Megszerzett pontszám:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Megszerzett pontszám:"

Átírás

1 A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: március 9. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti Tehetség Program támogatja.

2 Kedves Versenyzők! Örömmel köszöntük Benneteket a 2015/16. évi 4 korszak viadala versenyen! Az egyes fordulók során a csaptok kalauza a korábbi években megismert család: az építész apuka, Adalbert, biokémia kutató mama, Wilhelmina, bakfis korba lépett lányuk, Eufrozina, és a kisöccse, Martin. Míg tavaly Eufrozina különleges iránytűjének köszönhetően a 4 égtáj épített és természeti csodáival ismerkedhetett meg a család és a versenyzők, idén Martin kotnyeleskedő csínytevéseinek köszönhető a kalandos időutazás. Martin nagyon szeretett házuk padlásán felfedezőset játszani. Utoljára e hét elején, egy porral lepett nagy ládára lelt, amin egy címke volt: Soha ne nyisd ki! Apa. Kevés nagyszerűbb dolog van, mint nem szótfogadni. Este kipirult arccal, lelkesen mutatta meg Martin édesapjának az új felfedezését, a ládában talált különös szerkezetet, mire Adalbert elfehéredve csak ennyit kiáltott: Az Időgép! A következő pillanatban Martin, Adalbert, Eufrozina, Wilhelmina, sőt még kis kedvenceik, az aranyhörcsög pár is- ismeretlen tájon, ismeretlen korban találták magukat.

3 1. feladat Stonehenge /10 pont Martin kr.e ra tekerte az időgépet Amikor körülnéztek, hatalmas kőtömböket láttak maguk körül, szép köralakban elrendezve. Stonhenge! kiáltott Wilhelmina. Mekkorák lehetnek ezek a kőtömbök? töprengett Eufrozi. Milyen magasak lehetnek a belső kör kőtömbjei?... morfondírozott Eufrozi. A külsőket tudjuk apu azt olvasta, hogy 13 láb magasak kotyogta közbe Martin. Akkor ki tudom számolni! kiáltotta Eufrozi. Először megmérte a két kőtömb távolságát, ez 5 m 55 cm volt. Ezután kifelé szaladt a körből egészen addig, amíg a két kőtömb tetejét egy vonalban nem látta. Mérései szerint 677 cm-t távolodott a külső kőtömbtől. Erről a helyről a kőtömbök tetejét 28,4 alatt látta. Segítsetek kiszámolni Eufrozinak a kőtömb magasságát, ha tudjátok, hogy a kislány 154 cm magas! 2. feladat Gallok /10 pont Adalbert, Wilhelmina, Eufrozina és Martin elveszetten bolyongott erdőn-mezőn, kis falvak között. Végül egy útelágazáshoz értek. Olyan különleges tájon jártak, hogy valamennyien biztosak voltak benne, hogy ha itt helyes irányba mennek, újabb és újabb kalandok várnak rájuk. Az útelágazásnál egy csoport gall álldogált. Megmondanátok, hogy merre vezet az út Pannónia felé? szólította meg őket Adalbert. Három barátunk fog nektek válaszolni. Egyikük Őszintix, ő mindig igazat mond, bátran adhattok a szavára. Másikuk Füllentix, akik notórius hazudozó, mindig hazudik. Végül Tétovix, aki hol igazat mond, hol hazudik, soha nem lehet tudni, hogy éppen mi jár a fejében. Nektek persze nem áruljuk el, kit hogy hívnak. Egyelőre nevezzük három barátunkat IX-nek, PIX-nek és MIX-nek. Ha ki tudjátok találni, melyikük Őszintix, melyikük Füllentix és melyikük Tétovix, akkor tudni fogjátok, kitől kérjetek útbaigazítást, hogy helyes választ kapjatok. felelte a főnök. Adalbert mindőjüket megkérte, hogy egy-egy társának árulja el a valódi nevét MIX valódi neve Füllentix válaszolta IX IX valódi neve Őszintix állította PIX Én vagyok Tétovix szólt MIX Melyiküktől kérjenek útbaigazítást?

4 3. feladat Aquincum /10 pont A kis család gyönyörűen kiépített városban találta magát. Ez Aquincum, a jelentős pannoniai katonaváros! Számos építészeti tanulmányt olvastam róla! kiáltott Adalbert. Legyetek üdvözölve városunkban! Vitruvius vagyok, szintén építész. Engedjétek meg, hogy kalauzoljalak benneteket. sietett eléjük egy tógás férfi. A csatornába egy 12 m átmérőjű vízemelő kerékkel táplálják a vizet folyamatosan. A kerékre 72 db hordót szereltek fel egyenletes távolságokra, ezek merik a vizet a csatornába, ahogy forog a kerék. Aquincum városának vízellátását a közeli, 5 km-re fekvő patakokból látják el. Mint a Római Birodalom számos városában, Aquincumban is akvadukt biztosítja a vízellátást. A víz a boltívek feletti, 70 cm széles, 90 cm magas téglalap keresztmetszetű csatornában folyik a patakoktól a város felé. A várost akkor tudják folyamatosan ellátni vízzel, ha a csatornán percenként 315 l víz halad át. Milyen távol vannak egymástól a hordók? A hordók csonkakúp alakúak, alsó átmérőjük 35 cm, felső átmérőjük 27 cm, magasságuk 80 cm. Percenként legalább hány hordó tartalmát kell a csatornába önteni, hogy folyamatos legyen a vízellátás, ha a teli hordókból a víz 3,5%-a kiloccsan a forgás során? Mekkora fordulatszámmal kell forognia a keréknek a folyamatos vízellátás biztosítására?

5 4. feladat Mozaikok /10 pont A rómaiak előszeretettel díszítették házaik padlózatát, fürdőiket, templomaikat mozaikokkal. Az alábbi képeken olyan mozaikokat láthattok, amelyek kizárólag geometriai alakzatokból állnak. Készítsetek egy A4-es lapra mozaikot, amely különböző sokszögekből áll! Az alakzatokat és azok színét a tervezett mozaiknak megfelelően ti választhatjátok ki. Az értékelés szempontjai: egyediség, bonyolultság, ritmikusság, esztétikum. A mozaikot bármilyen technikával (rajzolva, ragasztva vagy számítógéppel, pl. a alkalmazással) készíthetitek. 5. feladat Számok és kultúrák Az ókori kultúrák mindegyike megalkotta a maga számírását. Az alábbiakban néhány példát láthattok: Az ókori görögök a számokat betűkkel jelölték, az ezresek jelölésére ugyanezeket a betűket használták, csak egy vesszőt tettek elé, a számokat balról jobbra írták. A maja fejszámok használatával 0-19-ig tudták a számokat jelölni. Ezután a huszasok száma és a 20 alatti számok jelöléséből kell összeolvasni a számot. pl. 3217=,γσιζ pl. 57=

6 A rómaiak számírását bizonyára ismeritek. Balról jobbra, az alábbi táblázatnak megfelelően helyezték egymás mellé a számokat jelző betűket. pl.: 4318=MMMMCCCXVIII A babiloniak a számok írására is ékírást használtak ig a függőleges ékek száma mutatja a szám értékét. a 10-et vízszintes ékkel jelölték ig a megfelelő számú vízszintes és függőleges ékkel jelölték a számokat. A 60 ismét egy függőleges ék, a 120 kettő, stb. Az egyiptomiak a számokat jobbról balra írták, a legnagyobb helyiérték állt az első helyen. Az 1, 10, 100, számokra külön jelölésük volt a többi számot ezek ismételt leírásával jelenítették meg. pl: 174= pl.: 1916=

7 Az ősi magyar törzsek a rovásírás jeleit használták a számok jelölésére is. A számokat jobbról balra írták. pl.: 1997=IIV XXXX IIIIV Töltsétek ki a táblázatot! mai görög római ωνϒ egyiptomi babilóniai magyar IIIV XXX IIV maja 6. feladat Minotaurusz A legenda szerint Minotauruszt, a félig ember-félig bika szörnyet a knosszoszi palota labirintusában tartották fogságban. Thézeusz athéni királyfi vakmerően nekivágott a labirintusnak, hogy megölje a szörnyet. Ariadné egy gombolyag fonalat adott neki, hogy a küzdelem után visszataláljon a napvilágra. Segítsetek Thézeusznak megtalálni a helyes utat, hogy eljusson a Minotauruszhoz! Melyik ajtón juthat át? Megtudjátok, ha mind a 6 koordinátarendszerbe berajzoljátok a hozzá tartozó egyenlőtlenségrendszer grafikus megoldását. A megoldás ponthalmazba eső ajtón át vezet az út!

8 Nyíl mutat arra a helyre, ahol Thézeusz bejuthat a Minotauroszhoz

9 7. feladat Olympia A család Olympiába érkezett, ahol éppen zajlottak a versenyek. Az ókori Olimpián 10 versenyszámban indultak a versenyzők: Futószámok: stadionfutás, kettős stadionfutás, hosszútávfutás és a fegyveres futás, amely a játékok befejező száma volt. Öttusa Küzdősportok: birkózás, ökölvívás, pankráció Lovasszámok: kocsiversenyek, lovaglóversenyek Mi is be szeretnék nevezni! nyafogott Eufrozina és Martin. Eufrozit már a bejáratnál elzavarták. Miért? Aki nem valamelyik görög város polgára, az csak 7 számban nevezhet! A kocsihajtók nem vehetnek részt a pankrációban, a hosszútávfutók nem indulhatnak öttusában! Szólt Martinhoz a szigorú versenybíró. Hány féle lehetősége volt Martinnak a nevezése összeállítására, ha mindenképpen részt akart venni a fegyveres futáson, és mind a négy versenytípusban indulni akart?

10 8. feladat Az elrejtett piramisok (A feladatot az Élményműhely fogalmazta) Adalbert és családja Egyiptomba érkezett. A hosszúra nyúlt utazás során egyszer csak Adalbert így szólt: Fraktálokról már hallottál, igaz? Vannak térbeli fraktálok is. Ilyen például az alább látható Sierpinski-tetraéder. Első lépésben a tetraéder közepéből eltávolítjuk az oktaédert, így négy kis szabályos tetraédert kapunk. Ezután a kisebb tetraéderek közepéből is eltávolítunk egy-egy oktaédert, és így tovább. El tudnátok képzelni és utána felépíteni egy hasonló szerkezetű fraktált nem háromszög, hanem négyszög alapú gúlákból (piramisokból)? Hány piramisból állna az első és hányból a második építmény? Számítsátok ki az első, négyszög alapú gúlákból álló test térfogatát, ha minden él 5 cm! Milyen alakzat lesz a középről kihagyott test?

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 9. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 9. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2016. február 22. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését

Részletesebben

A NÉGY DIMENZIÓ TALÁNYAI OSZTÁLY 1.FORDULÓ KICSI/KÖZEL

A NÉGY DIMENZIÓ TALÁNYAI OSZTÁLY 1.FORDULÓ KICSI/KÖZEL A NÉGY DIMENZIÓ TALÁNYAI 9-10. OSZTÁLY 1.FORDULÓ KICSI/KÖZEL A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió,

Részletesebben

A NÉGY KORSZAK VIADALA 3-4. OSZTÁLY 1.FORDULÓ - ÓKOR

A NÉGY KORSZAK VIADALA 3-4. OSZTÁLY 1.FORDULÓ - ÓKOR A NÉGY KORSZAK VIADALA 3-4. OSZTÁLY 1.FORDULÓ - ÓKOR A csapat neve: Iskolátok: _ Szerezhető pontszám: 75 pont Megszerzett pontszám: Beküldési határidő: 2016. február 22. Beküldési cím: Abacusan Stúdió,

Részletesebben

Szerezhető pontszám:

Szerezhető pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. május 13. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti

Részletesebben

Szerezhető pontszám:

Szerezhető pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: 2016. március 17. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47.

Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: 2016. március 17. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 17. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 60 pont Megszerzett pontszám: Beküldési határidő: 2016. április 20. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 65 pont Megszerzett pontszám: Beküldési határidő: 2016. április 20. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

A csapat neve: Iskolátok:

A csapat neve: Iskolátok: A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként

Részletesebben

A csapat neve: Iskolátok:

A csapat neve: Iskolátok: A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: - A csapat neve: Iskolátok: Szerezhető pontszám: 60 pont Megszerzett pontszám: Beküldési határidő: 2016. május 11. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 80 pont Megszerzett pontszám: Beküldési határidő: 2016. március 7. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám:

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

Szerezhető pontszám: Megszerzett pontszám:

Szerezhető pontszám: Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

A csapat neve: Iskolátok: Szerezhető pontszám:

A csapat neve: Iskolátok: Szerezhető pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 85 pont Megszerzett pontszám: Beküldési határidő: 2016. május 13. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti

Részletesebben

A csapat neve: Iskolátok:

A csapat neve: Iskolátok: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként

Részletesebben

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: május 22.

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: május 22. A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. május 22. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. május 23. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként

Részletesebben

Szerezhető pontszám: Megszerzett pontszám:

Szerezhető pontszám: Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: március 6.

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: március 6. A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. március 6. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

Szerezhető pontszám:

Szerezhető pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2016. április 18. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését

Részletesebben

2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont. Elért pontszám:

2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont. Elért pontszám: 2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont Elért pontszám: Beküldési határidő: 2015.05.18. Eredmények közzététele: 2015.05.29. Beküldési cím: Abacusan Stúdió, 1193 Budapest

Részletesebben

TÖRTÉNELEM. XLI. Országos Komplex Tanulmányi Verseny. Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését.

TÖRTÉNELEM. XLI. Országos Komplex Tanulmányi Verseny. Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését. XLI. Országos Komplex Tanulmányi Verseny TÖRTÉNELEM Ha meg akarsz érteni valamit, figyeld a kezdetét és kövesd a fejlődését. A csapat száma, neve: Arisztotelész Dunaújváros, 2016. június 3.-4. Törökné

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető szám: 100 Megszerzett szám: Beküldési határidő: 2016. április 18. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a Nemzeti Tehetség

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

BÁBEL - A 4 KORSZAK 5-6. OSZTÁLY 3.FORDULÓ KORAI ÚJKOR

BÁBEL - A 4 KORSZAK 5-6. OSZTÁLY 3.FORDULÓ KORAI ÚJKOR BÁBEL - A 4 KORSZAK 5-6. OSZTÁLY 3.FORDULÓ KORAI ÚJKOR A csapat neve: Iskolátok: Szerezhető pontszám: 60 pont Megszerzett pontszám: Beküldési határidő: 2016. május 9. Beküldési cím: Abacusan Stúdió, 1193

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,

Részletesebben

PLUSZ ügyességi versenyeken használt akadály típusok.

PLUSZ ügyességi versenyeken használt akadály típusok. PLUSZ ügyességi versenyeken használt akadály típusok. A bója akadályok építhetők kicsi vagy nagy bójából, a labirintusban és a beékező és kiérkező bójakapuk csak kis bójából építhetők. Minden bója tetején

Részletesebben

Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan.

Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan. Jedlik korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 7. o. 017. március 01. 1. A következő sebességkorlátozó táblával találkoztunk. Az alábbi járművek közül melyik közlekedik szabályosan?

Részletesebben

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: május 22.

A csapat neve: Iskolátok: Szerezhető pontszám: Megszerzett pontszám: Beküldési határidő: május 22. A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2017. május 22. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kedves Versenyzők! Örömmel

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Sorozatok határértéke VÉGTELEN SOROK

Sorozatok határértéke VÉGTELEN SOROK Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:

Részletesebben

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

Kedves Gyerekek! Paks gyerekeknek című könyve. a Kincskereső Gyermekkönyvtárban,

Kedves Gyerekek! Paks gyerekeknek című könyve. a Kincskereső Gyermekkönyvtárban, Kedves Gyerekek! Közös városismereti barangolásra hívunk benneteket Fürgével és Görgivel. háromfős, 3., 4., és 5. osztályos csapatokat várunk játékunkra. Háromhetente új feladatlapot juttatunk el hozzátok,

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük:

X. PANGEA Matematika Verseny II. forduló 10. évfolyam. 1. Az b matematikai műveletet a következőképpen értelmezzük: 1. Az a @ b matematikai műveletet a következőképpen értelmezzük: @ a a b b, feltéve, hogy a 0. a Melyik állítás igaz a P és Q mennyiségekre? P = ((2 @ 1) @ (1 @ 2)) Q = ((7 @ 8) @ (8 @ 7)) A) P > Q B)

Részletesebben

1. Bevezetés a trigonometriába

1. Bevezetés a trigonometriába 1. Bevezetés a trigonometriába Ha egy háromszöget nagyítunk vagy kicsinyítünk, a szögei nem változnak. Az aránytartás következtében a megfelelőoldalak aránya szintén állandó. Ebből arra következtethetünk,

Részletesebben

VIII. Oxigén Kupa Erdei futóverseny sorozat 2014-2015

VIII. Oxigén Kupa Erdei futóverseny sorozat 2014-2015 VIII. Oxigén Kupa Erdei futóverseny sorozat 2014-2015 V E R S E N Y K I Í R Á S A verseny fővédnöke:balczó ANDRÁSa Nemzet Sportolója A verseny célja: Versenyzés biztosítása közép- és hosszútávfutók, illetve

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Elérhető pontszám: 30 pont

Elérhető pontszám: 30 pont MEGOLDÓKULCS: Elérhető pontszám: 30 pont Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-. 5.osztály DÖNTŐ 016.március 18. 1. Írj a számok közé megfelelő

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika 6. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

Az ókori Hellász kialakulása. A görög polisz és Spárta

Az ókori Hellász kialakulása. A görög polisz és Spárta Az ókori Hellász kialakulása. A görög polisz és Spárta A LABIRINTUSTÓL A PANKRÁCIÓIG Javasolt feldolgozási idő: 30-40 perc Kr. e. 480-ban nézőként részt vettél az olimpián. Írj egy emlékeztető feljegyzést

Részletesebben

. Számítsuk ki a megadott szög melletti befogó hosszát.

. Számítsuk ki a megadott szög melletti befogó hosszát. Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak

Részletesebben

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont. 1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV 6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.

Részletesebben

2. feladat. Olvasd el a könyv hátsó borítóját és töltsd ki az alábbi részletet!

2. feladat. Olvasd el a könyv hátsó borítóját és töltsd ki az alábbi részletet! Jelentkezési lap Név: Lakcím: Iskola: Osztály: E-mail cím: Iskola e-mail címe: Telefonszám: Kérjük, hogy minden mezőt tollal és olvasható nyomtatott betűkkel töltsetek ki! Az alábbi linken Finy Petra rövid

Részletesebben

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása. II. (programozás) kategória

A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása. II. (programozás) kategória Oktatási Hivatal A 20/2011 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának megoldása II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében

Részletesebben

Próbaérettségi feladatsor_b NÉV: osztály Elért pont:

Próbaérettségi feladatsor_b NÉV: osztály Elért pont: Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög

Részletesebben

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya? Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont. Elért pontszám:

2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont. Elért pontszám: 2015.04.29 05.18. Csapat neve: Iskola neve: Elérhető pontszám: 60 pont Elért pontszám: Beküldési határidő: 2015.05.18. Eredmények közzététele: 2015.05.29. Beküldési cím: Abacusan Stúdió, 1193 Budapest

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

Hasonlóság 10. évfolyam

Hasonlóság 10. évfolyam Hasonlóság Definíció: A geometriai transzformációk olyan függvények, melyek értelmezési tartománya, és értékkészlete is ponthalmaz. Definíció: Két vagy több geometriai transzformációt egymás után is elvégezhetünk.

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! 1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,

Részletesebben

LELTÁROZD SZÍNEZÉSSEL A FELADATOKAT!

LELTÁROZD SZÍNEZÉSSEL A FELADATOKAT! LELTÁROZD SZÍNEZÉSSEL A FELADATOKAT! (Segítség a megoldáshoz: zöld: 10 db, piros: 1 db, lila: 5 db, kék: 2 db) 1 LÉPJ BE! Kedves Tanítványom! Meghívlak különleges játékkészítő műhelyembe, ahová két tanítványom

Részletesebben

A csapat neve: Iskolátok:

A csapat neve: Iskolátok: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. március 12. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2017. NOVEMBER 18.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2017. NOVEMBER 18.) 3. osztály 3. osztály Két polcon összesen 72 könyv található. Miután az első polcról a másodikra áttettünk 14 könyvet, mindkét polcon ugyanannyi könyv lett. Hány könyv volt eredetileg az első polcon? Helyezzetek

Részletesebben

1. hét 06.20-24. MESÉL AZ ERDŐ

1. hét 06.20-24. MESÉL AZ ERDŐ 1. hét 06.20-24. MESÉL AZ ERDŐ A népmesék állatszereplői kelnek életre a játékok során. A kalandtúrákon a gyerekek, játékos nyomozások során ismerik meg az állatokat. A egyszerű jelmezek, kellékek és díszletek

Részletesebben

Szerezhető pontszám: Megszerzett pontszám:

Szerezhető pontszám: Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 70 pont Megszerzett pontszám: Beküldési határidő: 2016. március 26. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. A verseny megrendezését a

Részletesebben

Megszerzett pontszám:

Megszerzett pontszám: A csapat neve: Iskolátok: Szerezhető pontszám: 100 pont Megszerzett pontszám: Beküldési határidő: 2018. május 23. Beküldési cím: Abacusan Stúdió, 1193 Budapest, Klapka u. 47. Kérjük, NE ajánlott levélként

Részletesebben

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm

HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x

Részletesebben

Körös-Maros Nemzeti Park Igazgatóság TÚZOK TUSA Levelező forduló FELADATLAP

Körös-Maros Nemzeti Park Igazgatóság TÚZOK TUSA Levelező forduló FELADATLAP Körös-Maros Nemzeti Park Igazgatóság TÚZOK TUSA 2017 Levelező forduló FELADATLAP Kedves Versenyzők! Szeretettel köszöntünk benneteket az idei Túzok Tusa vetélkedőn, mely hagyománnyá vált verseny elnevezését

Részletesebben

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. május 9. KÖZÉPSZINT I. 1) Egy háromszög belső szögeinek aránya :5:11. Hány fokos a legkisebb szög? A legkisebb szög o 0. Összesen: pont ) Egy számtani sorozat első eleme 8, differenciája.

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1

EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a Test 1 CENTRUL NAŢIONAL DE EVALUARE ŞI EXAMINARE EVALUARE NAŢIONALĂ LA FINALUL CLASEI a IV-a 2014 Test 1 Matematică pentru elevii de la şcolile şi secţiile cu predare în limba maghiară Judeţul/sectorul... Localitatea...

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es

Részletesebben

Matematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult.

Matematika. Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) Gyömrő, 2017. június 2. Készítette: Szafiánné Csécsei

Részletesebben

a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...

a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?... Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I

Részletesebben

FELVÉTELI FELADATOK 4. osztályosok számára B-2 feladatlap

FELVÉTELI FELADATOK 4. osztályosok számára B-2 feladatlap FELVÉTELI FELADATOK 4. osztályosok számára B- feladatlap 001. február Név:.. Születési év: hó:. nap:. Kedves Felvételiző! A feladatlap megoldási ideje: 45 perc Zsebszámológépet nem használhatsz! Mivel

Részletesebben

PISA2000. Nyilvánosságra hozott feladatok matematikából

PISA2000. Nyilvánosságra hozott feladatok matematikából PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács

Részletesebben

es tanév 1-2. osztályos kategória

es tanév 1-2. osztályos kategória ISKOLA NEVE:. CSAPAT NEVE: TELEPÜLÉS:. 2016-2017-es tanév 1-2. osztályos kategória 1. feladat Anna új távcsöve Anna kedvenc mesekönyvében szerepel egy jó tündér, aki egy távcső segítségével igazítja útba

Részletesebben

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019.

48. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK = = 2019. 8. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló HETEDIK OSZTÁLY MEGOLDÁSOK 1. Bizonyítsd be, hogy 019 db egymást követő pozitív egész szám közül mindig kiválasztható 19 db úgy, hogy az összegük

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió január 28., Gödöllő, SZIE Sportcsarnok

A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió január 28., Gödöllő, SZIE Sportcsarnok A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió 201 január 2, Gödöllő, SZIE Sportcsarnok A verseny célja Regionális szinten, egész éven keresztül tartó motivációt és versenylehetőséget biztosítani

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

térképet, és válaszolj a kérdésekre római számokkal!

térképet, és válaszolj a kérdésekre római számokkal! A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe

Részletesebben

A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió december 2., Gödöllő, SZIE Sportcsarnok

A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió december 2., Gödöllő, SZIE Sportcsarnok A Sport XXI. Alapprogram teremverseny Közép-Magyarország régió 201 december, Gödöllő, SZIE Sportcsarnok A verseny célja Regionális szinten, egész éven keresztül tartó motivációt és versenylehetőséget biztosítani

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium

Boronkay György Műszaki Középiskola és Gimnázium Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.

Részletesebben

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú.

2004_02/10 Egy derékszögű trapéz alapjainak hossza a, illetve 2a. A rövidebb szára szintén a, a hosszabb b hosszúságú. Geometria háromszögek, négyszögek 2004_01/10 Az ABC háromszög C csúcsánál derékszög van. A derékszöget a CT és CD szakaszok három egyenlő részre osztják. A CT szakasz a háromszög egyik magassága is egyben.

Részletesebben

Csukás István A LEGKISEBB UGRIFÜLES. Könyv moly kép ző Ki adó

Csukás István A LEGKISEBB UGRIFÜLES. Könyv moly kép ző Ki adó Csukás István A LEGKISEBB UGRIFÜLES Könyv moly kép ző Ki adó Hol volt, hol nem volt, volt egyszer egy nyúl. Vagyis az az igazság, hogy ott, azon a bizonyos réten több nyúl is volt; hogy egészen pontosak

Részletesebben

Magyarország évi Serdülő Csapatbajnoksága

Magyarország évi Serdülő Csapatbajnoksága Magyarország 2019. évi Serdülő Csapatbajnoksága A verseny célja: 1. Versenyzési lehetőség biztosítása serdülő és újonc atléták részére. 2. A serdülő és újonc atléták pozitív élményhez segítése. 3. A Sport

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Az Igazi Ajándék. Máté és a sárkány. Táblácska Megismételhetetlen alkalmakra copyright

Az Igazi Ajándék. Máté és a sárkány. Táblácska Megismételhetetlen alkalmakra copyright Az Igazi Ajándék Máté és a sárkány Táblácska Megismételhetetlen alkalmakra copyright 2011-2013 www.tablacska.hu 1 Egyszer volt, hol nem volt, még az Óperenciás tengeren is túl, még az üveghegyen is túl,

Részletesebben