2. Előadás Szénvegyületek négyes, hármas, kettes koordinációs számú szénatommal. Elektron effektusok. Konjugált kötés. Szénvegyületek térbeli ábrázolása, projektív képletek.
6. A szénvegyületek kötései Szempont: A atom koordinációs száma Koordinációs szám: a kiválasztott szén atom körül elhelyezkedő atomok (ligandumok) száma, lehet 4,3 vagy 2 Konfiguráció: a térbeli elrendeződés egy bizonyos módja, az azonos atomhoz kapcsolódó ligandumok egymáshoz viszonyított térbeli elrendeződése. lehet: tetraéderes, piramisos, koplanáris, lineáris 6.1.Szénatom négyes koordinációs számmal 4, l 4 Jellemzés: - atom a középpontban van, - négy ligandum, - a négy ligandum a atomhoz közel, de egymástól távol van, - egyforma kötésszögek (109 o ), - tetraéderes konfiguráció. Bizonyíték: optikai izoméria
Levezetés: pálya hibridizáció
6.2. Szénatom hármas koordinációs számmal 2 2, 2 Jellemzés: - atom a középpontban van, - három ligandum, - a négy atom egy síkban van, - a három ligandum a atomhoz közel, de egymástól távol van, - kötésszög YX és XX 120 o, - planáris konfiguráció. O Bizonyíték: geometriai izoméria Levezetés: (a gerjesztett állapot) pálya hibridizáció
6.3. Szénatom kettes koordinációs számmal, Jellemzés: - atom a középpontban van, - két ligandum, - a három atom egyvonalban van, - a két ligandum a atomhoz közel, de egymástól távol van, - kötésszög 180 o, - lineáris konfiguráció. N Levezetés: (a gerjesztett állapot) pálya hibridizáció
6.4. Kiterjesztés: N,O tartalmú vegyületekre amin imin nitril oxi oxo
7. Elektroneffektusok: indukció és konjugáció 7. 1. Kötéstípusok σ-kötés (sp 3 ) X(s) pl. (sp 3 ) X(p) pl. F (sp 3 ) X(sp 3 ) pl. Tengelyirányú átfedés engerszimmetria 340 kj/mol π-kötés Oldalirányú átfedés (sp 2 ) [(sp 2 )] 3 (p) σ-kötés π-kötés Tükörszimmetria 265 kj/mol π
7. 2. Elektroneffektusok eredete és típusai Eredete: Elektronegativitásbeli (EN) különbségek. Elektron eloszlásbeli különbségek. Típusai: KÖTÉS (rövidítés) ELNEVEZÉS JELÖLÉS STATIKUS DINAMIKUS σ Induktív I s I D π Konjugációs v. tautomer M (mezomer) E (elektromer)
INDUKTÍV EFFEKTUS: STATIKUS (I S ) Eredete - Két különböző EN atom kovalens kötésben Mértéke - kötő elektronpár eltolódása. Dipólusmomentum (dipólusnyomaték) µ = e l [Debye] ha 1 Å távolságban van egy elektronnyi negatív illetve pozitív töltés, akkor µ = 4,8 D Mérése - Dielektromos állandó (ε) (paraffin: 1,9-2, 2, víz: 81, EtO: 24) Példák: 3 3 δ+ δ 2 2 3 2 3 2 Az effektus előjele: µ=0 µ=0,4d µ =1,86 D (gázfázisú víz) δ+ δ δ δ+ X Y EN X > EN - I-effektus X: elektronvonzó EN Y < EN + I-effektus Y: elektronküldő
-atomhoz kapcsolódó induktív effektusok Konfiguráció EN = (sp) > (sp 2 ) >>> (sp 3 ) -I - effektus: propin propilén metil-benzol δ+ δ+ 2 > ; δ+ +I-effektus: < 2 < 3 Rendűség EN = - 3 > - 2 3 > ( 3 ) 2 > ( 3 ) 3 +I-effektus: 3 3 δ+ 3 3 X > X > 3 δ+ δ+ 3 2 X t Butil i Propil Etil Lánchossz EN = - 3 > - 2 3 > 2-2 - 3 > 2-2 - 2-3 δ+ δ+ δ+ +I-effektus: 3 ( 2 ) 3 X > 3 ( 2 ) 2 X > 3 2 X
alogénatomok -I-effektusa [ALKIL-ALOGENIDEK] EN = F > l > Br > I alogén milyensége: 3 F > 3 l > 3 Br > 3 I δ+ δ+ δ+ δ+ µ 1,83 1,86 1,82 1,48 -atom rendűsége (primer, szekunder, tercier): 3 δ+ 3 δ+ δ+ 3 2 Br < Br < 3 Br 3 3 µ 1,88 2,04 2,21 -lánc hosszúsága: δ+ δ+ δ+ 3 Br < 3 2 Br < 3 2 2 Br µ 1,82 1,88 1,93 Br δ γ β α
Szubsztituált karbonsavak aciditása pk a 2 OO 4,76 I 2 OO 3,12 Br 2 OO 2,87 F 2 OO 2,68 - I-effektus: F > l > Br > I Szubsztituált karbonsavak aciditása pk a 3 2 l OO 2,86 3 l 2 OO 4,05 2 l 2 2 OO 4,52 3 2 2 OO 4,82 -I-effektus: X > X > X α β γ δ+ O O Értelmezés O O - + +
INDUKTÍV EFFEKTUS: DINAMIKUS (I D ) Eredete - Külső erőtér hatására a kovalens kötés (kötő elektronpár, σ kötés) polarizálódik. Külső erőtér - Ionok - Dipólus σ-kötések érzékenysége Tapasztalat: > N > O > F I > Br > l > F - Nagy statikus I effektus jelenléte esetén kicsi a dinamikus I effektus hatása. - Kis statikus I effektus jelenléte esetén a kötés érzékeny, nagy a dinamikus effektus hatása.
KONJUGÁIÓS EFFEKTUS : STATIKUS (MEZOMER) [M] Eredete - Két különböző EN atom között lokalizált π-elektronok, Példák: kötő elektronpár eltolódása. (EN O > EN ) O O 2 : + M O: - M A π-elektronok három v. több atom erőterében delokalizálódnak: A) a a π-kötések konjugált helyzetben vannak 2 2 1,3- butadién B) a a π-kötésben résztvevő atomhoz nem-kötő elektronpárt tartalmazó atom is kapcsolódik 2 l vinil-klorid 2 =: -M l: +M Előjel: Az atom, amely felé a π-elektronok elmozdulnak M effektust képes kiváltani; amelyről elmozdultak, + M effektusra képes.
KONJUGÁIÓS EFFEKTUS : DINAMIKUS (ELEKTROMER) [E] Eredete - Külső erőtér hatására két atom között lokalizált π-elektronok (kötés) polarizálódik. A külső hatás megszűntével eltűnik. Külső erőtér - Ionok - Dipólus Tapasztalat: Teljes töltésszétválasztást is létrejöhet. Példa: + - 2 O 2 O formaldehid 7. 3. Electron-effektusok együttes megjelenése 3 2 3 2 O 3 2 2 3 2 O 1-butén 1-propanal µ = 0,3 D µ = 2,5 D 3 2 2 3 2 O -I-effektus -I-effektus, -M-effektus
7.4. Konjugált kötés Definíció: Olyan kovalens kötések rendszere, amelyben két kettős/hármas kötést egy egyszeres kötés választ el egymástól. LINEÁRISAN KONJUGÁLT RENDSZER IKLIKUSAN KONJUGÁLT RENDSZER O N N N N N N N N
Definíció: Olyan kovalens kötések rendszere, amelyben a kettős kötésben résztvevő -atomhoz nem-kötő elektront vagy elektronpárt tartalmazó atom kapcsolódik. Példák: 2 l O vinil-klorid fenolát anion -
7.4.1. Lineárisan konjugált rendszerek a) Röntgen (X-ray) diffrakció 1 2 3 4 2 2 b) Brómozás 1,37Å 1,37Å 1 2 3 4 2 2 + Br 2 1,48Å várható kötéshossz: (sp 3 ) (sp 3 ) 1,54Å (sp 2 ) (sp 2 ) 1,34Å 2 2 Br Br 3,4-dibróm-1-butén 2 2 Br 1,4-dibróm-2-butén Br c) UV spektrum 2 2 2 2 2 3 Likopin (11 kettős kötés) λ max [nm] 162 217 227 vörös E=h ν
ÉRTELMEZÉS: 1. Az egyszeres és kettős kötések kölcsönhatnak. 2. Nincsenek külön (izolált) egyszeres és kettős kötések, hanem a π-elektronok az egész molekulára kiterjedő, delokalizált molekulapályán mozognak. LEÍRÁS (példa: 1,3-butadién) 1. Oktett elv alapján (rezonancia szabályok, határszerkezetek). 2. MO elmélet alapján (atomi pályák kombinációja). SZERKEZETÁBRÁZOLÁS AZ OKTETT-ELV ALAPJÁN atárszerkezetek (I,II.) 2 2 2 2 I E II 2 2 2 2 2 2 III IV 2 2 V VI, VII, VIII
Rezonancia szabályok a) egységes szerkezet, oszcilláció nincs b) azonos számú π-elektron (π-kötés, magános elektronpár) c) azonos geometria, π-elektronok lokalizációja azonos (a valóságos) planáris σ-vázon d) elvileg lehetséges határszerkezetek felírása; - határszerkezetek súlyozása az izolált π-kötések száma szerint; - izovalens, heterovalens és poláros határszerkezetek 2 2 2 2 III 2 2 V e) magas energiaértékű határszerkezetek elhanyagolása. Pl. V igen valószínűtlen. f) nem-egyforma energiaértékű határszerkezetek: a valóságos szerkezet a legkisebb energiájú határszerkezethez hasonlít g) egyforma energiaértékű határszerkezetek: a valóságos szerkezet mindkettőtől erősen eltér IV
SZERKEZETÁBRÁZOLÁS AZ MO ELMÉLET ALAPJÁN 1,3-butadién: 22 vegyértékelektron; 11 kötő elektronpár σ-váz: 18 vegyértékelektron; 9 kötő elektronpár π-rendszer: 4 vegyértékelektron; 2 kötő elektronpár A. 4 π elektron 4 atomi p-pályán (lokalizált) B. 4 π elektron 2 bicentrikus π-pályán. 4 π elektron 4 atomi p-pálya kombinációján (p 1 +p 2 ) (p 3 +p 4 ) Φ 4 + - + - Φ 3 + - - + E Φ 2 + + - - Φ 1 + + + +
7.4.2. iklikusan konjugált rendszerek a) Kötéstávolság (sp 3 ) (sp 3 ) 1,54Å b) Reaktivitás (összevetés) (sp 2 ) (sp 2 ) 1,34Å (benzol) 1,39Å Nincs különbség. (Nincs izoméria.) Reagens 2 = = = 2 1,3,5-hexatrién NO 2 NO 3 / 2 SO 4 Br c) UV spektrum Br 2 + FeBr 3 2 /kat. Br 2 = = 2 Br 1,6-dibróm-2,4-butadién 3 2 2 2 2 3 hexán λ max [nm] 2 = 2 162 2 = = 2 217 200 ÉRTELMEZÉS: 1. Nincs izolált egyszeres és kettős kötés. 2. A π-elektronok delokalizálódnak a teljes kötésrendszeren.
AROMÁS VEGYÜLETEK (Aroma [ἄρωµα, görög] fűszer, kellemes illat) AROMÁS JELLEG FELTÉTELEI = aromás = nem aromás 1. A gyűrűt felépítő atomok egy síkban vannak, koplanáris szerkezet, sp 2 konfiguráció. 2. A gyűrűt felépítő atomoknak van egy, a síkra merőleges szabad p pályája. 3. A delokalizált molekulapályára kerülő p és/vagy nem-kötő elektronok száma 4n + 2, ahol n = 0,1,2... (ÜKEL - szabály)
Példák benzol naftalin bifenil piridin ciklopropén ciklopropenil ciklobutadién pirrol imidazol N N N N ciklo- ciklopentadienil adenin pentadién kation gyök anion cikloheptadién cikloheptadienil pirillium kation kation gyök anion O
SZERKEZETÁBRÁZOLÁS AZ OKTETT-ELV ALAPJÁN
SZERKEZETÁBRÁZOLÁS AZ MO ELMÉLET ALAPJÁN σ - váz: 6 db (sp 2 ) (sp 2 ) kötés: 12 elektron 6 db (sp 3 ) (s) kötés: 12 elektron π - váz: 6db (p) 6 elektron 30 elektron σ π 6 p-pálya lineáris kombinációja: 3 kötő, 3 lazító molekulapálya Jellemzés: a pályák folyamatos és folytonos átfedése, planáris gyűrű, kötés szögek: < 120º < 120º
8. Szerkezetábrázolás Szerkezeti képletek (vegyértékelmélet, 1870) N O Összevont szerkezeti képletek (1916) 3 3 4 3 3 3 3 3 3 3 ( 3 ) 3 2 2 N 2 O 2 O 2 O 2 2 N
Elektronképletek (oktett elmélet) O N O O l l l
Rudas gömbmodellek (Dreiding modell) Kötéshossz arányos rudak, atom: gömb, tetraéder
Stuart-Briegleb modellek Méret- és alakhű modellek (kötéshossz, kötésszög, hatórádiusz)
Sztereoképletek
Egy példa: n-bután, 4 10 Molekula (összeg) képlet: 4 10 Szerkezeti képlet: sík képlet egyszerűsített konstituciós képletek térbeli éleket leíró konstituciós képlet konformációs képlet