Megszerzett pontszám:
|
|
- Éva Soósné
- 8 évvel ezelőtt
- Látták:
Átírás
1 A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: március 9. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti Tehetség Program támogatja.
2 Kedves Versenyzők! Örömmel köszöntük Benneteket a 2015/16. évi 4 korszak viadala versenyen! Az egyes fordulók során a csaptok kalauza a korábbi években megismert család: az építész apuka, Adalbert, biokémia kutató mama, Wilhelmina, bakfis korba lépett lányuk, Eufrozina, és a kisöccse, Martin. Míg tavaly Eufrozina különleges iránytűjének köszönhetően a 4 égtáj épített és természeti csodáival ismerkedhetett meg a család és a versenyzők, idén Martin kotnyeleskedő csínytevéseinek köszönhető a kalandos időutazás. Martin nagyon szeretett házuk padlásán felfedezőset játszani. Utoljára e hét elején, egy porral lepett nagy ládára lelt, amin egy címke volt: Soha ne nyisd ki! Apa. Kevés nagyszerűbb dolog van, mint nem szótfogadni. Este kipirult arccal, lelkesen mutatta meg Martin édesapjának az új felfedezését, a ládában talált különös szerkezetet, mire Adalbert elfehéredve csak ennyit kiáltott: Az Időgép! A következő pillanatban Martin, Adalbert, Eufrozina, Wilhelmina, sőt még kis kedvenceik, az aranyhörcsög pár is- ismeretlen tájon, ismeretlen korban találták magukat.
3 1. feladat Stonehenge /10 pont Martin kr.e ra tekerte az időgépet Amikor körülnéztek, hatalmas kőtömböket láttak maguk körül, szép köralakban elrendezve. Stonhenge! kiáltott Wilhelmina. Mekkorák lehetnek ezek a kőtömbök? töprengett Eufrozi. Milyen magasak lehetnek a belső kör kőtömbjei?... morfondírozott Eufrozi. A külsőket tudjuk apu azt olvasta, hogy 13 láb magasak kotyogta közbe Martin. Akkor ki tudom számolni! kiáltotta Eufrozi. Először megmérte a két kőtömb távolságát, ez 5 m 55 cm volt. Ezután kifelé szaladt a körből egészen addig, amíg a két kőtömb tetejét egy vonalban nem látta. Mérései szerint 677 cm-t távolodott a külső kőtömbtől. Erről a helyről a kőtömbök tetejét 28,4 alatt látta. Segítsetek kiszámolni Eufrozinak a kőtömb magasságát, ha tudjátok, hogy a kislány 154 cm magas! 2. feladat Gallok /10 pont Adalbert, Wilhelmina, Eufrozina és Martin elveszetten bolyongott erdőn-mezőn, kis falvak között. Végül egy útelágazáshoz értek. Olyan különleges tájon jártak, hogy valamennyien biztosak voltak benne, hogy ha itt helyes irányba mennek, újabb és újabb kalandok várnak rájuk. Az útelágazásnál egy csoport gall álldogált. Megmondanátok, hogy merre vezet az út Pannónia felé? szólította meg őket Adalbert. Három barátunk fog nektek válaszolni. Egyikük Őszintix, ő mindig igazat mond, bátran adhattok a szavára. Másikuk Füllentix, akik notórius hazudozó, mindig hazudik. Végül Tétovix, aki hol igazat mond, hol hazudik, soha nem lehet tudni, hogy éppen mi jár a fejében. Nektek persze nem áruljuk el, kit hogy hívnak. Egyelőre nevezzük három barátunkat IX-nek, PIX-nek és MIX-nek. Ha ki tudjátok találni, melyikük Őszintix, melyikük Füllentix és melyikük Tétovix, akkor tudni fogjátok, kitől kérjetek útbaigazítást, hogy helyes választ kapjatok. felelte a főnök. Adalbert mindőjüket megkérte, hogy egy-egy társának árulja el a valódi nevét MIX valódi neve Füllentix válaszolta IX IX valódi neve Őszintix állította PIX Én vagyok Tétovix szólt MIX Melyiküktől kérjenek útbaigazítást?
4 3. feladat Aquincum /10 pont A kis család gyönyörűen kiépített városban találta magát. Ez Aquincum, a jelentős pannoniai katonaváros! Számos építészeti tanulmányt olvastam róla! kiáltott Adalbert. Legyetek üdvözölve városunkban! Vitruvius vagyok, szintén építész. Engedjétek meg, hogy kalauzoljalak benneteket. sietett eléjük egy tógás férfi. A csatornába egy 12 m átmérőjű vízemelő kerékkel táplálják a vizet folyamatosan. A kerékre 72 db hordót szereltek fel egyenletes távolságokra, ezek merik a vizet a csatornába, ahogy forog a kerék. Aquincum városának vízellátását a közeli, 5 km-re fekvő patakokból látják el. Mint a Római Birodalom számos városában, Aquincumban is akvadukt biztosítja a vízellátást. A víz a boltívek feletti, 70 cm széles, 90 cm magas téglalap keresztmetszetű csatornában folyik a patakoktól a város felé. A várost akkor tudják folyamatosan ellátni vízzel, ha a csatornán percenként 315 l víz halad át. Milyen távol vannak egymástól a hordók? A hordók csonkakúp alakúak, alsó átmérőjük 35 cm, felső átmérőjük 27 cm, magasságuk 80 cm. Percenként legalább hány hordó tartalmát kell a csatornába önteni, hogy folyamatos legyen a vízellátás, ha a teli hordókból a víz 3,5%-a kiloccsan a forgás során? Mekkora fordulatszámmal kell forognia a keréknek a folyamatos vízellátás biztosítására?
5 4. feladat Mozaikok /10 pont A rómaiak előszeretettel díszítették házaik padlózatát, fürdőiket, templomaikat mozaikokkal. Az alábbi képeken olyan mozaikokat láthattok, amelyek kizárólag geometriai alakzatokból állnak. Készítsetek egy A4-es lapra mozaikot, amely különböző sokszögekből áll! Az alakzatokat és azok színét a tervezett mozaiknak megfelelően ti választhatjátok ki. Az értékelés szempontjai: egyediség, bonyolultság, ritmikusság, esztétikum. A mozaikot bármilyen technikával (rajzolva, ragasztva vagy számítógéppel, pl. a alkalmazással) készíthetitek. 5. feladat Számok és kultúrák Az ókori kultúrák mindegyike megalkotta a maga számírását. Az alábbiakban néhány példát láthattok: Az ókori görögök a számokat betűkkel jelölték, az ezresek jelölésére ugyanezeket a betűket használták, csak egy vesszőt tettek elé, a számokat balról jobbra írták. A maja fejszámok használatával 0-19-ig tudták a számokat jelölni. Ezután a huszasok száma és a 20 alatti számok jelöléséből kell összeolvasni a számot. pl. 3217=,γσιζ pl. 57=
6 A rómaiak számírását bizonyára ismeritek. Balról jobbra, az alábbi táblázatnak megfelelően helyezték egymás mellé a számokat jelző betűket. pl.: 4318=MMMMCCCXVIII A babiloniak a számok írására is ékírást használtak ig a függőleges ékek száma mutatja a szám értékét. a 10-et vízszintes ékkel jelölték ig a megfelelő számú vízszintes és függőleges ékkel jelölték a számokat. A 60 ismét egy függőleges ék, a 120 kettő, stb. Az egyiptomiak a számokat jobbról balra írták, a legnagyobb helyiérték állt az első helyen. Az 1, 10, 100, számokra külön jelölésük volt a többi számot ezek ismételt leírásával jelenítették meg. pl: 174= pl.: 1916=
7 Az ősi magyar törzsek a rovásírás jeleit használták a számok jelölésére is. A számokat jobbról balra írták. pl.: 1997=IIV XXXX IIIIV Töltsétek ki a táblázatot! mai görög római ωνϒ egyiptomi babilóniai magyar IIIV XXX IIV maja 6. feladat Minotaurusz A legenda szerint Minotauruszt, a félig ember-félig bika szörnyet a knosszoszi palota labirintusában tartották fogságban. Thézeusz athéni királyfi vakmerően nekivágott a labirintusnak, hogy megölje a szörnyet. Ariadné egy gombolyag fonalat adott neki, hogy a küzdelem után visszataláljon a napvilágra. Segítsetek Thézeusznak megtalálni a helyes utat, hogy eljusson a Minotauruszhoz! Melyik ajtón juthat át? Megtudjátok, ha mind a 6 koordinátarendszerbe berajzoljátok a hozzá tartozó egyenlőtlenségrendszer grafikus megoldását. A megoldás ponthalmazba eső ajtón át vezet az út!
8 Nyíl mutat arra a helyre, ahol Thézeusz bejuthat a Minotauroszhoz
9 7. feladat Olympia A család Olympiába érkezett, ahol éppen zajlottak a versenyek. Az ókori Olimpián 10 versenyszámban indultak a versenyzők: Futószámok: stadionfutás, kettős stadionfutás, hosszútávfutás és a fegyveres futás, amely a játékok befejező száma volt. Öttusa Küzdősportok: birkózás, ökölvívás, pankráció Lovasszámok: kocsiversenyek, lovaglóversenyek Mi is be szeretnék nevezni! nyafogott Eufrozina és Martin. Eufrozit már a bejáratnál elzavarták. Miért? Aki nem valamelyik görög város polgára, az csak 7 számban nevezhet! A kocsihajtók nem vehetnek részt a pankrációban, a hosszútávfutók nem indulhatnak öttusában! Szólt Martinhoz a szigorú versenybíró. Hány féle lehetősége volt Martinnak a nevezése összeállítására, ha mindenképpen részt akart venni a fegyveres futáson, és mind a négy versenytípusban indulni akart?
10 8. feladat Az elrejtett piramisok (A feladatot az Élményműhely fogalmazta) Adalbert és családja Egyiptomba érkezett. A hosszúra nyúlt utazás során egyszer csak Adalbert így szólt: Fraktálokról már hallottál, igaz? Vannak térbeli fraktálok is. Ilyen például az alább látható Sierpinski-tetraéder. Első lépésben a tetraéder közepéből eltávolítjuk az oktaédert, így négy kis szabályos tetraédert kapunk. Ezután a kisebb tetraéderek közepéből is eltávolítunk egy-egy oktaédert, és így tovább. El tudnátok képzelni és utána felépíteni egy hasonló szerkezetű fraktált nem háromszög, hanem négyszög alapú gúlákból (piramisokból)? Hány piramisból állna az első és hányból a második építmény? Számítsátok ki az első, négyszög alapú gúlákból álló test térfogatát, ha minden él 5 cm! Milyen alakzat lesz a középről kihagyott test?
Megszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 9. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 9. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2016. február 22. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését
RészletesebbenA NÉGY DIMENZIÓ TALÁNYAI OSZTÁLY 1.FORDULÓ KICSI/KÖZEL
A NÉGY DIMENZIÓ TALÁNYAI 9-10. OSZTÁLY 1.FORDULÓ KICSI/KÖZEL A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió,
RészletesebbenA NÉGY KORSZAK VIADALA 3-4. OSZTÁLY 1.FORDULÓ - ÓKOR
A NÉGY KORSZAK VIADALA 3-4. OSZTÁLY 1.FORDULÓ - ÓKOR A csapat neve: Iskolátok: _ Szerezhető pontszám: 75 pont Megszerzett pontszám: Beküldési határidő: 2016. február 22. Beküldési cím: Abacusan Stúdió,
RészletesebbenSzerezhető pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. május 13. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti
RészletesebbenSzerezhető pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenSzerezhető pontszám: Megszerzett pontszám: Beküldési határidő: 2016. március 17. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47.
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 17. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 60 pont Megszerzett pontszám: Beküldési határidő: 2016. április 20. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 65 pont Megszerzett pontszám: Beküldési határidő: 2016. április 20. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenA csapat neve: Iskolátok:
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként
RészletesebbenA csapat neve: Iskolátok:
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként
RészletesebbenMegszerzett pontszám:
- A csapat neve: Iskolátok: Szerezhető pontszám: 60 pont Megszerzett pontszám: Beküldési határidő: 2016. május 11. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 7. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenA csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenSzerezhető pontszám: Megszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenA csapat neve: Iskolátok: Szerezhető pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 85 pont Megszerzett pontszám: Beküldési határidő: 2016. május 13. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti
RészletesebbenA csapat neve: Iskolátok:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként
RészletesebbenA csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: május 22.
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. május 22. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. május 23. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként
RészletesebbenSzerezhető pontszám: Megszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenA csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: március 6.
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenSzerezhető pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2016. április 18. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését
Részletesebben2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont. Elért pontszám:
2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont Elért pontszám: Beküldési határidő: 2015.05.18. Eredmények közzététele: 2015.05.29. Beküldési cím: Abacusan Stúdió, 1193 Budapest
RészletesebbenTÖRTÉNELEM. XLI. Országos Komplex Tanulmányi Verseny. Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését.
XLI. Országos Komplex Tanulmányi Verseny TÖRTÉNELEM Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését. A csapat száma, neve: Arisztotelész Dunaújváros, 2016. június 3.-4. Törökné
Részletesebben835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető szám: 100 Megszerzett szám: Beküldési határidő: 2016. április 18. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti Tehetség
RészletesebbenKompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
RészletesebbenGeometriai feladatok, 9. évfolyam
Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32
RészletesebbenAjánlott szakmai jellegű feladatok
Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,
RészletesebbenBÁBEL - A 4 KORSZAK 5-6. OSZTÁLY 3.FORDULÓ KORAI ÚJKOR
BÁBEL - A 4 KORSZAK 5-6. OSZTÁLY 3.FORDULÓ KORAI ÚJKOR A csapat neve: Iskolátok: Szerezhető pontszám: 60 pont Megszerzett pontszám: Beküldési határidő: 2016. május 9. Beküldési cím: Abacusan Stúdió, 1193
RészletesebbenBor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...
RészletesebbenXLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika
7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,
RészletesebbenPLUSZ ügyességi versenyeken használt akadály típusok.
PLUSZ ügyességi versenyeken használt akadály típusok. A bója akadályok építhetők kicsi vagy nagy bójából, a labirintusban és a beékező és kiérkező bójakapuk csak kis bójából építhetők. Minden bója tetején
RészletesebbenTehát az A, C, D szabályosan közlekedik, a B nem szabályosan.
Jedlik korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 7. o. 017. március 01. 1. A következő sebességkorlátozó táblával találkoztunk. Az alábbi járművek közül melyik közlekedik szabályosan?
RészletesebbenA csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: május 22.
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. május 22. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel
RészletesebbenGeometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
RészletesebbenSorozatok határértéke VÉGTELEN SOROK
Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:
RészletesebbenBor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenKedves Gyerekek! Paks gyerekeknek című könyve. a Kincskereső Gyermekkönyvtárban,
Kedves Gyerekek! Közös városismereti barangolásra hívunk benneteket Fürgével és Görgivel. háromfős, 3., 4., és 5. osztályos csapatokat várunk játékunkra. Háromhetente új feladatlapot juttatunk el hozzátok,
RészletesebbenKoordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
RészletesebbenX. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:
1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)
Részletesebben1. Bevezetés a trigonometriába
1. Bevezetés a trigonometriába Ha egy háromszöget nagyítunk vagy kicsinyítünk, a szögei nem változnak. Az aránytartás következtében a megfelelőoldalak aránya szintén állandó. Ebből arra következtethetünk,
RészletesebbenVIII. Oxigén Kupa Erdei futóverseny sorozat 2014-2015
VIII. Oxigén Kupa Erdei futóverseny sorozat 2014-2015 V E R S E N Y K I Í R Á S A verseny fővédnöke:balczó ANDRÁSa Nemzet Sportolója A verseny célja: Versenyzés biztosítása közép- és hosszútávfutók, illetve
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenElérhető pontszám: 30 pont
MEGOLDÓKULCS: Elérhető pontszám: 30 pont Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-. 5.osztály DÖNTŐ 016.március 18. 1. Írj a számok közé megfelelő
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
RészletesebbenXLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika
6. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,
RészletesebbenFeladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.
RészletesebbenKoordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
RészletesebbenFeladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?
Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet
RészletesebbenAz ókori Hellász kialakulása. A görög polisz és Spárta
Az ókori Hellász kialakulása. A görög polisz és Spárta A LABIRINTUSTÓL A PANKRÁCIÓIG Javasolt feldolgozási idő: 30-40 perc Kr. e. 480-ban nézőként részt vettél az olimpián. Írj egy emlékeztető feljegyzést
Részletesebben. Számítsuk ki a megadott szög melletti befogó hosszát.
Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak
RészletesebbenMinden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.
1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen
RészletesebbenHáromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek
2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,
RészletesebbenPitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2
1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy
Részletesebben6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV
6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.
Részletesebben2. feladat. Olvasd el a könyv hátsó borítóját és töltsd ki az alábbi részletet!
Jelentkezési lap Név: Lakcím: Iskola: Osztály: E-mail cím: Iskola e-mail címe: Telefonszám: Kérjük, hogy minden mezőt tollal és olvasható nyomtatott betűkkel töltsetek ki! Az alábbi linken Finy Petra rövid
RészletesebbenA 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása. II. (programozás) kategória
Oktatási Hivatal A 20/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében
RészletesebbenPróbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
RészletesebbenKérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?
Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál
RészletesebbenÉrettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
Részletesebben2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont. Elért pontszám:
2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont Elért pontszám: Beküldési határidő: 2015.05.18. Eredmények közzététele: 2015.05.29. Beküldési cím: Abacusan Stúdió, 1193 Budapest
RészletesebbenSzámológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:
Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink
RészletesebbenHasonlóság 10. évfolyam
Hasonlóság Definíció: A geometriai transzformációk olyan függvények, melyek értelmezési tartománya, és értékkészlete is ponthalmaz. Definíció: Két vagy több geometriai transzformációt egymás után is elvégezhetünk.
RészletesebbenHEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?
HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány
Részletesebbena b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!
1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,
RészletesebbenLELTÁROZD SZÍNEZÉSSEL A FELADATOKAT!
LELTÁROZD SZÍNEZÉSSEL A FELADATOKAT! (Segítség a megoldáshoz: zöld: 10 db, piros: 1 db, lila: 5 db, kék: 2 db) 1 LÉPJ BE! Kedves Tanítványom! Meghívlak különleges játékkészítő műhelyembe, ahová két tanítványom
RészletesebbenA csapat neve: Iskolátok:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként
RészletesebbenBOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2017. NOVEMBER 18.) 3. osztály
3. osztály Két polcon összesen 72 könyv található. Miután az első polcról a másodikra áttettünk 14 könyvet, mindkét polcon ugyanannyi könyv lett. Hány könyv volt eredetileg az első polcon? Helyezzetek
Részletesebben1. hét 06.20-24. MESÉL AZ ERDŐ
1. hét 06.20-24. MESÉL AZ ERDŐ A népmesék állatszereplői kelnek életre a játékok során. A kalandtúrákon a gyerekek, játékos nyomozások során ismerik meg az állatokat. A egyszerű jelmezek, kellékek és díszletek
RészletesebbenSzerezhető pontszám: Megszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a
RészletesebbenMegszerzett pontszám:
A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. május 23. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként
RészletesebbenHASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
RészletesebbenKörös-Maros Nemzeti Park Igazgatóság TÚZOK TUSA Levelező forduló FELADATLAP
Körös-Maros Nemzeti Park Igazgatóság TÚZOK TUSA 2017 Levelező forduló FELADATLAP Kedves Versenyzők! Szeretettel köszöntünk benneteket az idei Túzok Tusa vetélkedőn, mely hagyománnyá vált verseny elnevezését
RészletesebbenMATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 006. május 9. KÖZÉPSZINT I. 1) Egy háromszög belső szögeinek aránya :5:11. Hány fokos a legkisebb szög? A legkisebb szög o 0. Összesen: pont ) Egy számtani sorozat első eleme 8, differenciája.
Részletesebben1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
RészletesebbenEVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1
CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...
RészletesebbenSzerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es
RészletesebbenMatematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult.
7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) Gyömrő, 2017. június 2. Készítette: Szafiánné Csécsei
Részletesebbena) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...
Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I
RészletesebbenFELVÉTELI FELADATOK 4. osztályosok számára B-2 feladatlap
FELVÉTELI FELADATOK 4. osztályosok számára B- feladatlap 001. február Név:.. Születési év: hó:. nap:. Kedves Felvételiző! A feladatlap megoldási ideje: 45 perc Zsebszámológépet nem használhatsz! Mivel
RészletesebbenPISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
Részletesebbenes tanév 1-2. osztályos kategória
ISKOLA NEVE:. CSAPAT NEVE: TELEPÜLÉS:. 2016-2017-es tanév 1-2. osztályos kategória 1. feladat Anna új távcsöve Anna kedvenc mesekönyvében szerepel egy jó tündér, aki egy távcső segítségével igazítja útba
Részletesebben48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.
8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük
RészletesebbenKépzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag
Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,
RészletesebbenIsmétlő feladatsor: 10.A/I.
Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!
RészletesebbenA Sport XXI. Alapprogram teremverseny Közép-Magyarország régió január 28., Gödöllő, SZIE Sportcsarnok
A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió 201 január 2, Gödöllő, SZIE Sportcsarnok A verseny célja Regionális szinten, egész éven keresztül tartó motivációt és versenylehetőséget biztosítani
RészletesebbenPróba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
RészletesebbenFeladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Részletesebbentérképet, és válaszolj a kérdésekre római számokkal!
A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe
RészletesebbenA Sport XXI. Alapprogram teremverseny Közép-Magyarország régió december 2., Gödöllő, SZIE Sportcsarnok
A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió 201 december, Gödöllő, SZIE Sportcsarnok A verseny célja Regionális szinten, egész éven keresztül tartó motivációt és versenylehetőséget biztosítani
RészletesebbenBoronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
Részletesebben2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.
Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.
RészletesebbenCsukás István A LEGKISEBB UGRIFÜLES. Könyv moly kép ző Ki adó
Csukás István A LEGKISEBB UGRIFÜLES Könyv moly kép ző Ki adó Hol volt, hol nem volt, volt egyszer egy nyúl. Vagyis az az igazság, hogy ott, azon a bizonyos réten több nyúl is volt; hogy egészen pontosak
RészletesebbenMagyarország évi Serdülő Csapatbajnoksága
Magyarország 2019. évi Serdülő Csapatbajnoksága A verseny célja: 1. Versenyzési lehetőség biztosítása serdülő és újonc atléták részére. 2. A serdülő és újonc atléták pozitív élményhez segítése. 3. A Sport
RészletesebbenEgyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
RészletesebbenAz Igazi Ajándék. Máté és a sárkány. Táblácska Megismételhetetlen alkalmakra copyright
Az Igazi Ajándék Máté és a sárkány Táblácska Megismételhetetlen alkalmakra copyright 2011-2013 www.tablacska.hu 1 Egyszer volt, hol nem volt, még az Óperenciás tengeren is túl, még az üveghegyen is túl,
Részletesebben