, akkor alternáló útnak nevezzük. Egy alternáló út javító út (bővítő út), ha mindkét végpontja lefedetlen csúcs.

12 Javító útak Vegyük észre, hogy ha U egy bővítő út az M párosításra nézve, akkor az U M eggyel nagyobb elemszámú párosítás, mint M. Tehát az alternáló út M-hez tartozó éleit M-ből elhagyva, az M-hez nem tartozó éleit M-hez hozzávéve eggyel nagyobb elemszámú párosítást nyerünk. 22. TÉTEL. Egy páros gráf M lefedése akkor és csak akkor maximális elemszámú független élrendszer, ha nem létezik bővítő út a gráfban M-re nézve. Matching-algoritmus Adott egy G = (B, J; E) páros gráf, valamint egy M kiindulási párosítás (amely esetleg üres is lehet). M-ből kiindulva keresünk egy maximális elemszámú párosítást G-ben. Ha nincs lefedetlen csúcs B-ben, akkor M maximális párosítás, STOP. Ha van, akkor folytassuk a következő lépéssel. Keressünk egy bővítő utat, Ha találunk bővítő utat, akkor ennek segítségével bővítsük M-et, és folytassuk az első lépéssel. Ha nem találtunk bővítő utat, akkor M maximális elemszámú párosítás. Javító út keresése

13 Minden egyes i B csúcsra és (i, j) / M élre cimkézzük meg a (J-beli) j csúcsot i-vel. Minden egyes lefedett j J csúcsra cimkézzük meg a (B-beli) i csúcsot j-vel, ahol (i, j) M. Minden egyes J-beli lefedetlen csúcsra felírható egy alternáló út, amely a csúcsból indul ki, és mindig a cimkének megfelelően folytatódik. Ha egy út 0 cimkéhez ért, akkor az bővítő út. Éllefogások Annak megállapítása, hogy egy párosítás maximális elemszámú-e, történhet az alábbi tétel segítségével is. 23. DEFINÍCIÓ. A G = (V, E) gráf W V pontjai éllefogó ponthalmazt alkotnak, ha minden él legalább egyik végpontja W -beli. 24. TÉTEL. Egy páros gráfban tetszőleges párosítás elemszáma kisebb vagy egyenlő tetszőleges éllefogó ponthalmaz elemszámánál. Következésképpen ha M = W teljesül, akkor M maximális elemszámú párosítás, W pedig minimális elemszámú éllefogás. Hálózatok Alapfeladat: Adott egy gráf, minden élének mindkét irányú kapacitása, valamint két kitüntetett csúcs: a forrás és a nyelő. Keresünk egy maximális értékű megengedett folyamot (áramlást).

14 Szemléltetésképpen feltehetjük, hogy a hálózattal egy olajvezetékrendszert ábrázolunk. A kapacitások a vezeték vastagságát jelentik, vagyis azt, hogy egységnyi idő alatt mennyi olaj folyhat át azon a vezetékdarabon. A kérdés az, hogy egy adott hálózaton mennyi olaj folyhat át s-ből t-be. Szoktak beszélni úthálózatokról is, ahol a kapacitás az utak áteresztőképessége, és árukat kell eljuttatni a termelőtől a fogyasztókhoz. De beszlélhetünk számítógéphálózatokról és adatátviteli sávszélességről is. Folyamok 25. DEFINÍCIÓ. Folyamon a hálózat minden egyes éléhez rendelt számot értünk, amely azt mutatja, hogy mekkora az élen átáramló anyag mennyisége. Meg kell adni az áramlás irányát is. (Irányított gráf!) Megengedett folyamnak nevezünk egy olyan folyamot, ahol a forrásból csak kifelé, a nyelőbe csak befelé vezet áramlás, minden egyes egyéb csúcs esetén a kifolyó áramlások összege megegyezik a befolyók összegével, továbbá a egyik élen sem haladja meg az él kapacitását. 26. DEFINÍCIÓ. Egy út kapacitásán a rajta lévő minimális élkapacitást értjük. Algoritmus 1. Keresünk egy forrás nyelő utat pozitív kapacitással (c). Ha nincs ilyen út, akkor a jelenlegi folyam maximális. STOP! 2. Növeljük a folyamot c-vel ezen az úton. 3. Csökkentsük ezen az úton c-vel a kapacitást minden élen. Növeljük az ellenkező irányú úton a kapacitást c-vel minden élen. Folytassuk az 1. lépéssel.

15 Vágások Hogyan győződhetünk meg egyszerűen arról, hogy egy folyam maximális, azaz hogy nem tudunk további áramlást indítani s-ből t-be? 27. DEFINÍCIÓ. Egy vágás irányított élek olyan halmaza, amelyek minden forrás nyelő útból tartalmaz egy élet. Egy vágás értéke a hozzá tartozó élek kapacitásainak összege. 28. TÉTEL. Minden megengedett folyam értéke kisebb minden vágás értékénél. Sőt, a maximális folyamok(ok) értéke egyenlő a minimális vágás értékével. A tétel megkönnyíti az algoritmus 1. lépésében a döntést: ha úgy tűnik, hogy nincs már pozitív kapacitású forrás nyelő út, akkor megpróbálok keresni egy 0-értékű vágást. Ha van nulal értékű vágás, akkor biztos hogy nincs pozitív kapacitású forrás nyelő út. Ha úgy tűnik, hogy nincs nulal értékű vágás, akkor valószínűleg van pozitív kapacitású forrás nyelő út...