Véges testek és alkalmazásaik

Hasonló dokumentumok
Polinomok (el adásvázlat, április 15.) Maróti Miklós

Algebra gyakorlat, 8. feladatsor, megoldásvázlatok

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy


Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat

MM CSOPORTELMÉLET GYAKORLAT ( )

1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!

Polinomok (előadásvázlat, október 21.) Maróti Miklós

Diszkrét matematika 2.

SE EKK EIFTI Matematikai analízis

Algebra jegyzet másodéves Matematika BSc hallgatóknak. Horváth Gábor

13.1.Állítás. Legyen " 2 C primitív n-edik egységgyök és K C olyan számtest, amelyre " =2 K, ekkor K(") az x n 1 2 K[x] polinomnak a felbontási teste

Gy ur uk aprilis 11.

Algoritmuselmélet gyakorlat (MMN111G)

1. Egész együtthatós polinomok

1. A maradékos osztás

MM4122/2: CSOPORTELMÉLET GYAKORLAT ( ) 1. Ismétlés február 8.február Feladat. (2 pt. közösen megbeszéltük)

Zárthelyi feladatok megoldásai tanulságokkal Csikvári Péter 1. a) Számítsuk ki a 2i + 3j + 6k kvaternió inverzét.

Klasszikus algebra előadás. Waldhauser Tamás március 24.

1. Polinomok számelmélete

MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak

Gonda János POLINOMOK. Példák és megoldások

Klasszikus algebra előadás. Waldhauser Tamás április 28.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója.

1. Hatvány és többszörös gyűrűben

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

Nagy Gábor compalg.inf.elte.hu/ nagy

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. A Horner-elrendezés

MBN412G: ALKALMAZOTT ALGEBRA GYAKORLAT ÁPRILIS 26.

Nagy Viktor VÉGES TESTEK

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

Diszkrét matematika 2.C szakirány

n =

Diszkrét matematika 2. estis képzés

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

Permutációk véges halmazon (el adásvázlat, február 12.)

1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?

1. Mellékosztály, Lagrange tétele

Klasszikus algebra előadás. Waldhauser Tamás április 14.

LÁNG CSABÁNÉ POLINOMOK ALAPJAI. Példák és megoldások

Algebrai alapismeretek az Algebrai síkgörbék c. tárgyhoz. 1. Integritástartományok, oszthatóság

HALMAZELMÉLET feladatsor 1.

Diszkrét matematika II. feladatok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs.

Diszkrét matematika alapfogalmak

1. Komplex szám rendje

Alapvető polinomalgoritmusok

1. Mátrixösszeadás és skalárral szorzás

Testek március 29.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Kongruenciák. Waldhauser Tamás

Nagy Gábor compalg.inf.elte.hu/ nagy

1. Bázistranszformáció

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

Mátrixfüggvények. Wettl Ferenc április 28. Wettl Ferenc Mátrixfüggvények április / 22

Lineáris algebra és a rang fogalma (el adásvázlat, szeptember 29.) Maróti Miklós

Algebra gyakorlat, 2. feladatsor, megoldásvázlatok

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

Láng Csabáné Testbıvítés, véges testek

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Diszkrét matematika 2.C szakirány

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

KOVÁCS BÉLA, MATEMATIKA I.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

Waldhauser Tamás szeptember 8.

Diszkrét matematika I.

matematika alapszak Waldhauser Tamás jegyzete alapján készítette B. Szendrei Mária

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2. estis képzés

Valasek Gábor

Analízis elo adások. Vajda István szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

1. A maradékos osztás

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

POLINOMOK VÉGES TESTEK FELETT

Csoporthatások. 1 Alapfogalmak 1 ALAPFOGALMAK. G csoport hatása az X halmazon egy olyan µ: G X X leképezés, amelyre teljesül

DiMat II Végtelen halmazok

Vektorok, mátrixok, lineáris egyenletrendszerek

Intergrált Intenzív Matematika Érettségi

Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz


Nagy Gábor compalg.inf.elte.hu/ nagy ősz

2. gyakorlat. A polárkoordináta-rendszer

1. feladatsor Komplex számok

Diszkrét matematika 1.

ELTE IK Esti képzés tavaszi félév. Tartalom

Diszkrét matematika II., 8. előadás. Vektorterek

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Átírás:

Véges testek és alkalmazásaik Horváth Gábor Debreceni Egyetem 2016. március 4.

Tartalomjegyzék Bevezetés 4 1. El zetes ismeretek 5 1.1. M veletek, algebrai struktúrák.................. 5 1.2. Csoportelmélet.......................... 9 1.3. Gy r elmélet........................... 14 1.3.1. Polinomgy r k...................... 14 1.3.2. Nullosztómentes, véges gy r k.............. 18 1.3.3. Részgy r, homomorzmus, ideál, faktorgy r..... 23 1.3.4. Euklideszi gy r k, f ideálgy r k............ 29 1.3.5. Egyszer gy r k..................... 30 1.4. Testelmélet............................ 33 1.4.1. Algebrák minimálpolinomja............... 33 1.4.2. Egyszer testb vítések.................. 37 1.4.3. B vítés több elemmel................... 39 1.4.4. Szorzástétel........................ 41 1.4.5. Testb vítések konstrukciója............... 42 2. Véges testek 48 2.1. Véges testek alapvet tulajdonságai............... 48 2.1.1. Véges testek konstrukciója................ 49 2.1.2. Véges testek résztestei.................. 50 2.1.3. Irreducibilis polinomok véges testek felett........ 51 2.1.4. Frobenius endomorzmus................. 52 2.2. Véges testek véges b vítései................... 53

TARTALOMJEGYZÉK 3 3. Egységgyökök és alkalmazásaik 58 3.1. Körosztási polinomok....................... 58 3.2. Wedderburn tétele........................ 62 3.3. Véges testek elemeinek reprezentációja............. 65 3.4. Polinomok rendje......................... 68 3.5. Primitív polinomok........................ 74 3.6. Irreducibilis polinomok konstrukciója.............. 77 4. Polinomok faktorizációja 81 4.1. Berlekamp algoritmusa...................... 82 4.2. Zassenhaus algoritmusa...................... 86 4.3. Polinomok gyökei......................... 89 4.3.1. q = p > 2 prím...................... 89 4.3.2. q = p d egy kis p prímre.................. 91 4.3.3. Nyom........................... 92 5. Bevezetés a hibajavító kódok elméletébe 96 5.1. Alapfogalmak........................... 96 5.2. Lineáris kódok........................... 99 5.3. Polinomkódok........................... 101 Hivatkozások 106

Bevezetés A jegyzet azzal a céllal készült, hogy összefoglalja az MSc hallgatók Véges testek és alkalmazásaik tárgy anyagát. A jegyzet nem helyettesíti az el adásokon és a gyakorlatokon való részvételt, azoknak csak egy kivonatolt változata. A jegyzet anyaga er sen épít a BSc-s Algebra tárgyra, de a legszükségesebb ismereteket összefoglaljuk. További irodalomnak [1]-t és [2]-t ajánljuk.

1. fejezet El zetes ismeretek Az alábbi fejezetben összefoglaljuk a BSc-s Algebra tárgy számunkra fontosabb részeit. Néhány helyen nem közöljük a részletes bizonyítást, ezeket érdemes átismételni a BSc-s Algebra jegyzetb l. 1.1. M veletek, algebrai struktúrák 1.1.1. deníció. Legyen A halmaz. Az A-n értelmezett (n-változós) m velet egy f : A n A, (a 1,..., a n ) f(a 1,..., a n ) függvény. Ha a m velet kétváltozós (mondjuk ), akkor (a, b) helyett a b-t írunk. 1.1.2. deníció. Legyen A halmaz, rajta egy kétváltozós m velet. A m velet asszociatív, ha minden a, b, c A-ra (a b) c = a (b c). A m velet kommutatív, ha minden a, b, c A-ra a b = b a. 1.1.3. deníció. Legyen A halmaz, rajta egy kétváltozós m velet. Egy e A elemet neutrális elemnek hívunk, ha minden a A-ra e a = a = a e. Ha összeadás, akkor a neutrális elemet nullelemnek, ha szorzás, akkor a neutrális elemet egységelemnek hívjuk. Ha csak e a = a teljesül minden a A elemre, akkor e-t baloldali egységelemnek hívjuk, Ha csak a e = a teljesül minden a A elemre, akkor e-t jobboldali egységelemnek hívjuk. 1.1.4. deníció. Legyen A halmaz, rajta egy kétváltozós m velet. Azt mondjuk, hogy az e neutrális elemre az a A elem inverze a A, ha

6 ELŽZETES ISMERETEK a a = e = a a. Összeadás esetén ellentettr l, szorzás esetén inverzr l vagy reciprokról beszélünk. Ha csak a a = e teljesül, akkor a -t jobboldali inverznek hívjuk, Ha csak a a = e teljesül, akkor a -t baloldali inverznek hívjuk, 1.1.5. deníció. (G, ) csoport, ha egy asszociatív kétváltozós m velet G-n, -ra nézve van egységelem, és az egységelemre nézve minden elemnek van inverze. (G, ) Abel csoport vagy kommutatív csoport, ha csoport, és kommutatív. A csoport m velettáblázatát Cayley táblázatnak nevezzük. 1.1.6. példa. (Z, +), (Q, +), (R, +), (C, +). A modulo n maradékosztályok a modulo n összeadásra. Másképpen, legyen Z n = { 0, 1, 2,..., n 1 }, ahol az összeadás a hagyományos összeg modulo n maradéka. S n szimmetrikus csoport: az n elemen ható permutációk csoportja. A n alternáló csoport: az n elemen ható páros permutációk csoportja. Szabályos n-szög szimmetriacsoportja, jele D n, neve: diédercsoport. Q kvaterniócsoport: { 1, 1, i, i, j, j, k, k }, a szorzás pedig az i 2 = = j 2 = k 2 = 1, ij = k, jk = i, ki = j, ji = k, kj = i, ik = j alapján történik. 1.1.7. házi feladat. Csoportban az egységelem egyértelm. (Ötlet: ha e és f egységelem, akkor tekintsük az ef szorzatot.) 1.1.8. házi feladat. Csoportban egy elem inverze egyértelm. (Ötlet: ha a inverze b és c is, akkor tekintsük a bac szorzatot.) 1.1.9. deníció. (R, +, ) gy r, ha (R, +) Abel csoport, (R, ) félcsoport, és mindkét oldali disztributív szabály teljesül, azaz (a + b) c = (a c) + (b c) és c (a + b) = (c a) + (c b) minden a, b, c R-re. R-et kommutatív gy r - nek hívjuk, ha a szorzás kommutatív. R-et egységelemes gy r nek hívjuk (és

1.1 M veletek, algebrai struktúrák 7 röviden 1 R-rel jelöljük), ha van a szorzásra nézve egységelem, ekkor az invertálható elemek halmazát R -tel jelöljük és multiplikatív csoportnak vagy egységcsoportnak hívjuk. Egy gy r nullosztómentes, ha ab = 0-ból a = 0 vagy b = 0 következik. A kommutatív, nullosztómentes gy r ket integritási tartománynak, az egységelemes integritási tartományokat szokásos gy r nek hívjuk. 1.1.10. megjegyzés. Az angol irodalomban minden gy r deníció szerint egységelemes. A nem feltétlen egységelemes gy r kre nem is a ring, hanem az rng (ejtsd, mint rung) szót használják. Emiatt az integritási tartomány gyakran deníció szerint egységelemes. Tekintettel arra, hogy nekünk a gy r nem feltétlen egységelemes, az egységelemes integritási tartományra a szokásos gy r elnevezést használjuk, mely egyébként nem általánosan elterjedt. 1.1.11. példa. Z kommutatív, egységelemes, nullosztómentes gy r, Z = { 1, 1 }. Az n n-es racionális/valós/komplex mátrixok a szorzásra egységelemes gy r, mely csak n = 1 esetén kommutatív, és csak ekkor nullosztómentes. Multiplikatív csoportja az invertálható mátrixok. Ha R kommutatív, egységelemes gy r, akkor az R[x] polinomgy r és az R[[x]] formális hatványsorok gy r je is kommutatív, egységelemes gy r. A modulo n maradékosztályok a modulo n összeadásra és szorzásra. Másképpen, legyen Z n = {0,1,2,..., n 1}, ahol az összeadás (szorzás) a hagyományos összeg (szorzat) modulo n maradéka. 1.1.12. házi feladat. Gondoljuk meg, hogy R a szorzásra nézve csoportot alkot. Ezzel újabb példákat kaphatunk csoportokra. Mik ezek a csoportok az 1.1.11. példabeli gy r k esetén? 1.1.13. deníció. (T, +, ) ferdetest, ha gy r és (T \ { 0 }, ) csoport. (T, +, ) test, ha ferdetest és a szorzás kommutatív.

8 ELŽZETES ISMERETEK 1.1.14. példa. Q, R, C, Q ( 2 ). Ha T test, akkor a T (x) racionális törtfüggvények is testet alkotnak a szokásos m veletekre. Ha T test, akkor T n n a T feletti n n-es mátrixok egységelemes gy r. Z p minden p prímre test (bizonyítás kés bb). Létezik nem kommutatív ferdetest, pl. az úgynevezett kvaternió algebra (lásd gyakorlat). 1.1.15. deníció. Legyen A és B ugyanolyan struktúrák (pl. mindkett csoport vagy mindkett gy r ). Ekkor egy ϕ: A B leképezést homomor- zmusnak hívunk, ha m velettartó. Ha ϕ bijektív, akkor izomorzmusnak hívjuk. Azt mondjuk, hogy az A és B struktúrák izomorfak, ha van közöttük izomorzmus, jele A B vagy A = B. Ekkor A és B minden olyan tulajdonsága megegyezik, mely a m veletek segítségével van deniálva. Legyenek (G, ) és (H, ) csoportok. Egy ϕ: G H leképezést (csoport)homomorzmusnak hívunk, ha m velettartó, azaz tetsz leges g 1, g 2 G esetén ϕ (g 1 g 2 ) = ϕ (g 1 ) ϕ (g 2 ). Ha ϕ bijektív, akkor izomorzmusnak hívjuk. Azt mondjuk, hogy a G és H csoportok izomorfak, ha van közöttük izomorzmus, jele G H vagy G = H. Legyen R, S gy r k. Egy ϕ: R S leképezés (gy r )homomorzmus, ha m velettartó, azaz bármely r 1, r 2 R esetén ϕ (r 1 + r 2 ) = ϕ (r 1 ) + ϕ (r 2 ), ϕ (r 1 r 2 ) = ϕ (r 1 ) ϕ (r 2 ). Itt a baloldalon az R m veletei, a jobboldalon az S m veletei szerepelnek. Ha ϕ bijektív, akkor izomorzmusnak hívjuk. Azt mondjuk, hogy az R és S gy r k izomorfak, ha van közöttük izomorzmus, jele R S vagy R = S.

1.2 Csoportelmélet 9 1.1.16. példa. sg: S n Z el jel egy csoporthomomorzmus. det: GL(n, T ) T determináns egy csoporthomomorzmus. Z Z n modulo n számolás egy gy r homomorzmus. 1.1.17. deníció. Legyen A valamilyen struktúra (pl. csoport, gy r, test). Egy B A részhalmazt részstruktúrának hívunk, ha B az A-ból örökölt m - veletekkel egy ugyanolyan struktúrát alkot, mint A. Ez általában ekvivalens azzal, hogy B zárt az A-ból örökölt m veletekre. Jele: B A. 1.2. Csoportelmélet 1.2.1. példa. Kételem csoportra példák (Z 2, +), Z 3, Z 4, Z 6, S 2. Ezek könnyen láthatóan mind izomorfak. A négyelem Z 5 és Z 8 csoportok viszont nem izomorfak, mert a másodikban minden elem négyzete az egységelem, míg az els ben nem. A csoportelméletben sokszor fontos, hogy eldöntsük, mely csoportok izomorfak és melyek nem. Az izomorát könny bizonyítani: elegend megadni egy izomorzmust a két csoport között. Ha nem izomorfak, akkor általában olyan tulajdonságokat vizsgálunk, melyeket az izomora meg riz, de a két csoportban eltérhet. Ilyen például az elemek rendje. 1.2.2. deníció. Egy g csoportelem rendje a g különböz hatványainak a száma. Jele: o(g). Nevezzük az m egész számot jó kitev nek, ha g m = 1. Egy G csoport rendje a G csoport elemeinek a száma. 1.2.3. megjegyzés. Ha a csoportban a m velet az összeadás, akkor hatvány helyett többszörösr l beszélünk. 1.2.4. állítás. Legyen G csoport, g G egy tetsz leges elem. Ekkor 1. o(g) = g minden hatványa különböz ;

10 ELŽZETES ISMERETEK 2. o(g) < a rend a legkisebb jó kitev, és g hatványai periodikusan ismétl dnek o(g) periódussal; 3. o(g) < pontosan akkor lesz g k = g l, ha o(g) k l, speciálisan pontosan akkor teljesül g k = 1, ha o(g) k. A jó kitev k tehát a rend többszörösei; 4. o ( g k) = o(g) (o(g),k) ; 5. o(g) = 1 g a G egységeleme. 1.2.5. deníció. Egy G csoportot ciklikusnak hívunk, ha egy g elemének a hatványaiból áll, azaz G = { g n n Z }. Egy ilyen g elem neve a csoport generátora. 1.2.6. tétel. Ha G ciklikus, akkor G (Z, +) vagy G (Z n, +). Speciálisan minden ciklikus csoport kommutatív. Bizonyítás. Legyen G ciklikus, g egy generátora, és legyen n = o(g). Ha n =, akkor izomorzmus. Ha n, akkor izomorzmus. ϕ: (Z, +) G, k g k ϕ: (Z n, +) G, k g k 1.2.7. állítás. Legyen G egy n elem ciklikus csoport. Ekkor 1. a generátorok száma ϕ(n); 2. minden csoportelem rendje osztja n-et; 3. minden d n-re pontosan ϕ(d) darab d rend elem van.

1.2 Csoportelmélet 11 Bizonyítás. Legyen g egy generátor. Ekkor o ( g k) = n (n, k) amib l a második állítás adódik. Továbbá n, n (n,k) = n pontosan akkor teljesül, ha (n, k) = 1. Az ilyen k-k száma éppen ϕ(n). Az utolsó állítás része az 1.2.17. következménynek. 1.2.8. deníció. Legyen (G, ) csoport. A H G részhalmazt részcsoportnak hívjuk, ha (H, ) csoport a G-beli szorzással. Jele: H G. 1.2.9. deníció (komplexusm veletek ). Az X, Y G részhalmazokra legyen X Y = { x y x X, y Y }, X 1 = { x 1 x X }. 1.2.10. állítás. H pontosan akkor részcsoport G-ben, ha 1. H ; 2. minden a, b H-ra ab H is (szorzásra zárt, azaz H H H); 3. minden a H-ra a 1 H is (inverzképzésre zárt, azaz H 1 H). Természetesen ha H részcsoport, akkor H H = H és H 1 = H is teljesül. 1.2.11. deníció. Legyen X G. Ekkor az X által generált részcsoport (jele X ) az a legsz kebb részcsoport G-ben, mely X-et tartalmazza. A legsz kebbet abban az értelemben használjuk, hogy ha H G egy részcsoport, melyre X H, akkor X H is. 1.2.12. állítás. Legyen K = X H G H az X-et tartalmazó G-beli részcsoportok metszete. Ekkor K = X az egyetlen legsz kebb X-et tartalmazó részcsoport. 1.2.13. példa. Ha X = { g }, akkor X = g = { g n n Z }.

12 ELŽZETES ISMERETEK 1.2.14. tétel (Lagrange tétele). Ha G véges, H G, akkor H osztja G -t. Bizonyítás. Mellékosztályokkal. A mellékosztályok száma a H részcsoport G-beli indexe : G : H. Legyen most G véges csoport és g G egy tetsz leges elem. Alkalmazva Lagrange tételét a g részcsoportra, azt kapjuk, hogy o(g) osztja G -t. Továbbá tudjuk, hogy g n = 1 pontosan akkor teljesül, ha n az o(g) többszöröse. Tehát g G = 1. 1.2.15. következmény (Euler-Fermat tétel). Ha (a, n) = 1, akkor a ϕ(n) 1 (mod n). Bizonyítás. Legyen G = Z n, ennek elemei éppen az n-hez relatív prím maradékosztályok. Speciálisan a maradékosztálya is Z n -beli. Továbbá G = ϕ(n), tehát a ϕ(n) = 1 G-ben, ami épp a bizonyítandó. 1.2.16. tétel. Ciklikus csoport minden részcsoportja ciklikus. Bizonyítás. Legyen G = g egy ciklikus csoport, H G egy részcsoport. Legyen n egy legkisebb abszolútérték nem nulla egész, melyre g n H. Belátjuk, hogy H = g n. A tartalmazás világos. A tartalmazáshoz legyen m tetsz leges, melyre g m H. Belátjuk, hogy n m. Osszuk el m-et maradékosan n-nel: m = qn + r, ahol r = 0 vagy 0 < r < n. Ám ekkor g r = g m qn = g m (g n ) q H, vagyis g r H. Mivel n egy legkisebb abszolútérték nem nulla kitev volt, hogy g n H, ezért ez csak úgy lehetséges, ha r = 0, azaz m = qn. Így n m, azaz g m g n. Mivel g m tetsz leges H-beli elem volt, H g n.

1.2 Csoportelmélet 13 1.2.17. következmény. Legyen G = g ciklikus. 1. Ha o(g) =, akkor G részcsoportjai a g m alakú részcsoportok minden pozitív egész m-re. 2. Ha o(g) = n <, akkor minden d n-re pontosan egy d rend részcsoportja van G-nek, mely éppen g n/d hatványaiból áll. Más részcsoport nincs. Továbbá G bármely két d rend eleme egymás hatványa, számuk ϕ(d). Bizonyítás. Házi feladat. 1.2.18. következmény. ϕ(d) = n. d n Bizonyítás. Legyen G egy n elem ciklikus csoport. Csoportosítsuk az elemeket a rendjeik alapján. Ha d n, akkor nincs d rend elem. Továbbá minden d n-re pont ϕ(d) darab d rend elem van az 1.2.17. következmény miatt. Vagyis összesen d n ϕ(d) darab eleme van az n elem G-nek. 1.2.19. tétel. Legyen T test, G T egy véges részcsoport. Ekkor G ciklikus. Speciálisan véges test multiplikatív csoportja ciklikus. Bizonyítás. Legyen d tetsz leges pozitív egész, megszámoljuk a T -beli d rend elemeket. Tekintsük az x d 1 polinomot T felett. Ennek T -ben legfeljebb d gyöke lehet. Ha van g T elem, melynek multiplikatív rendje d, akkor a g n (n = 0, 1,..., d 1) elemek mind különböznek, mindegyik gyöke az (x d 1) polinomnak, és pont d darab van bel lük, tehát ezek éppen x d 1 összes gyökei. Speciálisan minden T -beli d rend elem g-nek hatványa. Mivel a g ciklikus csoportban pontosan ϕ(d) darab d rend elem van, így azt kapjuk, hogy a T -beli d rend elemek száma vagy 0 vagy ϕ(d). Legyen G = n. Ha most d n, akkor Lagrange tétele miatt nem lehet G-ben d rend elem. Tehát csak d n esetén lehet d rend elem G-ben, vagyis G d n ϕ(d) = n.

14 ELŽZETES ISMERETEK Az utolsó egyenl ségben használtuk az 1.2.18. következményt. Mivel G = n, ezért mindenhol egyenl ség áll, így minden d n-re pontosan ϕ(d) darab d rend elem van G-ben. Speciálisan van n rend elem, vagyis G ciklikus. Itt némi csalást azért elkövettünk: nevezetesen felhasználtuk azt, hogy test fölötti d-edfokú polinomnak legfeljebb d gyöke lehet. Az 1.3.1. szakaszban átismételjük a polinomokról tanultakat, és (többek között) ezt a lukat is betömjük. 1.3. Gy r elmélet 1.3.1. Polinomgy r k Ebben a szakaszban átismételjük a polinomokról tanultakat. Legyen R egységelemes, kommutatív gy r. A szakasz állításainak bizonyításai házi feladatok, mert általában a bizonyítások megegyeznek a C feletti bizonyítással. Néhány helyen adunk ötletet a bizonyításra. 1.3.1. deníció. Legyen 1 R kommutatív gy r. Jelöljük R[x]-szel az R feletti polinomok halmazát, amely az R-beli elemekb l és az x határozatlanból az összeadás, kivonás, szorzás segítségével felírt formális kifejezésekb l áll. Tehát R[x] = { r n x n + r n 1 x n 1 + + r 1 x + r 0 r k R, n nemnegatív egész }. Ebben a felírásban az r k -k a polinom együtthatói, az r k x k -k a polinom tagjai, az r k x k foka k. A polinom foka a legmagasabb tag foka, vagyis n. A polinomok ezen alakja egyértelm, tehát két polinom deníció szerint akkor egyenl, ha megfelel együtthatóik megegyeznek. Két polinomot a szokásos módon adunk össze illetve szorzunk össze. Ez értelmes, hiszen csak az együtthatók között kell összeadást, kivonást, szorzást végezni. 1.3.2. megjegyzés. Deniálhatnánk a polinomokat is az együtthatók véges sorozatával, mely precízebb lenne. Mégis a kevésbé precíz deníció mellett maradunk, mert azt szemléletesebbnek találjuk.

1.3 Gy r elmélet 15 1.3.3. állítás. R[x] kommutatív, és egységelemes gy r, melynek R részgy - r je (konstans polinomok). R[x] egységeleme az R egységeleme. R[x] pontosan akkor nullosztómentes, ha R nullosztómentes. Ha R nullosztómentes, akkor R[x] = R. Bizonyítás. Mint C[x]-ben. 1.3.4. példa. Z 4 [x] egységei nem csak az 1 és 3 konstans polinomok, mert például (2x + 1) 2 = 1 teljesül. 1.3.5. deníció. Legyen 1 R kommutatív gy r, f R[x]. Legyen f(x) = = r n x n + r n 1 x n 1 + + r 1 x + r 0. Ekkor f-hez társítható egy f : R R függvény, melyre minden α R esetén f (α) = r n α n + r n 1 α n 1 + + r 1 α + r 0. Általában f és f között nem teszünk különbséget, hacsak nem félreérthet a helyzet. Ha f (α) = 0, akkor azt mondjuk, hogy α gyöke f-nek. 1.3.6. házi feladat. Igazoljuk, hogy a behelyettesítés homomorzmus, azaz tetsz leges α R esetén ϕ α : R[x] R, f f (α) homomorzmus. 1.3.7. állítás. A Horner eljárás használható behelyettesítés kiszámolására. A gyöktényez k kiemelhet k, vagyis ha valamely f R[x], α R esetén f(α) = 0, akkor van olyan g R[x], hogy f(x) = (x α) g(x). 1.3.8. példa. Az x 2 1 Z 8 [x] polinomnak négy gyöke is van (1, 3, 5, 7), noha ez csak egy másodfokú polinom. A gyöktényez k egyszerre tehát nem emelhet k ki, de külön-külön igen: x 2 1 = (x 1)(x 7) = (x 3)(x 5). Ha a második alakba beírjuk mondjuk a 7-t, akkor 2 4-et kapunk, ami Z 8 -ban 0. Tehát a problémát az okozza, hogy Z 8 nem nullosztómentes.

16 ELŽZETES ISMERETEK 1.3.9. állítás. Ha R szokásos gy r, akkor R[x]-ben minden polinomnak legfeljebb annyi gyöke lehet, amennyi a foka, valamint a gyöktényez k egyszerre kiemelhet k. Bizonyítás. Mint C[x]-ben. 1.3.10. következmény. Szokásos gy r felett ha két legfeljebb n-edfokú polinom n + 1 különböz helyettesítési értéknél megegyezik, akkor a két polinom azonos. Speciálisan végtelen gy r felett igaz a polinomok azonossági tétele (azaz két polinom pontosan akkor egyezik meg, ha a megfelel polinomfüggvények megegyeznek). Bizonyítás. Mint C[x]-ben. Vegyük észre, hogy véges gy r felett a polinomok azonossági tétele nem lehet igaz, hiszen összesen R R darab R R függvény van, de végtelen sok polinom. Például Z 2 esetén x és x 2 függvénye azonos. A Horner eljárás általánosításának tekinthet a maradékos osztás. 1.3.11. tétel. Ha R szokásos gy r, akkor R[x]-ben lehet maradékosan osztani minden olyan g polinommal, melynek f együtthatója R-ben invertálható. Igaz az egyértelm ség is. Tehát ha f R[x], akkor vannak (egyértelm ) q, r R[x] polinomok, hogy f = gq + r, és deg r < deg g vagy r = 0. Bizonyítás. Ugyanúgy, mint Z[x]-ben: gondoljuk meg, hogy a maradékos osztás során csak a polinom f együtthatójával kell osztani. 1.3.12. következmény. Test feletti polinomgy r ben minden polinommal lehet maradékosan osztani. M ködik az euklideszi algoritmus is. A többszörös gyökök hasonlóan deniálhatók, mint C felett. 1.3.13. deníció. Legyen R szokásos gy r, f R[x]. Ha f(x) = (x α) k g(x), ahol g(α) 0, akkor azt mondjuk, hogy az α gyök multiplicitása k.

1.3 Gy r elmélet 17 1.3.14. deníció. Legyen R szokásos gy r, f R[x], ahol f(x) = n r k x k = r n x n + r n 1 x n 1 + + r 1 x + r 0. k=0 Ekkor az f deriváltját formálisan kell érteni, az alábbi képlettel számoljuk: f (x) = n kr k x k 1 = nr n x n 1 + (n 1)r n 1 x n 2 + + r 1. k=1 Itt a kr k x k 1 -t úgy kell érteni, hogy k-szor összeadjuk r k x k 1 -t. 1.3.15. állítás. A deriválás szokásos szabályai továbbra is fennállnak, tehát (f ± g) (x) = f (x) ± g (x), (f g) (x) = f (x) g(x) + f(x) g (x), (f g) (x) = f (g(x)) g (x). A többszörös gyökök és a deriváltak kapcsolata hasonlóan alakul, mint C-ben, némi eltéréssel. 1.3.16. példa. Tekintsük Z 2 felett az f(x) = x 3 + x 2 polinomot. Ennek a 0 kétszeres gyöke, hiszen x 3 + x 2 = x 2 (x + 1). Ugyanakkor a deriváltjának is kétszeres gyöke a 0: f (x) = 3x 2 + 2x = x 2. Itt a problémát nem a nullosztómentesség hiánya okozza (hiszen Z 2 még test is), hanem az, hogy bármely elem duplája 0 lesz Z 2 -ben. Ezt a szituációt a karakterisztika fogalma fogja meg. 1.3.17. deníció. Egy R gy r karakterisztikája az a legkisebb pozitív egész m, melyre m r = 0 minden r R gy r elemre. Itt az m r az r elem m-szeres összegét jelöli: m r = m r = r } + {{ + r }. m darab k=1 Ha nincs ilyen legkisebb pozitív egész m, akkor azt mondjuk, hogy az R gy r karakterisztikája 0.

18 ELŽZETES ISMERETEK 1.3.18. tétel. Ha R szokásos gy r, f R[x]-nek α k-szoros gyöke, akkor f -nek α legalább (k 1)-szeres gyöke. Ha R minden r 0 elemére teljesül, hogy kr 0, akkor f -nek α pontosan (k 1)-szeres gyöke. Bizonyítás. Mint C[x]-ben. 1.3.19. következmény. Ha R szokásos gy r és f-nek egy α pontosan egyszeres gyöke, akkor α nem gyöke f -nek. 1.3.20. következmény. Szokásos gy r ben f többszörös gyökei éppen az f és f közös gyökei. Tehát amikor létezik az (f, f ) kitüntetett közös osztó, akkor f többszörös gyökei éppen (f, f ) gyökei. Ezen kitüntetett közös osztó létezését lehet például olyankor garantálni, amikor m ködik az euklideszi algoritmus, amihez a maradékos osztás kell, mely test feletti polinomgy r esetén megy. 1.3.2. Nullosztómentes, véges gy r k 1.3.21. állítás. Legyen R nullosztómentes gy r. Ekkor R karakterisztikája 0 vagy egy prímszám. Bizonyítás. Tegyük fel, hogy van r R, r 0, és van n pozitív egész, hogy n r = 0. Legyen m = o(r), az r additív rendje az (R, +) csoportban. Ekkor m r = 0. Legyen s R tetsz leges, akkor 0 = (m r) s = (r + + r) s = rs + + rs = r (s +... s) = r (m s). De R nullosztómentes, r 0, tehát m s = 0, vagyis o(s) m. Az r és s szerepét megcserélve kapjuk, hogy ha s 0, akkor m o(s), tehát bármely nem 0 gy r elem additív rendje m. Ha most m = ab, akkor 0 = (m r) r = m r 2 = (a r) (b r), így a nullosztómentességb l a r = 0 vagy b r = 0. Ha a r = 0, akkor m a, ugyanakkor a m, vagyis m = ab triviális felbontás. Hasonlóan, ha br = 0, akkor m = ab triviális felbontás. Tehát m felbonthatatlan, vagyis prím.

1.3 Gy r elmélet 19 1.3.22. megjegyzés. Valójában az is kijött, hogy ha egy nullosztómentes gy r karakterisztikája 0, akkor a gy r minden nem 0 elemének az additív rendje végtelen. 1.3.23. állítás. Egy ferdetest mindig nullosztómentes. Bizonyítás. A bizonyítás megegyezik annak a bizonyításával, hogy a komplex számok teste nullosztómentes. Legyen T ferdetest, z, w T. Tegyük fel, hogy z w = 0. Ha z = 0, akkor kész vagyunk. Ha z 0, akkor van z 1, és így w = (z 1 z) w = z 1 (z w) = z 1 0 = 0. 1.3.24. következmény. Véges test karakterisztikája prím. Idézzük fel, hogy p karakterisztikában tagonként lehet p-edik hatványra emelni. 1.3.25. állítás. Legyen R egy p > 0 karakterisztikájú kommutatív gy r. Ekkor tagonként lehet p-edik (s t, p k -odik) hatványra emelni, azaz (r ± s) p = r p ± s p. Továbbá a ψ : R R, r r p leképezés gy r homomorzmus. Bizonyítás. A bizonyítás els fele következik a binomiális tételb l, hiszen ( ) p k osztható p-vel minden 1 k p 1 esetén, p = 2 esetén pedig (r s) 2 = = r 2 + s 2 = r 2 s 2. A ψ homomorzmus voltához már csak a szorzattartás kell, ami a kommutativitásból következik: ψ(r s) = (rs) p = r p s p = ψ(r) ψ(s).

20 ELŽZETES ISMERETEK 1.3.26. deníció. Ha R egy p karakterisztikájú gy r, akkor a ψ : R R, r r p homomorzmust Frobenius endomorzmusnak nevezzük. 1.3.27. házi feladat. Legyen R egy p > 0 karakterisztikájú, kommutatív, nullosztómentes gy r. Ekkor a Frobenius endomorzmus injektív. Speciálisan, ha R véges, akkor a Frobenius endomorzmus bijekció, azaz automor- zmus. Továbbá R-ben minden elemnek minden k-ra legfeljebb egy p k -odik gyöke lehet. 1.3.28. állítás. Nullosztómentes gy r ben igaz a jobboldali egyszer sítési szabály, azaz tetsz leges a, b, c R, c 0 esetén ha ac = bc, akkor a = = b. Ugyanígy igaz a baloldali egyszer sítési szabály is. Bizonyítás. Ha ac = bc, akkor (a b) c = ac bc = 0, amib l a nullosztómentesség miatt a b = 0 vagy c = 0. Mivel c 0, ezért a b = 0, vagyis a = b. Ugyanígy kihozható a másik oldali egyszer sítési szabály is. Az 1.3.23. állítás megfordítása nem igaz, az egész számok gy r je jó ellenpéldának. Véges ellenpélda viszont már nem létezik a megfordításra: 1.3.29. tétel. Ha R véges, nullosztómentes gy r, akkor R ferdetest. 1.3.30. megjegyzés. Wedderburn egyik híres tétele, hogy minden véges ferdetest kommutatív, azaz test. Ez a 3.2.1. tétel, melyet a 3.2. szakaszban bizonyítunk. Tehát minden véges, nullosztómentes gy r test. Bizonyítás. Meg kell keresnünk R-ben az egységelemet, és minden elemnek az inverzét. Legyen R = { a 1,..., a k }, és legyen r R tetsz leges nem 0 elem. Az ötlet, hogy az r-rel való jobbszorzás permutálja R elemeit, mert az a 1 r,..., a k r elemek mind különböznek. Valóban, ha a i r = a j r lenne, akkor a nullosztómentesség miatt egyszer síthetnénk r 0-val, és így a i = a j. Tehát valamelyik i-re a i r = r. Legyen e = a i, lesz a jelölt az egységelemre. Nyilván e 0, hisz akkor 0 = er = r lenne. Legyen s R tetsz leges,

1.3 Gy r elmélet 21 ekkor er = r-b l ser = sr adódik, majd r 0-val egyszer sítve jobbról se = = s-et kapjuk. Mivel s R tetsz leges volt, ezért e jobboldali egységelem. Speciálisan, ee = e, melyet jobbról s-sel szorozva ees = es adódik. Balról e 0-val egyszer sítve es = s adódik, tehát e baloldali egységelem is. Már csak r inverzét kell megtalálnunk. Az a 1 r,..., a k r számok között e is megtalálható, mondjuk a j r = e. Tehát r-nek van balinverze: a j. Természetesen balról is szorozhatunk r-rel, akkor az ra 1,..., ra k elemek különböz sége miatt ezek egyike is e. Mondjuk ra l = e, tehát r-nek van jobbinverze is. De akkor a j = a j e = a j ra l = ea l = a l, vagyis a baloldali inverz megegyezik a jobboldali inverzzel. Tehát tetsz leges r 0 elemnek találtunk inverzét. Az 1.3.29. tétel segítségével karakterizáljuk, hogy Z n mikor nullosztómentes, és így példát kapunk véges testekre is. 1.3.31. következmény. Az alábbiak ekvivalensek. 1. Z n nullosztómentes, 2. n prím, 3. Z n test. Bizonyítás. 1 2: Z n nullosztómentessége azt jelenti, hogy a, b Z n esetén ha ab = 0 Z n -ben, akkor a = 0 vagy b = 0 Z n -ben. Azaz: tetsz leges a, b Z-re ha n ab, akkor n a vagy n b. Utóbbi azzal ekvivalens, hogy n prím. 1 = 3: Az 1.3.29. tétel miatt Z n ferdetest Azt tudjuk, hogy Z n kommutatív, így test is. 3 = 1: 1.3.23. állítás. 1.3.32. tétel. Legyen T egy test, e az egységeleme. Ekkor létezik T -nek egy legsz kebb P részteste (ami tehát T minden résztestének részteste), melyre e P. Ha T karakterisztikája p > 0, akkor P = { 0, e, 2e,..., (p 1)e } Z p. Ha T karakterisztikája 0, akkor { me } P = ne : m, n Z, n 0 Q.

22 ELŽZETES ISMERETEK Bizonyítás. ha K T test, akkor K tartalmazza T egységelemét is: ha f K a K egységeleme, akkor f 2 = f-et f 1 -zel T -ben szorozva f = e adódik. Tehát e K. Ha T karakterisztikája p > 0, akkor legyen P = { 0, e, 2e,..., (p 1)e }. Mivel e 0, ezért e additív rendje p. Tehát ϕ: P Z p, ke k (mod p) izomorzmus az additív csoportok között. Könny ellen rizni, hogy ϕ a szorzást is tartja: ϕ ((me)(ne)) = ϕ ( mne 2) = ϕ (mne) = mn (mod p) = ϕ (me) ϕ (ne). Tehát P Z p test. Továbbá, ha K T test, akkor e K miatt P K. Ha T karakterisztikája 0, akkor legyen { me } P = ne : m, n Z, n 0. Mivel e 0, ezért az 1.3.22. megjegyzés alapján e additív rendje. Legyen ϕ: Q P, m me n ne. Ez jóldeniált, mert ha m/n = u/v, akkor me/ne = ue/ve is teljesül (házi feladat), valamint ne nem lesz 0, ha n 0, hiszen e additív rendje. A ϕ leképezés nyilván m velettartó és szürjektív. Az injektivitás ker ϕ vizsgálatából adódik: { m ker ϕ = n : me } { m } { m } ne = 0 T -ben = n : me = 0 = n : m = 0 = { 0 }. Tehát P Q test. Végül, ha K T test, akkor e K miatt P K. 1.3.33. deníció. Egy testet prímtestnek nevezünk, ha nincs valódi részteste. Tehát ha T véges test, akkor karakterisztikája egy p > 0 prímszám, és megtalálható benne legsz kebb résztestként Z p.

1.3 Gy r elmélet 23 1.3.3. Részgy r, homomorzmus, ideál, faktorgy r 1.3.34. deníció. Legyen R gy r, S R egy részhalmaz. Azt mondjuk, hogy S részgy r je R-nek (jele S R), ha S maga is gy r az R m veleteire nézve. 1.3.35. házi feladat. Igazoljuk, hogy S pontosan akkor részgy r R-ben, ha nem üres és zárt a m veletekre, azaz ha 1. R, 2. tetsz leges r, s S-re r + s S, 3. tetsz leges s S-re s S, 4. tetsz leges r, s S-re r s S. Itt a 2. és a 3. pontok együttesen lecserélhet k arra, hogy tetsz leges r, s S-re r s S. A generált részgy r deníciója analóg az 1.2.11. denícióval, a létezés és egyértelm ség az 1.2.12. állítás mintájára hasonlóan látható be. 1.3.36. deníció. Legyen X R. Ekkor az X által generált részgy r (jele X ) az a legsz kebb részgy r R-ben, mely X-et tartalmazza. A legsz kebbet abban az értelemben használjuk, hogy ha S R egy részgy r, melyre X S, akkor X S is. 1.3.37. házi feladat. Legyen U = X S R S az X-et tartalmazó R-beli részgy r k metszete. Igazoljuk, hogy U = X az egyetlen legsz kebb X-et tartalmazó részgy r. 1.3.38. deníció. Legyen R, S gy r k. Egy ϕ: R S leképezés (gy - r )homomorzmus, ha m velettartó, azaz bármely r 1, r 2 R esetén ϕ (r 1 + r 2 ) = ϕ (r 1 ) + ϕ (r 2 ), ϕ (r 1 r 2 ) = ϕ (r 1 ) ϕ (r 2 ).

24 ELŽZETES ISMERETEK Itt a baloldalon az R m veletei, a jobboldalon az S m veletei szerepelnek. Ha ϕ bijektív, akkor izomorzmusnak hívjuk. Azt mondjuk, hogy az R és S gy r k izomorfak, ha van közöttük izomorzmus, jele R S vagy R = S. 1.3.39. házi feladat. Legyen ϕ: R S gy r homomorzmus. Igazoljuk az alábbiakat. Elfelejtve a szorzást kapjuk, hogy ϕ: (R, +) (S, +) egy Abel csoportok között men homomorzmus. Speciálisan ϕ(0) = 0 valamint ϕ( r) = ϕ(r). Attól, hogy R egységelemes, ϕ(1) nem feltétlen lesz S egységeleme. Ha viszont S nullosztómentes, akkor már igen (házi feladat). 1.3.40. példa. Legyen R = Z, S = Z n, ϕ pedig a modulo n maradék: ϕ: Z Z n, k k (mod n). Legyen R = R[x], S = C, ϕ pedig az i behelyettesítése: ϕ: R[x] C, f f(i). 1.3.41. deníció. Legyen ϕ: R S homomorzmus. Ekkor ϕ képe Im ϕ = { ϕ(r) r R } S, ϕ magja Ker ϕ = { r R ϕ(r) = 0 S } R. 1.3.42. házi feladat. Igazoljuk, hogy Im ϕ részgy r je S-nek, Ker ϕ részgy r je R-nek.

1.3 Gy r elmélet 25 Vizsgáljuk most Ker ϕ-t. Nyilván Ker ϕ zárt az összeadásra és a kivonásra, hiszen ha a, b Ker ϕ, akkor ϕ(a ± b) = ϕ(a) ± ϕ(b) = 0 ± 0 = 0. Vegyük észre, hogy Ker ϕ a szorzásra is zárt, s t, tetsz leges gy r elemmel szorozhatunk. Legyen ugyanis a Ker ϕ, r R tetsz leges. Ekkor ϕ(a) = 0, tehát ϕ(r) ϕ(a) = 0. A homomorzmustulajdonság miatt tehát ϕ(r a) = 0, vagyis r a Ker ϕ. Nyilván ugyanígy az is belátható, hogy ha a Ker ϕ, és r R tetsz leges, akkor a r Ker ϕ. Tehát Ker ϕ zárt az összeadásra, kivonásra, és tetsz leges R-beli elemmel való balról vagy jobbról szorzásra. Az ilyen részhalmazok fontosak a gy r - elméletben, így külön nevük van. 1.3.43. deníció. Legyen R gy r, I R egy részhalmaz. Azt mondjuk, hogy I balideál, ha (I, +) részcsoportja (R, +)-nak, és I zárt az R-beli elemekkel való balról szorzásra, azaz tetsz leges r R, a I esetén ra I. A jobbideál analóg módon deniálható: azt mondjuk, hogy I jobbideál, ha (I, +) részcsoportja (R, +)-nak, és I zárt az R-beli elemekkel való jobbról szorzásra, azaz tetsz leges r R, a I esetén ar I. Végül, azt mondjuk, hogy I ideál R-ben (jele I R), ha balideál és jobbideál is. 1.3.44. tétel. Legyen R gy r, I R. Ekkor I egy alkalmas homomorzmus magja I R. Bizonyítás. = : Ezt láttuk be az el bb.

26 ELŽZETES ISMERETEK =: Legyen I R ideál. A bizonyítás kulcsa a faktorstruktúra (jelen esetben faktorgy r ) elkészítése. Tekintsük az S = (R, +)/(I, +) faktorcsoportot az összeadással, azaz S = { r + I r R } az I szerinti mellékosztályok halmaza, melyek közt az összeadást és a szorzást az alábbi módon deniáljuk: (r 1 + I) + (r 2 + I) = (r 1 + r 2 ) + I, (r 1 + I) (r 2 + I) = r 1 r 2 + I. Be kell látni, hogy az összeadás és szorzás ezen deníciója jóldeniált, azaz reprezentánsfüggetlen. Az összeadás jóldeniáltsága házi feladat, a szorzáshoz legyenek r 1, r 2 R olyanok, hogy r 1 + I = r 1 + I (azaz r 1 r 1 I), r 2 + I = = r 2 + I (azaz r 2 r 2 I). Ekkor r 1 r 2 r 1r 2 = r 1 r 2 r 1 r 2 + r 1 r 2 r 1r 2 = r 1 (r 2 r 2) + (r }{{} 1 r 1) r 2 I }{{} I I Itt többször is kihasználtuk az ideál zártságát a balról illetve jobbról szorzásra tetsz leges gy r elemmel, valamint az összeadásra való zártságot is. Tehát r 1 r 2 r 1r 2 I, vagyis r 1 r 2 +I = r 1r 2 +I. Tehát S-en jóldeniált az összeadás és a szorzás. Be kell látni, hogy (S, +, ) gy r. A nulla 0 + I lesz, az r + I ellentettje r+i (ezek bizonyítása is házi feladat). Hiányzik még, hogy S-ben az összeadás és szorzás asszociatív, valamint teljesül a két disztributivitás. Ezek ellen rzése könny. Tehát S gy r. Továbbá a ϕ: R S, r r + I leképezés homomorzmus. Valóban, az S-beli összeadás és szorzás deníciójából: ϕ (r 1 + r 2 ) = r 1 + r 2 + I = (r 1 + I) + (r 2 + I) = ϕ(r 1 ) + ϕ(r 2 ), ϕ (r 1 r 2 ) = r 1 r 2 + I = (r 1 + I) (r 2 + I) = ϕ(r 1 ) ϕ(r 2 ).

1.3 Gy r elmélet 27 1.3.45. deníció. Az 1.3.44. tétel bizonyításában deniált S = R/I gy r neve: faktorgy r. A megadott ϕ: R S homomorzmus neve: természetes homomorzmus. Továbbá, ha r, s R esetén r s I (azaz r és s azonos I szerinti mellékosztályba esnek), akkor azt mondjuk, hogy r kongruens s-sel modulo I, jele r s (mod I). 1.3.46. házi feladat. Igazoljuk, hogy ha a b (mod I) és c d (mod I), akkor a ± c b ± d a c b d (mod I), (mod I). 1.3.47. tétel (Homomorzmus tétel). Legyen ϕ: R S homomorzmus. Ekkor Im ϕ R/ Ker ϕ. Bizonyítás. Legyen I = Ker ϕ. Az 1.3.44. tétel bizonyításából világos, hogy az Im ϕ R/I, ϕ(r) r + I. megfeleltetés jóldeniált, m velettartó, bijekció. 1.3.48. példa. Legyen R = Z, S = Z n, ϕ pedig a modulo n maradék: ϕ: Z Z n, k k (mod n). Itt Ker ϕ = (n), az n többszörösei Z-ben, Im ϕ = Z n, és így az 1.3.47. tétel miatt (1.1) Z/nZ Z n.

28 ELŽZETES ISMERETEK Vegyük észre, hogy a modulo n maradékosztályokat sokszor (1.1) baloldala segítségével deniálják (a k maradékosztálya a k + nz halmaz). Továbbá az 1.3.45. denícióban szerepl kongruencia jelölés ebben a példában pontosan egybeesik a hagyományos (számelméletben használt) kongruencia jelöléssel. Legyen R = R[x], S = C, ϕ pedig az i behelyettesítése: ϕ: R[x] C, f f(i). Most Im ϕ = C (hiszen az ϕ(a + bx) = a + bi), Ker ϕ pedig éppen azon valós együtthatós polinomok halmaza, melyeknek gyöke az i. Ha egy valós együtthatós polinomnak gyöke egy komplex szám, akkor gyöke a komplex konjugáltja is, tehát a polinomból kiemelhet (x i)(x + i) = = x 2 +1. Ennek a polinomnak a többszörösei (ezt a halmazt (x 2 +1)-gyel jelöljük) tehát éppen azok a valós együtthatós polinomok, melyeknek gyöke i. Tehát Ker ϕ = (x 2 + 1), és így (1.2) R[x]/(x 2 + 1) C. Vegyük észre, hogy (1.2) miatt a komplex számokat bevezethetjük olyanok számára is, akik csak a valós számokat ismerik. A kés bbiekben ezt az ötletet használni is fogjuk a véges testek elkészítéséhez. 1.3.49. példa. Legyen R = Z, ekkor az n többszöröseinek halmaza (jelöljük (n)-nel) ideált alkot Z-ben. Legyen R = R[x], ekkor az x 2 + 1 többszöröseinek halmaza (jelöljük (x 2 + 1)-gyel) ideált alkot R[x]-ben. 1.3.50. házi feladat. Legyen 1 R kommutatív gy r, s R tetsz leges. Jelölje (s) az s többszöröseib l álló halmazt: (s) = { rs r R }. Igazoljuk, hogy (s) R.

1.3 Gy r elmélet 29 1.3.51. deníció. Legyen 1 R kommutatív gy r, s R tetsz leges. Az s többszöröseib l álló halmazt (s)-sel jelöljük, és az s által generált f ideálnak nevezzük. Vegyük észre, hogy az s által generált f ideál éppen a legsz kebb s-t tartalmazó ideál, hiszen ha I R, melyre s I, akkor s minden többszöröse is I-beli az ideáltulajdonság miatt. A generált részgy r mintájára tehát deniálhatjuk a generált ideált is. 1.3.52. deníció. Legyen X R. Ekkor az X által generált ideál (jele (X)) az a legsz kebb ideál R-ben, mely X-et tartalmazza. A legsz kebbet abban az értelemben használjuk, hogy ha I R egy ideál, melyre X I, akkor (X) I is. 1.3.53. házi feladat. Legyen J = X I R I az X-et tartalmazó R-beli ideálok metszete. Igazoljuk, hogy J = (X) az egyetlen legsz kebb X-et tartalmazó ideál. 1.3.4. Euklideszi gy r k, f ideálgy r k 1.3.54. deníció. Egy I R ideált f ideálnak hívunk, ha egy elemmel generálható. Az R szokásos gy r t f ideálgy r nek (angolul principal ideal domain, PID) hívjuk, ha R minden ideálja f ideál. 1.3.55. deníció. Az R szokásos gy r t euklideszi gy r nek (angolul Euclidean domain) hívjuk, ha (elvégezhet benne a maradékos osztás) az R nem nulla elemein értelmezve van egy nemnegatív egész érték ϕ függvény (az ún. euklideszi norma), hogy minden a, b R, b 0 esetén vannak q, r R elemek úgy, hogy a = bq + r, és r = 0 vagy ϕ(r) < ϕ(b). 1.3.56. példa.

30 ELŽZETES ISMERETEK Z, az euklideszi norma az abszolútérték. T [x] valamely T testre, az euklideszi norma a polinom foka. 1.3.57. tétel. Legyen R euklideszi gy r. Ekkor R f ideálgy r. Bizonyítás. A bizonyítás ötlete a maradékos osztás elvén alapul. Legyen R euklideszi gy r, ϕ euklideszi normával, és legyen I R egy ideál. Legyen 0 g I egy legkisebb ϕ-érték nem nulla elem. Belátjuk, hogy I = (g). Nyilván (g) I, hiszen g I. Az I (g) tartalmazáshoz legyen f I tetsz leges, és osszuk el f-et maradékosan g-vel. Ekkor vannak q, r R elemek, hogy f = qg + r, és r = 0 vagy ϕ(r) < ϕ(g). Ám ekkor r = f qg I. Mivel g egy legkisebb ϕ-érték I-beli nem nulla elem volt, ezért r = 0 lehet csak. Vagyis f = qg, amib l f (g). Mivel f I tetsz leges volt, így I (g). 1.3.58. következmény. Z, T [x] f ideálgy r k. 1.3.5. Egyszer gy r k Meg szeretnénk érteni, hogy miért lesz az R[x]/(x 2 + 1) faktorgy r test. Vizsgáljuk el ször testek ideáljait. 1.3.59. állítás. Egy T ferdetest ideáljai csak { 0 } és T. Bizonyítás. Legyen I T egy nem nulla ideál. Ekkor van 0 s I elem. Mivel T ferdetest, s-nek létezik s 1 T inverze. De akkor 1 = s 1 s I, és így tetsz leges r T -re r = r 1 I. Tehát ha I { 0 }, akkor I = T. 1.3.60. deníció. Egy R gy r t egyszer gy r nek nevezünk, ha csak a két triviális ({ 0 } és R) ideálja van. 1.3.61. következmény. Minden ferdetest egyszer gy r.

1.3 Gy r elmélet 31 A megfordítás általában nem igaz, ugyanis a T n n mátrixgy r egyszer. Az alábbi értelemben viszont már igaz a megfordítás: 1.3.62. tétel. Ha 1 R kommutatív, egyszer gy r, akkor R test. Bizonyítás. Legyen 0 s R tetsz leges, és tekintsük az (s) ideált. Ez nem a nulla ideál s 0 miatt, tehát (s) = R. Speciálisan 1 (s), tehát van olyan r R, hogy rs = 1 (hiszen (s) elemei az s többszöröseib l állnak). Tehát tetsz leges s 0 invertálható (a kommutativitás miatt r kétoldali inverz), így R ferdetest. A kommutativitás miatt R test. 1.3.63. következmény. 1 R kommutatív gy r, akkor R egyszer R test. Visszatérve az R[x]/(x 2 + 1) faktorgy r höz, mivel ez test, ezért nincs valódi ideálja, tehát R[x]-ben nincs (x 2 + 1)-et tartalmazó ideál. (Itt használjuk, hogy egy R/I faktorgy r ideáljai megfelelnek az R gy r I-t tartalmazó ideáljainak.) Az ilyen ideálokat maximális ideálnak nevezzük. 1.3.64. deníció. Legyen I R, I R. Azt mondjuk, hogy I maximális ideál, ha nincs olyan J R ideál, melyre I J R. Ekvivalensen: ha minden I J R, J R ideálra J = I vagy J = R. 1.3.65. állítás. I R esetén I maximális ideál R-ben R/I egyszer. Bizonyítás. R-nek az I-t tartalmazó ideáljai kölcsönösen egyértelm megfeleltetésben állnak az R/I faktorgy r ideáljaival. Ezen állítás bizonyítását a vizsgán nem kell tudni. 1.3.66. következmény. Ha 1 R kommutatív gy r, I R, akkor I maximális ideál R-ben R/I test. 1.3.67. következmény. Az (x 2 + 1) ideál maximális R[x]-ben.

32 ELŽZETES ISMERETEK Végül a gy r k számelméletét felhasználva szükséges és elégséges feltételt adunk arra, hogy mikor maximális egy ideál T [x]-ben. 1.3.68. állítás. Legyen R szokásos gy r, r, s R. Ekkor s r (r) (s), azaz megfordul a reláció. Bizonyítás. = : (r) az r többszöröseib l álló ideál. Ha s r, akkor r minden többszöröse s-nek is többszöröse, vagyis (r) (s). =: r (s), azaz r többszöröse s-nek. Tehát van olyan t R, hogy r = st, vagyis s r. 1.3.69. deníció. Legyen 0 r R \ R. Azt mondjuk, hogy az r = a b felbontás triviális, ha valamelyik tényez egység. Azt mondjuk, hogy r R felbonthatatlan (vagy irreducibilis), ha csak triviális felbontása létezik. 1.3.70. következmény. Legyen R f ideálgy r, I R. Ekkor R/I test I = (r), ahol r felbonthatatlan. Bizonyítás. Az 1.3.66. következmény alapján R/I pontosan akkor test, ha I R maximális ideál. Mivel R f ideálgy r, ezért van r R, hogy I = (r). Az 1.3.68. állítás miatt (r) pontosan akkor maximális R-ben, ha r-nek nincs valódi osztója, azaz ha r felbonthatatlan. Mivel T [x] f ideálgy r, következményként kapjuk azt is, hogy mikor lesz egy faktora test. 1.3.71. következmény. Legyen T test, f T [x]. Ekkor T [x]/ (f(x)) test f(x) irreducibilis. 1.3.72. példa. R[x]/(x 2 + 1) test, mert x 2 + 1 irreducibilis R felett. Z 2 [x]/(x 2 + x + 1) test, mert x 2 + x + 1 irreducibilis Z 2 felett.

1.4 Testelmélet 33 1.4. Testelmélet 1.4.1. Algebrák minimálpolinomja Az alábbi szakaszban átismételjük az algebrákról tanultakat, általánosítjuk a korábbi minimálpolinom fogalmakat algebrákra. A f példa a mátrix, valamint a testelem minimálpolinomja. 1.4.1. deníció. Azt mondjuk, hogy az A = (A, +,, λ ) algebra a T test felett, ha (A, +, ) gy r, (A, +, λ ) egy T feletti vektortér, valamint minden a, b A, λ T esetén λ(ab) = (λa)b = a(λb). Azt mondjuk, hogy az algebra kommutatív, egységelemes, nullosztómentes, ha mint gy r ilyen. Jelölje dim T A az A dimenzióját T felett. A denícióban azt a jelölést használjuk, ahol minden egyes skalárral való szorzás egy egyváltozós m velet. A szokásos részstruktúra fogalomnak megfelel en, akkor mondjuk, hogy B A részalgebra, ha részgy r és altér (azaz minden m veletre zárt). Továbbá akkor mondjuk, hogy ϕ: A B homomorzmus, ha minden m veletet tart, azaz gy r homomorzmus és lineáris leképezés. 1.4.2. példa. T n n algebra T test felett. T [x 1,..., x k ] algebra T test felett. (Mi itt a skalárral való szorzás?) T K esetén K algebra T test felett. (Mi itt a skalárral való szorzás?) 1.4.3. házi feladat. 1. Legyen T R, ahol T test, 1 R gy r, és tegyük fel, hogy 1 T. Legyen minden λ T, r R-re a λ-val, mint T -beli skalárral való szorzás λ (r) = λr. Ekkor R vektortér T felett a bevezetett skalárral való szorzásra, és pontosan akkor algebra, ha T Z(R). Itt a Z(R) jelöli a gy r centrumát, Z(R) = { r R rs = sr minden s R esetén }.

34 ELŽZETES ISMERETEK 2. Legyen A egységelemes algebra: 1 A. Ekkor a t 1 alakú elemek halmaza (t T ) egy T -vel izomorf részteste A-nak. Szeretnénk az algebra elemeit polinomokba helyettesíteni. Ezt például mátrixok esetén úgy tettük meg, hogy a polinom konstans tagjába az egységmátrix konstansszorosát írtuk. 1.4.4. példa. Legyen M egy négyzetes mátrix, és tekintsük a p(x) = x 2 + 1 polinomot. Ekkor p(m) = M 2 + I. 1.4.5. deníció. Legyen A egységelemes algebra, e A az egységeleme. Legyen p T [x], p(x) = λ 0 + λ 1 x + + λ n x n. Ekkor tetsz leges a A-ra p(a) = λ 0 e + λ 1 a + + λ n a n A az a helyettesítése p-be. Azt mondjuk, hogy a gyöke p-nek, ha p(a) = 0. 1.4.6. házi feladat. Igazoljuk, hogy az 1.4.5. denícióban deniált helyettesítés homomorzmus, azaz minden a A-ra ϕ a : T [x] A, p p(a) homomorzmus. Most már deniálhatjuk a minimálpolinom fogalmát a szokásos módon. 1.4.7. deníció. Legyen 1 A algebra T felett. Az a A elem T feletti minimálpolinomja az a legalacsonyabb fokú normált T [x]-beli polinom, melynek a gyöke. Ha csak a 0 polinom ilyen, akkor azt mondjuk, hogy a transzcendens elem. Ha a 0 polinomon kívül más polinomnak is gyöke a, akkor azt mondjuk, hogy a algebrai elem, ekkor a minimálpolinomját m a (x)-szel jelöljük. Egy Q L testb vítés esetén α algebrai szám, ha Q felett algebrai, transzcendens szám, ha Q felett transzcendens. 1.4.8. példa.

1.4 Testelmélet 35 Algebrai számra példa 2, 3 2. Transzcendens számra példa e, π, 2 3. A vizsgán nem kell tudni bizonyítani, hogy ezek a számok transzcendensek. 1.4.9. tétel. Legyen 1 A algebra, a A egy tetsz leges algebrai elem. Ekkor 1. m a (x) egyértelm en meghatározott. 2. Egy f T [x] polinomra f(a) = 0 m a (x) f(x). 3. Ha A nullosztómentes, akkor m a irreducibilis. 4. Ha f T [x] irreducibilis, normált, f(a) = 0, akkor m a (x) = f(x). Bizonyítás. A bizonyítás lényegében egyezik a testelemek minimálpolinomjára vonatkozó analóg tétel bizonyításával. 1. és 2. Tekintsük a ϕ a : T [x] A, p p(a) homomorzmust. Ennek magja (Ker ϕ) azon T [x]-beli polinomok halmaza, melyeknek a gyöke. T [x] f ideálgy r, így Ker ϕ-t egyetlen polinom generálja. Ha ezt a polinomot normáljuk, akkor még mindig Ker ϕ egy generátorát kapjuk. Világos, hogy ez a polinom lesz az egyértelm minimálpolinom. 3. Tegyük fel, hogy m a (x) = g(x) h(x) alkalmas g, h T [x] polinomokra. Ekkor a behelyettesítésével 0 = m a (a) = g(a) h(a) adódik. Mivel A nullosztómentes, ezért ez csak úgy lehet, ha g(a) = 0 vagy h(a) = 0. Ha g(a) = 0, akkor a 2. pont miatt m a g, ugyanakkor g m a nyilván, vagyis az m a (x) = g(x)h(x) felbontás triviális. Ugyanígy triviális felbontást kapunk, ha h(a) = 0.

36 ELŽZETES ISMERETEK 4. Mivel f(a) = 0, ezért a 2. pont miatt m a f. De f irreducibilis, vagyis m a konstans vagy f asszociáltja. Konstans nem lehet m a, hiszen a gyöke. Tehát m a és f asszociáltak. Ugyanakkor mindkett f együtthatója 1, tehát f = m a. A fenti tétel hasznos minimálpolinomok meghatározására. 1.4.10. példa. α = 24 minimálpolinomja Q felett x 24, hiszen ez egy normált, Q felett irreducibilis polinom, melynek 24 gyöke. α = 27 minimálpolinomja Q felett x 2 27: normált, 27 gyöke. A Q felett irreducibilitás következik abból, hogy másodfokú polinomként csak úgy lehetne felbontható, ha lenne racionális gyöke. α = 3 9 minimálpolinomja Q felett x 3 9: normált, 3 9 gyöke. A Q felett irreducibilitás következik abból, hogy harmadfokú polinomként csak úgy lehetne felbontható, ha lenne racionális gyöke. α = 4 2 minimálpolinomja Q felett x 4 2: a normáltság világos, ahogy az is, hogy 4 2 gyöke. A Q felett irreducibilitás következik a SchönemannEisenstein féle irreducibilitási kritériumból p = 2-vel. Vigyázat! Legalább negyedfokú egyenleteknél már nem elég az irreducibilitáshoz, hogy nincs gyöke. α = 1 + i esetén α 4 = (1 + i) 4 = 4, ennek ellenére nem x 4 + 4 a mimimálpolinom, mert nem irreducibilis Q felett. 1.4.11. házi feladat. Igazoljuk, hogy α = 1 + i minimálpolinomja Q felett x 2 2x + 2. 1.4.12. állítás. Legyen 1 A algebra T felett, dim T A = n <. Ekkor minden a A elem algebrai, deg m a n.

1.4 Testelmélet 37 Bizonyítás. Az e, a, a 2,..., a n elemek lineárisan összefüggnek, vagyis vannak λ 0,..., λ n T (nem mind 0) elemek, hogy λ 0 e + λ 1 a + + λ n a n = 0. Tehát a gyöke a legfeljebb n-edfokú λ 0 + λ 1 x + + λ n x n T [x] (nem 0) polinomnak. 1.4.2. Egyszer testb vítések 1.4.13. deníció. Legyen K részteste L-nek. Ezt úgy mondjuk, hogy az L testb vítése K-nak, vagy K L testb vítés. Van, ahol K L helyett az L K jelölést használják. 1.4.14. példa. A f példa a Q C testb vítés. 1.4.15. deníció. Legyen K L testb vítés, α L. A legsz kebb résztestet L-ben, mely tartalmazza K-t és α-t is K (α)-val jelöljük. A K K(α) testb vítést egyszer b vítésnek nevezzük. A minimálpolinom fogalmának segítségével már meghatározhatjuk egyszer b vítések szerkezetét. 1.4.16. tétel. Legyen K L testb vítés, α L egy algebrai elem, melyre n = deg m α. Ekkor K(α) = { a 0 + a 1 α + + a n 1 α n 1 : a 0, a 1,..., a n 1 K }, továbbá minden K(α)-beli elem el állítása a 0 + a 1 α + + a n 1 α n 1 alakban egyértelm. Bizonyítás. Legyen T = { a 0 + a 1 α + + a n 1 α n 1 : a 0, a 1,..., a n 1 K }. El ször belátjuk, hogy T test. Vegyük észre, hogy T -ben benne van α minden K-együtthatós polinomja. Csakugyan, legyen f K[x] tetsz leges (nem feltétlen legfeljebb (n 1)-edfokú) polinom. Osszuk el maradékosan f-et az n-edfokú m α -val: f(x) = m α (x) q(x) + (a 0 + a 1 x + + a n 1 x n 1 ).

38 ELŽZETES ISMERETEK Behelyettesítve α-t, és felhasználva, hogy m α -nak gyöke α kapjuk, hogy f(α) = a 0 + a 1 α + + a n 1 α n 1 T. Tehát α minden polinomja benne van T -ben, vagyis összeadásra, kivonásra és szorzásra zárt. Tehát T gy r. (Ez egyébként abból is kijön, hogy T a ϕ α : K[x] L, f f (α) homomorzmus képe L-ben, és így annak kommutatív részgy r je.) Belátjuk, hogy T test, ehhez az inverz megtalálására van szükségünk. Legyen g(x) = a 0 + a 1 x + + a n 1 x n 1 egy nemnulla polinom, keressük g(α) 1 -t. Az ötlet ismét az, hogy meghatározzuk az (m α, g) kitüntetett közös osztót. Most m α irreducibilis, deg g < < deg m α, tehát a kitüntetett közös osztó 1. S t, az euklideszi algoritmus segítségével találhatunk olyan u, v K[x] polinomokat, hogy u(x) m α (x) + v(x) g(x) = 1. Helyettesítsünk α-t. Ekkor m α (α) = 0 miatt v(α) g(α) = 1 adódik. Tehát v(α) = g(α) 1, és v(α) T, hiszen T éppen α polinomjaiból áll. Tehát T valóban test. Belátjuk, hogy T = K(α). Mivel K T és α T, ezért K(α) T. Másrészt K K(α), α K(α), és K(α) zárt az összeadásra, kivonásra és a szorzásra, tehát α összes K-együtthatós polinomjának is K(α)-ban kell lennie. Ebb l T K(α), vagyis T = K(α). Hiányzik még annak az igazolása, hogy minden T -beli elem egyértelm en írható fel α-nak legfeljebb (n 1)-edfokú polinomjaként. Tegyük fel, hogy vannak a 0, a 1,..., a n 1, b 0, b 1,..., b n 1 K, melyekre a 0 + a 1 α + + a n 1 α n 1 = b 0 + b 1 α + + b n 1 α n 1.

1.4 Testelmélet 39 Ebb l (a 0 b 0 ) + (a 1 b 1 )α + + (a n 1 b n 1 )α n 1 = 0. Legyen most f(x) = (a 0 b 0 ) + (a 1 b 1 )x + + (a n 1 b n 1 )x n 1 K[x]. Tehát f egy legfeljebb (n 1)-edfokú polinom, melyre f(α) = 0, vagyis m α f. De m α foka n, ami csak úgy lehet, ha f(x) = 0, azaz f minden együtthatója 0. Ebb l a 0 = b 0, a 1 = b 1,..., a n 1 = b n 1 adódik. 1.4.17. tétel. Legyen K L testb vítés, α L transzcendens K felett. Ekkor K(α) = { f(α) g(α) } : f, g K[x], g(x) 0, és az el állítás abban az értelemben egyértelm, hogy f(α) g(α) = h(α) k(α) f(x)k(x) = g(x)h(x) a K[x] polinomgy r ben. Bizonyítás. A tétel bizonyítását a vizsgán nem kell tudni. 1.4.18. példa. Q(π)-ben π 2 + 3π + 2 π 2 + π = π4 + 2π 3 = π + 2 π 4 π π + 1 2π 3. 1.4.3. B vítés több elemmel 1.4.19. deníció. Legyen K L testb vítés, α, β,... L elemek. Ekkor K(α, β,... ) a legsz kebb olyan részteste L-nek, mely tartalmazza K-t, és az α, β,... elemek mindegyikét. 1.4.20. házi feladat. Igazoljuk, hogy K(α, β,... ) létezik, és pontosan az α, β,... elemek összes többhatározatlanú polinomjának hányadosaként el álló L-beli elemek vannak benne. 1.4.21. példa. Mi lesz Q ( 2, 3 )? A korábbiak alapján azt gondolhatjuk, hogy ( ) (1.3) Q 2, 3 = { a + b 2 + c 3 + d } 6 : a, b, c, d Q.