Newton törvények, erők

Hasonló dokumentumok
Newton törvények, lendület, sűrűség

Newton törvények, erők

Newton törvények, erők

Dinamika, Newton törvények, erők

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Tehetetlenség, tömeg, sűrűség, erők fajtái

Dinamika, Newton törvények, erők fajtái

DINAMIKA ALAPJAI. Tömeg és az erő

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

Newton törvények, erők

Mit nevezünk nehézségi erőnek?

Erők fajtái. Fajtái: Irányuk, funkciójuk alapján: húzóerő, tolóerő, tartóerő, nyomóerő

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk!

Komplex természettudomány 3.

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

A nyomás. IV. fejezet Összefoglalás

Erők fajtái, lendület Példák

Hidrosztatika. Folyadékok fizikai tulajdonságai

PÉLDÁK ERŐTÖRVÉNYEKRE

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

Speciális mozgásfajták

Munka, energia Munkatétel, a mechanikai energia megmaradása

W = F s A munka származtatott, előjeles skalármennyiség.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

Erők fajtái, lendület, bolygómozgás Példák

HIDROSZTATIKA, HIDRODINAMIKA

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

A testek tehetetlensége

Folyadékok és gázok mechanikája

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

1. Feladatok a dinamika tárgyköréből

A kísérlet célkitűzései: A súrlódási erőtípusok és a közegellenállási erő kísérleti vizsgálata.

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Mérések állítható hajlásszögű lejtőn

Folyadékok és gázok mechanikája

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor


Digitális tananyag a fizika tanításához

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie F Texty úloh v maďarskom jazyku

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

DÖNTŐ április évfolyam

Mérnöki alapok 1. előadás

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Mechanika, dinamika. p = m = F t vagy. m t

Hatvani István fizikaverseny forduló megoldások. 1. kategória

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

TestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor

Irányításelmélet és technika I.

Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Hatvani István fizikaverseny Döntő. 1. kategória

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Szilárd testek rugalmassága

Folyadékok és gázok áramlása

FIZIKA ZÁRÓVIZSGA 2015

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Mérnöki alapok 2. előadás

Folyadékok és gázok mechanikája. Fizika 9. osztály 2013/2014. tanév

58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Okresné kolo kategórie E Texty úloh v maďarskom jazyku

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Elméleti kérdések és válaszok

A klasszikus mechanika alapjai

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Az erő legyen velünk!

Munka, energia, teljesítmény

Forgatónyomaték, egyensúlyi állapotok Az erőnek forgató hatása van. Nagyobb a forgatóhatás, ha nagyobb az erő, vagy nagyobb az erő és a forgástengely

Hidrosztatika, Hidrodinamika

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Belső energia, hőmennyiség, munka Hőtan főtételei

Mechanika. Kinematika

Mechanika. I. előadás február 25. Mechanika I. előadás február / 31

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

Fizika alapok. Az előadás témája

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás

Átírás:

Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső hatás (erő) nem éri). (Tehetetlenségi törvénynek is nevezik.) Példák: Elhanyagolható súrlódású felületen csúszó tárgy sebessége nem változik (pl. jégen csúszó korong, biliárdgolyó, jégen megcsúszó jármű, légpárnás padon csúszó korong, görkorcsolyás...) Kocsin álló tárgy továbbhalad, ha a kocsi alatta lefékez. Ezért kell fogódzkodni a buszon. Tányér alól hirtelen kihúzzuk az abroszt. A tányér megtartja nyugalmi helyzetét.

A test mozgásállapotának megváltoztatásához külső hatás (erő) szükséges. Nehezebb megváltoztatni annak a testnek a mozgásállapotát, amelynek nagyobb a tehetetlensége, nagyobb a tömege. A tehetetlenség mértéke a tömeg. jele: m (mass), SI mértékegysége: kg egyéb mértékegységek: g (gramm): 1 kg = 1000 g, t (tonna): 1 t = 1000 kg Az erőhatást az erő vektorral jellemezzük. (van nagysága és iránya) Az erő támadáspontja az a pont, ahol az erő a testet éri. Az erő hatásvonala az az egyenes, amely átmegy a támadásponton és az erővektor irányába esik. Az erő jele: F (force), SI mértékegysége: N (Newton)

Tapasztalat: 1. Nagyobb tömegű test mozgásállapotának megváltozásához nagyobb erő szükséges. 2. Nagyobb sebességváltozás (gyorsulás) létrehozásához nagyobb erő szükséges. A két tapasztalat összegzése: A mozgásállapot-változást létrehozó erő egyenesen arányos az általa létrehozott gyorsulással és a test tömegével. Képletben: F = m a Ez Newton II. törvénye. Példák: Minél nagyobb tolóerőt tud kifejteni egy jármű motorja, annál nagyobb a gyorsulása. Egy kislabdát kisebb erővel is messzebbre lehet dobni, mint egy medicinlabdát. (A kislabdának kisebb a tömege.) Súlylökésnél a golyót nagyobb sebességre nagyobb erővel lehet felgyorsítani. (Akkor megy messzebbre.)

Newton III. törvénye (Hatás ellenhatás törvénye) Ha egy test erővel hat egy másik testre, akkor az ugyanakkora, ellentétes irányú erőt fejt ki az egyikre (ellenerő). A két erő azonos nagyságú, ellentétes irányú, közös hatásvonalú és az egyik az egyik testre a másik a másik testre hat. Példák: Talajon álló tárgy (erő: a tárgy nyomja a talajt, ellenerő: a talaj tartja a tárgyat.) Rakéta-hatás: A rakétából hátrafelé kiáramló elégett üzemanyag hatására a rakéta előre felé halad. Hold vonzza a Földet, a Föld ugyanakkora erővel vonzza a Holdat. Csónakban ülve meglöknek egy másikat, akkor mindkét csónak egymással ellentétes irányba meglökődik. Ha csak az egyik húzza a másikat kötéllel, akkor is mindkettő halad a másik felé a vízben....

Több erő együttes hatása Több erő helyettesíthető egy erővel (eredő erő), amelynek a hatása megegyezik az egyes erők együttes hatásával. Közös hatásvonalú egyirányú erők eredője az erők nagyságának összege: Eredő erő: F = F1 + F2 + F3 +... Közös hatásvonalú ellentétes irányú erők eredője az erők nagyságának különbsége: Eredő erő: F = F1 F2

Két egymást metsző hatásvonalú erő eredője megszerkeszthető, mint egy paralelogramma átlója. Egy test, tárgy akkor van egyensúlyi állapotban, nyugalomban, (vagy egyenes vonalú egyenletesen mozgásállapotban), ha a rá ható erők eredője nulla. Ez Newton I. törvénye több erő esetére megfogalmazva. Példa: Az asztalon álló tárgyra hat lefelé a gravitációs erő, felfelé pedig az asztal által ható ugyanekkora tartó erő. A testre ható két ellentétes irányú erő eredője 0. Newton II. törvénye több erő esetén: F eredő = m a A testre ható erők eredője arányos a létrehozott gyorsulással és a test tömegével.

Erők fajtái Irányuk, funkciójuk alapján: húzóerő, tolóerő, tartóerő, nyomóerő Az erőt kifejtő hatás alapján: Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek használni. (rugós erőmérő) Példák rugalmas erőre: rugós óra, rugó a kerekek felett, íj,... Rugalmas erőtörvény: F = - D Δl (F a rugalmas erő, Δl a rugó megnyúlása, D a rugóra jellemző állandó: rugóállandó, mértékegysége N/m ) Azért van a képletben mínusz, mert a megnyúlás ellentétes irányú a rugó erejével. Annak a rugónak nagyobb a rugóállandója, amelyik erősebb, vagyis ugyanakkora erőhatásra kisebb a megnyúlása.

Nehézségi erő - Gravitációs erő A Föld minden tárgyat vonz a Föld középpontja felé. Ebből származik a Földön a tárgyakra ható nehézségi erő, ami a tárgyakat a Föld középpontja felé húzza. Ha nincs más erő, ami a tárgyra hat, akkor ennek hatására g=9,81 m/s 2 gyorsulással esik a Föld felé. Newton II. törvénye miatt (F=m a) tehát a tárgyakra ható nehézségi erő: F = m g, ahol az a gyorsulást itt g-vel jelöljük, mivel minden tárgynál ugyanannyi. Kerekítve tehát a nehézségi és gravitációs erő 1 kg tömegű tárgyra 1 kg 10 m/s 2 = 10 N

Súlyerő, súlytalanság Egy test, tárgy súlya az alátámasztást nyomó, vagy felfüggesztést húzó erő. (A test súlya nem a testre ható erő, hanem az alátámasztásra, vagy felfüggesztésre hat.) Ha a test lefelé gyorsul, akkor súlya kisebb, ha felfelé gyorsul, akkor nagyobb. (pl. liftben levő ember, zuhanó repülő) Szabadon eső tárgy súlya nulla, súlytalan állapotban van. (Ha pl. egy alátámasztással együtt esik, nem nyomja azt.) Nyugalomban levő test súlya egyenlő nagyságú a testre ható gravitációs erő nagyságával: m g (A képen a gravitációs erő piros, a test súlya zöld, a testet tartó erő kék.)

Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek nevezzük. Jele: A, mértékegysége: m 2 Azt a mennyiséget, ami megmutatja, hogy az egységnyi felületre mekkora nyomóerő jut, nyomásnak nevezzük. Nagyobb nyomóerő nagyobb nyomást fejt ki a másik testre. Ha ugyanakkora erő kisebb felületre hat, akkor nagyobb nyomást fejt ki. (Pl. éles kés, éles olló, éles ásó, korcsolya, balta,...) A nyomás jele: p, mértékegysége: Pascal F ny p = --------- A

Nyomás növelése és csökkentése a gyakorlatban: A nyomás növelhető a nyomóerő növelésével, vagy az érintkező felület csökkentésével. (Pl. kés, olló, ásó, kapa, balta élezése, szög vége csúcsos, ) A nyomás csökkenthető a nyomóerő csökkentésével, vagy az érintkező felület növelésével. (Pl. teherautónak több dupla kereke, lánctalp, hótalp, síléc, snowboard, )

Sűrűség A különböző anyagokban a részecskék tömege különböző, és ezek a részecskék a különböző anyagokban ritkábban, vagy sűrűbben helyezkednek el. Az anyagoknak ezt a tulajdonságát úgy nevezzük, hogy az anyagok sűrűsége különböző. - Egyenlő térfogatú estek közül annak nagyobb a sűrűsége, amelyiknek nagyobb a tömege. - Egyenlő tömegű testek közül annak a nagyobb a sűrűsége, amelyiknek kisebb térfogata. A sűrűség a tömeg és a térfogat hányadosa: Jele: (ró, görög betű) SI mértékegysége: Egyéb mértékegység: A víz sűrűsége 1 g/cm 3 = 1000 kg/m 3 Több anyagot tartalmazó tárgyaknál (ötvözet, oldat,...) a tárgy átlagsűrűsége = összes tömeg / összes térfogat

Azok a folyadékban levő testek, tárgyak, amelyeknek az átlagsűrűsége kisebb a folyadéknál, úsznak a folyadék felszínén (pl. a vízben a fa, jég, műanyag), amelyeknek nagyobb, azok belesüllyednek (pl. a vízben a vas, más fémek, kő, üveg,..) Gázokban, levegőben levő tárgyaknál is a kisebb átlagsűrűségű tárgy felszáll, a nagyobb sűrűségű lesüllyed. (pl. léghajó, hőlégballon)