Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12, 8) BC ( 2, 8, 4). 2. Írjon fel olyan egységvektort, amely az a (2, 4, 4) vektorral párhuzamos! 3 pont ( Megoldás: e 1 a, 3 2, ( 2 3 3) és ea 1, 2, ) 3 3 2 3 3. Írjon fel olyan vektort, amely az a (4, 1, 1) és b (3, 2, 3) vektorok mindegyikére merőleges! i j k Megoldás: a b = 4 1 1 = i + 15j + 11k 3 2 3 4. Bontsa fel az a (16, 10, 5) vektort a b (1, 3, 2) vektorral párhuzamos és merőleges összetevőkre! Megoldás: p = ab b 2b = 4b p (4, 12, 8). Innen m = a p m (12, 2, 3) 5. Az ABC csúcsai A (7, 2, 1), B (2, 2, 3) és C ( 1, 4, 0). 5 pont 10 pont a) Számítsa ki a a háromszög legnagyobb szögét! 8 pont Megoldás: A BA (5, 4, 2), BC ( 3, 2, 3) és AC ( 8, 6, 1) vektorok közül AC a leghosszabb, ezért a háromszög legnagyobb szöge β. cos β = BA BC BA BC = 17 45 22 0, 5403 β 122, 7. b) Írja fel az A ponton átmenő, a háromszög síkjára merőleges egyenes paraméteres egyenletrendszerét! Megoldás: Az egyenes egy irányvektora az AB AC = 16i 21j + 2k. Az egyenes egyenletrendszere: x = 7 16t, y = 2 21t, z = 1 + 2t. 6. Adott a S : 2x + 3y 4z = 17 sík, és az e: x = 1 + 4t, y = 2 t, z = 3 + 3t egyenes. Határozza meg annak az egyenesnek az egyenletrendszerét, amely átmegy az S sík és az e egyenes metszéspontján, benne van az S síkban és merőleges az e egyenesre! Megoldás: 2 (1 + 4t) + 3 (2 t) 4 (3 + 3t) = 17 t = 3 M ( 11, 5, 6). A keresett egyenes irányvektora merőleges S normálvektorára és e irányvektorára, tehát v f = n v e = 5i 22j 14k, így f paraméteres egyenletrendszere 8 pont 11 pont x = 11 + 5t, y = 5 22t, z = 6 14t, egyenletrendszere x + 11 5 = x 5 22 = z + 6 14.
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. B csoport 1. Egy egyenesre esnek-e az A (4, 9, 7), B (1, 11, 2) és C ( 8, 17, 29) pontok? 5 pont Megoldás: Igen, mert AB ( 3, 2, 9) BC ( 9, 6, 27), hiszen BC = 3 AB. 2. Írjon fel olyan egységvektort, amely az a (3, 2, 6) vektorral párhuzamos! 3 pont ( Megoldás: e 3 a, 7 2, ( 6 7 7) és ea 3, 2, ) 7 7 6 7 3. Írjon fel olyan vektort, amely az a (3, 9, 2) és b (2, 1, 2) vektorok mindegyikére merőleges! i j k Megoldás: a b = 3 9 2 = 16i 2j 15k 2 1 2 4. Bontsa fel az a (12, 1, 10) vektort a b (2, 1, 4) vektorral párhuzamos és merőleges összetevőkre! Megoldás: p = ab b 2b = 3b p (6, 3, 12). Innen m = a p m (6, 4, 2) 5 pont 10 pont 5. Az ABC csúcsai A (4, 3, 4), B (2, 6, 1) és C ( 3, 5, 6). a) Számítsa ki a a háromszög legnagyobb szögét! 8 pont Megoldás: A BA (2, 3, 5), BC ( 5, 1, 5) és AC ( 7, 2, 10) vektorok közül AC a leghosszabb, ezért a háromszög legnagyobb szöge β. cos β = BA BC BA BC = 32 38 51 0, 7269 β 136, 6. b) Írja fel az A ponton átmenő, a háromszög síkjára merőleges egyenes paraméteres egyenletrendszerét! Megoldás: Az egyenes egy irányvektora az AB AC = 20i 15j + 17k. Az egyenes egyenletrendszere: x = 4 + 20t, y = 3 15t, z = 4 + 17t. 6. Adott a S : 4x + 2y 6z = 26 sík, és az e: x = 3 + t, y = 2 4t, z = 1 + 2t egyenes. Határozza meg annak az egyenesnek az egyenletrendszerét, amely átmegy az S sík és az e egyenes metszéspontján, benne van az S síkban és merőleges az e egyenesre! Megoldás: 4 (3 + t) + 2 (2 4t) 6 (1 + 2t) = 26 t = 1 M (2, 6, 1). A keresett egyenes irányvektora merőleges S normálvektorára és e irányvektorára, tehát v f = n v e = 20i 14j 18k, így f paraméteres egyenletrendszere 8 pont 11 pont x = 2 + 10t, y = 6 + 7t, z = 1 + 9t, egyenletrendszere x 2 10 = y 6 7 = z + 1 9.
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.máj.6. A csoport 1. Oldja meg a következő egyenletet: 6 pont Megoldás: x 1 = 1 x 2 = 6 x 2 2 1 3 1 0 2 4 x + 1 2. Tekintsük a legfeljebb másodfokú polinomok halmazát mint lineáris teret a valós számok teste felett! a) Hány dimenziós ez a tér? Adja meg a tér egy bázisát! 4 pont Megoldás: 3 dimenziós, pl. B = 1, x, x 2 = 0 b) Fejezzük ki az 5x 2 + x + 4 polinomot, az x + 1, x + 2 és x 2 + 1 polinomok lineáris kombinációjaként! Megoldás: 5x 2 + x + 4 = 3 (x + 1) 2 (x + 2) + 5 (x 2 + 1) c) Hány dimenziós teret generálnak a 2x 2 x + 3, x 2 + 6x 2, x 2 + 17x 3 és x 2 + 16x polinomok? Megoldás: 2 dimenziós teret. 6 pont 6 pont 3. Tekintsük az alábbi egyenletrendszert: x 1 x 2 + x 3 + x 4 = 1 x 2 + 2x 3 x 4 = 2 2x 1 + 5x 3 = 8 x 1 x 2 + x 4 = 3 a) Számítsa ki az egyenletrendszer együtthatómátrixának rangját! 6 pont Megoldás: ρ (A) = 3 b) Oldja meg az egyenletrendszert! 8 pont Megoldás: x 1 = 9, x 2 = 6 + t, x 3 = 2, x 4 = t, t R c) Fejezze ki x 4 együtthatóvektorát, a többi ismeretlen együtthatóvektorainak lineáris kombinációjaként! 4 pont Megoldás: a 4 = a 2 4. Tekintsük az xy sík azon lineáris transzformációját, ami az y = x egyenesre vonatkozó tükrözés és az origó körül 45 -kal való (pozitív irányú) forgatás egymásutánja! a) Adja meg a lineáris transzfomáció mátrixát! 4 pont 1 1 2 Megoldás: 2 1 1 2 2
b) Határozza meg az y = 2x egyenes képét! 6 pont Megoldás: y = 3x
Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.máj.6. B csoport 1. Határozza meg a c paraméter értékét úgy, hogy a következő mátrix szinguláris legyen: 6 pont 4 1 c 2 2 1 c + 3 4 2 Megoldás: c 1 = 1 c 2 = 1 2 2. Tekintsük a komplex számok C halmazát mint lineáris teret a valós számok teste felett! a) Hány dimenziós ez a tér? Adja meg a tér egy bázisát! 4 pont Megoldás: 2 dimenziós, pl. B = 1, j b) Fejezzük ki a 9+17j komplex számot, a 4+2j és 3 j lineáris kombinációjaként! 6 pont Megoldás: 9 + 17j = 6 (4 + 2j) 5 (3 j) 3. Határozza meg a következő mátrix inverzét (ha lehetséges): 8 10 3 1 2 1 7 9 3 6 pont Megoldás: 3 3 4 4 3 5 5 2 6 4. Tekintsük az alábbi egyenletrendszert: x 1 + 2x 3 = 1 2x 2 + x 3 3x 4 = 1 x 1 + 2x 2 = 5 x 1 + x 2 x 3 + 2x 4 = 5 a) Számítsa ki az egyenletrendszer együtthatómátrixának rangját! 6 pont Megoldás: ρ (A) = 3 b) Oldja meg az egyenletrendszert! 8 pont Megoldás: x 1 = 3 2t, x 2 = 1 + t, x 3 = 1 + t, x 4 = t, t R c) Fejezze ki x 4 együtthatóvektorát, a többi ismeretlen együtthatóvektorainak lineáris kombinációjaként! 4 pont Megoldás: a 4 = 2a 1 a 2 a 3 5. Tekintsük az xy sík azon lineáris transzformációját, amelynek mátrixa [ 7 1 2 6 ]!
a) Határozza meg a P (3, 5) pont képét! 2 pont Megoldás: P (26, 36) b) Határozza meg a transzformáció sajátértékeit és sajátvektorait! 8 pont {[ ] {[ ] t t Megoldás: λ 1 = 5, s 1 t R}, λ 2t 2 = 8, s 2 t R} t