Belső égésű motorok I.
|
|
- Botond Aurél Soós
- 8 évvel ezelőtt
- Látták:
Átírás
1 Belső égésű motorok I. 4. Előadás Töltetcsere Belsőégésű Motorok Tanszék - Dr. Hanula Barna
2 Áramlástani ismeretek Bernoulli-törvény megértése: egy adott közegben, annak áramlásakor az áramvonal mentén a különböző energia összetevők összege állandó Tehát a közeg nyomását ha két komponensre bontjuk, statikus és dinamikus nyomásra, ezek összege állandó, közöttük fordított arányosság van Belsőégésű Motorok Tanszék - Dr. Hanula Barna 2
3 Áramlástani ismeretek Statikus nyomás: F nyomóerő és A felület hányadosa, irányfüggetlen (izotróp) és skalár mennyiség Dinamikus nyomás: (sebesség- vagy torlónyomás) a folyadék sebességéből származik 1 p din v 2 Hidrosztatikai nyomás: P g h Belsőégésű Motorok Tanszék - Dr. Hanula Barna 3
4 Áramlástani ismeretek Hidrosztatikai nyomás: a nehézségi erő miatt a folyadékok belsejében mért nyomás értéke a felszíntől h mélységben: p g h Ha a felszínre ható p 0 -al jelölt légköri nyomást is figyelembe vesszük, a nyomás értéke: p a p0 Ha az egyik nyomáskomponens megváltozik, (pl: megnő a dinamikus nyomás, azaz felgyorsul a közeg áramlása) akkor a másik komponens, a statikus nyomás lecsökken g h Belsőégésű Motorok Tanszék - Dr. Hanula Barna 4
5 Áramlástani ismeretek Belsőégésű Motorok Tanszék - Dr. Hanula Barna h g p v h g p v Az ideális folyadék stacionárius áramlására vonatkozó Bernoulliegyenlet azt mondja ki, hogy a folyadék egységnyi tömegére vonatkoztatott mozgási energiájának, nyomásból származó munkavégző képességének és helyzeti energiájának összege egy áramvonal mentén állandó. Ha az egyenlet mindkét oldalát a folyadék sűrűségével megszorozzuk, a Bernoulli-egyenlet nyomás dimenzióban felírt alakját kapjuk: h g p v h g p v
6 Áramlástani ismeretek Belsőégésű Motorok Tanszék - Dr. Hanula Barna 6
7 Áramlástani ismeretek Belsőégésű Motorok Tanszék - Dr. Hanula Barna 7
8 Áramlástani ismeretek Bernoulli-egyenlet összenyomhatatlan közegre (folyadékok) p gz v 2 2 áll. Bernoulli-egyenlet összenyomható közegre v 2 2 áll. ahol Ψ=az egységnyi tömegre eső helyzeti energia Belsőégésű Motorok Tanszék - Dr. Hanula Barna 8
9 Áramlástani ismeretek Kritikus sebesség: az áramló gáz sebessége nem tud hangsebesség fölé gyorsulni Hangsebesség alatti áramlás esetén, ha az áramlást meghatározó mennyiségekben változás áll be, az a gázon az áramlással ellentétes irányú nyomáshullámmal terjed tovább és az áramlás átáll az új feltételeknek megfelelően Belsőégésű Motorok Tanszék - Dr. Hanula Barna 9
10 Áramlástani ismeretek A kritikus sebesség elérésekor a fúvóka utáni változás nem képes visszahatni a torok előtti áramlásra, mert a hanghullámok nem képesek visszafelé haladni, mivel a gázsebesség nagyobb a hangénál Az áramlás sebességének továbbnövelése azonban így is lehetséges, Laval fúvóka alkalmazásával Belsőégésű Motorok Tanszék - Dr. Hanula Barna 10
11 Áramlástani ismeretek Laval-fúvóka: homokóra formájú csőszakasz, összenyomható gázok sebességének felgyorsítására használják Kis sebességnél a gázok viselkedése leírható a összenyomhatatlan folyadékokéhoz hasonlóan ->Bernoulli-egyenlet Nagy sebességnél nem hanyagolható el az összenyomhatóság ->energia egyenlet Belsőégésű Motorok Tanszék - Dr. Hanula Barna 11
12 Áramlástani ismeretek Először gőzturbinkákon alkalmazták, ma a rakétahajtóművek fontos kelléke A szűkülő-bővülő keresztmetszet lehetővé tette a hangsebességnél gyorsabb áramlást Belsőégésű Motorok Tanszék - Dr. Hanula Barna 12
13 Hangsebesség A hang terjedése különböző közegekben a rugók és golyók által felépített modellel: Az anyag molekuláit golyókkal, a köztük lévő kötést rugókkal helyettesítjük Itt az információ terjedése két dologtól függ: Golyók számától (valóságban közeg sűrűsége) - ha több, lassabb az áramlás Rugók keménységétől (anyag rugalmassági modulusa) keményebb rugókkal gyorsabb Belsőégésű Motorok Tanszék - Dr. Hanula Barna 13
14 Hangsebesség Belsőégésű Motorok Tanszék - Dr. Hanula Barna 14
15 Hangsebesség a gyakorlatban Levegőben, tengerszinten (15 C): 340 m/s m között (-57 C):295 m/s Oxigén: 316 m/s Víz: 1484 m/s Acél: 5920 m/s Alumínium: 6300 m/s Gyémánt: m/s Belsőégésű Motorok Tanszék - Dr. Hanula Barna 15
16 Hangsebesség Longitudinális hullámok (gázok és folyadékok): Belsőégésű Motorok Tanszék - Dr. Hanula Barna 16
17 Motorok - Töltetcsere Minden ciklus lefolyásához szükség van a megfelelő minőségű töltet megfelelő mennyiségben történő bejuttatására az égéstérbe Szívás ütem: levegő, vagy levegő-tüzelőanyag keverék beszívása a szívószelepen Kipufogó ütem: Kipufogógázok kitolása a kipufogószelepen keresztül Belsőégésű Motorok Tanszék - Dr. Hanula Barna 17
18 Fogalmak - ismétlés Elméleti töltet a hengerben: m Lth =ρvh Ténylegesen bejuttatott töltet Légnyelés: szívás ütem alatt ténylegesen bejuttatott töltet/elméleti töltet aránya Valós töltet: szelepek zárása után a hengerben maradt töltet Töltési fok: valós/elméleti töltet aránya Belsőégésű Motorok Tanszék - Dr. Hanula Barna 18
19 Töltetcsere A ténylegesen bejuttatott töltet külső keverékképzésű motoroknál az adott ütemhez szükséges üzemanyagmennyiséget is tartalmazza Kétütemű motoroknál fontos jellemző volt a valós töltet és a bejuttatott töltet aránya Belsőégésű Motorok Tanszék - Dr. Hanula Barna 19
20 Vezérlés A töltetcsere vezérlést igényel, mely lehet: Résvezérlés Vegyes vezérlés Szelep vezérlés Vezérlés módja szerint lehet Közvetlen Közvetett kombinált Belsőégésű Motorok Tanszék - Dr. Hanula Barna 20
21 A záróelem szerint: Tolattyús Tányérszelepes Forgószelepes A szelep állása szerint: Állószelepes vezérlés Függő szelepes vezérlés Szelepvezérlési rendszerek Nyitási zárási szöghelyzetek szerint Állandó paraméterű Változtatható paraméterű Működtetési mód szerint: Közvetett vezérlés: Bütyök emelőtőke emelőrúd himba szelep Közvetlen vezérlés: A kinematikai láncban csak egy emelőtőke van Belsőégésű Motorok Tanszék - Dr. Hanula Barna 21
22 Szelepvezérlés elrendezései Felül vezérelt felül szelepelt OHC Két vezérműtengelyes felül vezérelt felül szelepelt DOHC Oldalt vezérelt felül szelepelt OHV Felülvezérelt felül szelepelt CIH Oldalt vezérelt oldalt szelepelt SV Belsőégésű Motorok Tanszék - Dr. Hanula Barna 22
23 OHC elrendezés/dohc elrendezés Belsőégésű Motorok Tanszék - Dr. Hanula Barna 23
24 SV/CIH/OHV elrendezés Belsőégésű Motorok Tanszék - Dr. Hanula Barna 24
25 Töltetcsere kipufogóütem A kipufogószelep nyitásakor a hengerben és a kipufogócsőben lévő nyomás aránya a kritikusnál nagyobb, kezdeti fázisban az égéstermékek kritikus sebességgel áramolnak ki. Kiáramlási keresztmetszet fokozatosan nagyobbodik henger nyomásesése is fokozatos Belsőégésű Motorok Tanszék - Dr. Hanula Barna 25
26 Töltetcsere - kipufogóütem A kipufogás kezdeti fázisa nyomáseséssel jár Kipufogóvezetékben nyomáshullám keletkezik, amely nagysága a kipufogóvezeték ellenállásától függ A kezdeti fázis után az égéstermékek kitolása már kritikus nyomás alatt történik A kitolási fázis végén a szelepzárásból származó fojtásnövekedés miatt a hengernyomás emelkedik Belsőégésű Motorok Tanszék - Dr. Hanula Barna 26
27 A kipufogás nyomáslefutása Belsőégésű Motorok Tanszék - Dr. Hanula Barna 27
28 Töltetcsere - szívóütem Első fázisában gyors nyomáscsökkenés lép fel, a szívócsőben lévő nagyobb nyomás miatt tud beáramlani a friss töltet a hengertérbe A beszívott levegő a meleg motoralkatrészektől felmelegszik, ennek hatására kitágul, ami rontja a töltési fokot Belsőégésű Motorok Tanszék - Dr. Hanula Barna 28
29 A motor szelepnyitási diagramja Belsőégésű Motorok Tanszék - Dr. Hanula Barna 29
30 Szelepkeresztmetszetek hatása Különböző áramlási sebességek a szívószelepen és a szívószelep időzítésének hatása a teljesítményre Belsőégésű Motorok Tanszék - Dr. Hanula Barna 30
31 Szelepkeresztmetszetek hatása Az első ábrán különböző motorfordulatszámok esetén kialakuló áramlási sebességek figyelhetők meg azonos szelepnyitási szögnél A második ábrán különböző szívószelep időzítések hatása látható a motor teljesítményére a teljes fordulatszám tartományban Ebből látható, hogy változó szelepvezérlésre van szükség ahhoz, hogy minden fordulatszámon ideális legyen a motor töltési foka Belsőégésű Motorok Tanszék - Dr. Hanula Barna 31
32 Töltetcseréhez szükséges befektetett munka különböző fordulatszámon Belsőégésű Motorok Tanszék - Dr. Hanula Barna 32
33 Henger-, kipufogó-és szívócsatorna nyomások a szelepemelés függvényében Belsőégésű Motorok Tanszék - Dr. Hanula Barna 33
34 Henger-, kipufogó-és szívócsatorna nyomások a szelepemelés függvényében Belsőégésű Motorok Tanszék - Dr. Hanula Barna 34
35 Szívórendszerek A motor szívórendszerével szemben támasztott követelmény, hogy különböző üzemállapotokban (fordulatszám) is biztosítani tudja a keverékképzéshez szükséges levegőáramot Ennek biztosítására változó szívórendszereket alkalmaznak Belsőégésű Motorok Tanszék - Dr. Hanula Barna 35
36 Szívórendszer felépítése Levegőszűrő Légmennyiségmérő Vezetőcső Pillangószelep Levegő elosztó Lengőcső Szívócsatorna/szívószelep Belsőégésű Motorok Tanszék - Dr. Hanula Barna 36
37 Szívórendszer felépítése Belsőégésű Motorok Tanszék - Dr. Hanula Barna 37
38 Szívórendszerek A változtatható szívórendszerek különféle kivitelűek lehetnek Hasznosítják a szívórendszerben fellépő hullámjelenségeket a töltési fok javítására Rezonanciafeltöltés Lengőcsőfeltöltés Kapcsolt lengőcső- és rezonancia feltöltés Kombinált feltöltés (rezonancia és turbófeltöltés) Légütemszelep Belsőégésű Motorok Tanszék - Dr. Hanula Barna 38
39 Rezonanciafeltöltés Állóhullám létrehozása a gázoszlop sajátfrekvenciáján Kellékei: rezonanciatartály és rezonanciacső Előnyösen használható hengeres motoroknál (240 -os elékelés), más esetben összetett rezonancia rendszer szükséges Belsőégésű Motorok Tanszék - Dr. Hanula Barna 39
40 Rezonanciafeltöltés Kettős, vagy összetett rezonanciarendszer Belsőégésű Motorok Tanszék - Dr. Hanula Barna 40
41 Lengőcsőfeltöltés Szívási depresszió által a nyitott csővégről visszaverődő túlnyomás létrehozása a szívószelep-zárás előtt Belsőégésű Motorok Tanszék - Dr. Hanula Barna 41
42 Változtatható paraméterű lengőcsőfeltöltés Szakaszos szívócsőhossz, szívókeresztmetszet, vagy folyamatos szívócsőhossz változtatás Kétszakaszos szívócsőhossz változtatás Belsőégésű Motorok Tanszék - Dr. Hanula Barna 42
43 Változtatható paraméterű lengőcsőfeltöltés Négyszakaszos szívócsőhossz változtatás Belsőégésű Motorok Tanszék - Dr. Hanula Barna 43
44 Változtatható paraméterű lengőcsőfeltöltés Effektív szívókeresztmetszet változtatás Belsőégésű Motorok Tanszék - Dr. Hanula Barna 44
45 Változtatható paraméterű lengőcsőfeltöltés Folyamatos szívócsőhossz változtatás Belsőégésű Motorok Tanszék - Dr. Hanula Barna 45
46 Kapcsolt feltöltés Soros hathengeres motoroknál Belsőégésű Motorok Tanszék - Dr. Hanula Barna 46
47 Kapcsolt feltöltés Soros hathengeres Opel Dual Ram Belsőégésű Motorok Tanszék - Dr. Hanula Barna 47
48 Kapcsolt feltöltés Hathengeres V-motoroknál Belsőégésű Motorok Tanszék - Dr. Hanula Barna 48
49 Kapcsolt feltöltés Hathengeres boxermotornál Porsche Varioram Belsőégésű Motorok Tanszék - Dr. Hanula Barna 49
50 Kapcsolt feltöltés Nyolchengeres motornál nincs olyan gyújtási sorrend, ahol egyenletes gyújtásköz adódna egy hengersoron belül, ezért itt átellenes lengőcső kapcsolat szükséges Csappantyú a rezonátor tartályok között, emiatt nő a rezonanciafrekvencia Belsőégésű Motorok Tanszék - Dr. Hanula Barna 50
51 Dinamikus impulzusfeltöltés - légütemszelep Funkciói: Töltési fok növelése Fojtásmentes frisstöltet-szabályozás (Miller-ciklus) Kipufogógáz visszavezetés fojtásmentes szabályozása Töltetmelegítés a hidegindítás fázis rövidítésére Hengerlekapcsolás Hátrányai: Túl rövid átkapcsolási idők szükségesek Nagy átkapcsolási ciklusszám Belsőégésű Motorok Tanszék - Dr. Hanula Barna 51
52 Légütemszelep Belsőégésű Motorok Tanszék - Dr. Hanula Barna 52
53 Légütemszelep működési elve Belsőégésű Motorok Tanszék - Dr. Hanula Barna 53
54 Légütemszelep Belsőégésű Motorok Tanszék - Dr. Hanula Barna 54
55 Szívórendszerek Alkalmaznak Szakaszos szívócsőhossz változtatást Szívókeresztmetszet változtatást Folyamatos szívócsőhossz változtatást A töltetcsere folyamat dinamikus tulajdonságainak javítására alkalmazzák a változó szelepvezérlést is Belsőégésű Motorok Tanszék - Dr. Hanula Barna 55
56 Töltetmozgások Keverékképzés szempontjából megkülönböztetünk külső- és belső keverékképzésű motorokat A hatékony keverékképzéshez fontos (különösen a belső keverékképzésű motorok esetében) a hengerben zajló töltetcseremozgás Belsőégésű Motorok Tanszék - Dr. Hanula Barna 56
57 Töltetmozgások A töltetmozgások között megkülönböztetünk elsődleges (primer) és másodlagos (szekunder mozgásokat) Mozgás típusa szerint létezik spirális áramlás (Drall/Swirl) amit főleg Diesel-motoroknál használnak és bukóáramlás (Tumble), amit jellemzően az Otto-motoroknál alkalmaznak Belsőégésű Motorok Tanszék - Dr. Hanula Barna 57
58 Töltetmozgások Perdület (Drall) Belsőégésű Motorok Tanszék - Dr. Hanula Barna 58
59 Perdület kialakítása többszelepes motorokban Belsőégésű Motorok Tanszék - Dr. Hanula Barna 59
60 Tumble (-bukó) áramlás Belsőégésű Motorok Tanszék - Dr. Hanula Barna 60
61 Bukóáramlás kialakítása Tumble kialakulása a szívószelep nyitásának függvényében Belsőégésű Motorok Tanszék - Dr. Hanula Barna 61
62 Bukóáramlás kialakítása Belsőégésű Motorok Tanszék - Dr. Hanula Barna 62
63 Bukóáramlás kialakítása Belsőégésű Motorok Tanszék - Dr. Hanula Barna 63
64 Kipufogó rendszer Feladata a motor hengereiből a kipufogó gáz elvezetése a szabadba, valamint a működési zaj tompítása Kipufogó nélkül nem működne jól az öblítés, gázlengések nem lennének megfelelők, akár a szívócsőbe is visszaáramolhatna a kipufogógáz szelepösszenyitáskor Belsőégésű Motorok Tanszék - Dr. Hanula Barna 64
65 Kipufogó rendszer elemei Leömlőcsonk: a motor hengereiből kiáramló kipufogógáz szűkítése egy, vagy két csővezetkbe Leömlőcsövek: a kipufogógázok tovább szűkítése Belsőégésű Motorok Tanszék - Dr. Hanula Barna 65
66 Kipufogó rendszer elemei Lambdaszonda: leömlőcsonk, vagy a csővezeték első méretébe csavarozva Flexibilis csőtag Katalizátor Belsőégésű Motorok Tanszék - Dr. Hanula Barna 66
67 Kipufogó rendszer elemei Fojtó- és hangtompító dobok Végdob Csatlakozó elemek Belsőégésű Motorok Tanszék - Dr. Hanula Barna 67
68 Rezonátor kipufogó (2 ütem) Kétütemű motoroknál szükséges gázlengések szabályzásához és a töltetcsere lefolyásához Rezonátor: speciális alakú, a kipufogógázban lengéseket okozó acélcső, melyben az állandó nyomáson álló gáz és a rezonátor saját frekvenciája megegyezik az adott fordulaton a motorból kiáramló gáz lengésszámával Belsőégésű Motorok Tanszék - Dr. Hanula Barna 68
69 Rezonátor kipufogó (2 ütem) A két frekvencia mennyiség rezonanciájától a gázhullámok felgyorsulnak, ezáltal elszívják a hengerek elhasznált töltetét Hátránya, hogy csak szűk fordulatszám tartományban működik Belsőégésű Motorok Tanszék - Dr. Hanula Barna 69
70 Rezonátor kipufogó (2 ütem) Részei: Leömlő Diffúzor Konfúzor Dob, vagy hangtompító Power szelep Belsőégésű Motorok Tanszék - Dr. Hanula Barna 70
71 Power szelep felépítése és működése Feladata: Kipufogó csatorna keresztmetszetének változtatása a fordulatszám függvényében Belsőégésű Motorok Tanszék - Dr. Hanula Barna 71
Járművek és motorok hő- és áramlástani rendszerei
Járművek és motorok hő- és áramlástani rendszerei 4. Előadás Töltetcsere 2016.05.10. Belső Égésű Motorok Tanszék - Dr. Hanula Barna Bernoulli-törvény: Áramlástani ismeretek egy adott közeg áramlása során,
Belsıégéső motorok teljesítmény növelése
Belsıégéső motoro teljesítmény növelése Feltöltés Motor mindenori teljesítményét a frisstöltet m tömege orlátozza A töltet tömege h Vl ( p0 p) Vl m= = R h R 0 + - az elméleti töltet örnyezeti állapotú
F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Belsőégésű motorok töltetcseréje
Belsőégésű motorok töltetcseréje Töltet: - a hengerbe bejutatott levegő, vagy hajtóanyag levegő keverék Töltetcsere: - henger töltési ürítési folyamata Vezérmű: - töltetcsere lefolyását szabályzó mechanizmus
TOLLÁR Sándor tudományos segédmunkatárs
Négyütemű belsőégésű motorok töltetcseréjét befolyásoló tényezők vizsgálata Investigation of Charge Exchange in Four-stroke Inner Combustion Engines Studiul factorilor de schimbare a gazelor la motoarele
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
Tájékoztató. Értékelés Összesen: 60 pont
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Folyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006
14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,
Autódiagnosztikai mszer OPEL típusokhoz Kizárólagos hivatalos magyarországi forgalmazó: www.opel-autodiagnosztika.com
A eljárás (tároló befecskendezési rendszer) az a befecskendezési rendszer, melyet például Omega-B-ben alkalmazott Y 25 DT-motor esetében használnak. Egy közös magasnyomású tárolóban (Rail) a magasnyomású
MMK Auditori vizsga felkészítő előadás Hő és Áramlástan 1.
MMK Auditori vizsga felkészítő előadás 017. Hő és Áramlástan 1. Az energia átalakítási, az energia szállítási folyamatokban, épületgépész rendszerekben lévő, áramló közegek (kontínuumok) Hidegvíz, Melegvíz,
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
Mérnöki alapok 11. előadás
Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny
Nyomás Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny, mértékegysége N (newton) Az egymásra erőt kifejtő testek, tárgyak érintkező felületét nyomott felületnek
Az úszás biomechanikája
Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható
MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás
Szabó László Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás A követelménymodul száma: 699-06 A tartalomelem azonosító száma és célcsoportja: SzT-001-0
8. Gázcserevezérlés elemei A gázcserét 4 ütemű motoroknál szelepek vezérlik. A szelepmozgatás módja és szerkezeti elemei:
8. Gázcserevezérlés elemei A gázcserét 4 ütemű motoroknál szelepek vezérlik. A szelepmozgatás módja és szerkezeti elemei: Állítócsavar Szelepemelő szár Szelepemelő tőke Szelephimba X = 0,2-0,4 mm szelephézag
PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám
Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H
BMEGEÁTAT0-AKM ÁRAMLÁSTAN (DR.SUDA-J.M.).FAKZH 08..04. AELAB (90MIN) 8:45H AB Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz
Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével
GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba
Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
Tájékoztató. Használható segédeszköz: számológép, rajzeszközök
12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 525 02 Autószerelő Tájékoztató A vizsgázó az első lapra írja fel a nevét! Ha a vizsgafeladat
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
4. Pneumatikus útszelepek működése
4. Pneumatikus útszelepek működése Elektromos, direkt vezérlésű szelepek működése A közvetlen, vagy direkt vezérlésű útszelepek szerkezeti kialakításuk szerint - jellemzően - ülékes szelepek, ahol a szeleptányér
Áramlástechnikai mérések
Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek
Járművek és motorok hő- és áramlástani rendszerei
Járművek és motorok hő- és áramlástani rendszerei 10. Előadás Feltöltés 2016.07.11. Belsőégésű Motorok Tanszék - Dr. Hanula Barna, Müller Csaba Feltöltés Tartalom 1. Feltöltés célja 2. Turbófeltöltés 3.
1. A hang, mint akusztikus jel
1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem
Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.
Motor mechanikai állapotának vizsgálata Pintér Krisztián
Motor mechanikai állapotának vizsgálata Pintér Krisztián Budapesti Műszaki és Gazdaságtudományi Egyetem Gépjárművek Tanszék 1111 Budapest Sztoczek u. 6 pinter@auto.bme.hu A gyakorlat célja Gépjármű motorok
Á R A M L Á S T A N. Áramlás iránya. Jelmagyarázat: p = statikus nyomás a folyadékrészecske felületére ható nyomás, egyenlő a csőfalra ható nyomással
Á R A M L Á S T A N Az áramlástan az áramló folyadékok (fluidok) törvényszerűségeivel foglalkozik. A mozgásfolyamatok egyszerűsítése végett, bevezetjük az ideális folyadék fogalmát. Ideális folyadék: súrlódásmentes
Rugalmas tengelykapcsoló mérése
BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék
Járművek és motorok hő- és áramlástani rendszerei
Járművek és motorok hő- és áramlástani rendszerei 8. Előadás Keverékképzés 2016.07.11. Belsőégésű Motorok Tanszék - Dr. Hanula Barna Jelölés - Nem törzsanyag 2016.07.11. Belsőégésű Motorok Tanszék - Dr.
Ábragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
Szelepvezérlés hatása a benzinmotor jellemzőire
Szelepvezérlés hatása a benzinmotor jellemzőire Összeállította: Vass Sándor Dr. Németh Huba Budapest, 2013 Tartalom 1. A mérés célja... 3 2. A gyakorlat elméleti alapjai... 3 2.1 A méréshez áttanulmányozandó
GROX huzatszabályzók szélcsatorna vizsgálata
GROX huzatszabályzók szélcsatorna vizsgálata 1. Előzmények Megbízást kaptunk a Gróf kereskedelmi és Szolgáltató kft-től (H-9653 Répcelak, Petőfi Sándor u. 84.) hogy a huzatszabályzó (két különböző méretű)
Égési feltételek: Hıerıgépek. Külsı égéső Belsı égéső
A belsıégéső motor olyan hıerıgép amely az alkalmazott hajtóanyag kémiai energiáját alakítja át hıenergiává, majd azt szerkezeti elemei segítségével mechanikai munkává alakítja Égési feltételek: Hajtóanyag
3. Vezérlőszelepek csoportosítása, kialakítása
3. Vezérlőszelepek csoportosítása, kialakítása Pneumatikus vezérlőelemek A pneumatikus működtetésű végrehajtó elemek (munkahengerek, forgatóhengerek, stb.) mozgását az irány, a sebesség, az erő és a működési
Beavatkozószervek. Összeállította: dr. Gerzson Miklós egyetemi docens Pannon Egyetem Automatizálási Tanszék
Beavatkozószervek Összeállította: dr. Gerzson Miklós egyetemi docens Pannon Egyetem Automatizálási Tanszék 2007.12.02. 1 Beavatkozószervek beavatkozószervek feladatuk: az irányítórendszertől (szabályzó
Járművek és motorok hő- és áramlástani rendszerei
Járművek és motorok hő- és áramlástani rendszerei 3. Előadás Motortechnikai alapegyenletek 2016.05.10. Belső Égésű Motorok Tanszék - Dr. Hanula Barna Motorblokk Hengerátmérő (furat): a henger névleges
Sugárszivattyú H 1. h 3. sugárszivattyú. Q 3 h 2. A sugárszivattyú hatásfoka a hasznos és a bevezetett hidraulikai teljesítmény hányadosa..
Suárszivattyú suárszivattyúk működési elve ey nay eneriájú rimer folyadéksuár és ey kis eneriájú szekunder folyadéksuár imulzusseréje az ún. keverőtérben. rimer és szekunderköze lehet azonos vay eltérő
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére
Belsőégésű motor hengerfej geometriai érzékenység-vizsgálata Geometriai építőelemek változtatásának hatása a hengerfej szilárdsági viselkedésére Néhány példa a C3D Műszaki Tanácsadó Kft. korábbi munkáiból
VIZSGA ÍRÁSBELI FELADATSOR
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
204 00 00 00 Motortan
1. oldal 1. 100617 204 00 00 00 Motortan A többhengeres motor lökettérfogatának kiszámítására szolgáló helyes képlet: a dugattyú területe * dugattyú lökethossz * hengerek száma a dugattyú területe * dugattyú
Célok : Vízrendezés: védelmet nyújtani embernek, víznek, környezetnek Hasznosítás: víz adta lehetőségek kiaknázása
VÍZÉPÍTÉS ALAPJAI Dr. Csoma Rózsa egy. doc. BME Vízépítési és Vízgazdálkodási ww.vit.bme.hu Kmf. 16 T:463-2249 csoma.rozsa@epito.bme.hu Vízgazdálkodás: akkor ott annyi olyan víz legyen amikor ahol amennyi
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
Segédlet az ADCA szabályzó szelepekhez
Segédlet az ADCA szabályzó szelepekhez Gőz, kondenzszerelvények és berendezések A SZELEP MÉRETEZÉSE A szelepek méretezése a Kv érték számítása alapján történik. A Kv érték azt a vízmennyiséget jelenti
Nyomásirányító készülékek. Fenyvesi D. Dr. Harkay G. OE BGK
Nyomásirányító készülékek Fenyvesi D. Dr. Harkay G. OE BGK Nyomáshatároló szelep Közvetlen vezérlésű rugóerőből: p r p r Beállított nagyobb nyomás esetén nyitás, azaz p 1 > p r. Nyomáshatároló szelep
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete
Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
Hidraulika. 5. előadás
Hidraulika 5. előadás Automatizálás technika alapjai Hidraulika I. előadás Farkas Zsolt BME GT3 2014 1 Hidraulikus energiaátvitel 1. Előnyök kisméretű elemek alkalmazásával nagy erők átvitele, azaz a teljesítménysűrűség
1. Magyarázza meg és definiálja a négyütemű benzinmotor alábbi jellemzőit! Elméleti és valóságos körfolyamat A fajlagos fogyasztás és légviszony
1. Magyarázza meg és definiálja a négyütemű benzinmotor alábbi jellemzőit! Elméleti és valóságos körfolyamat A fajlagos fogyasztás és légviszony Teljes terhelési jelleggörbe 2. Magyarázza el a négyütemű
Motortervezés I. (BMEKOGGM670)
Motortervezés I. (BMEKOGGM670) 1. Általános tantárgyi követelmények Kreditszám: 4 A tantárgy heti 2 óra előadással és heti 2 óra laborral rendelkezik. Az előadásokon a tervezési feladat elvégzéséhez szükséges
Golyós visszacsapó szelep hatása szivattyú leállás során kialakuló lengésekre
Golyós visszacsapó szelep hatása szivattyú leállás során kialakuló lengésekre Dr. Hős Csaba, Dr. Pandula Zoltán Hos.Csaba@hds.bme.hu, Pandula.Zoltan@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem
A motor mozgásának alapelemei A belsőégésű motor felépítése 1. Levegő-üzemanyagkeverék 2. Nyomás 3. Égés 4. Alternáló mozgás 5. Forgó mozgás 6. Munkarend (két- vagy négyütemű) 1. Szelepfedél 2. Szelepfedél
BMW Valvetronic. Dr. Bereczky Ákos BME, Energetikai Gépek és Rendszerek Tanszék
Belsőégésű motorok BMW Valvetronic Dr. Bereczky Ákos BME, Energetikai Gépek és Rendszerek Tanszék Leonardo da Vinci (1508) Newcomen (1712) Atmoszférikus gázmotor (1855) Alfred Drake Atmoszférikus Motor
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Lemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában
Tanév,félév 2010/2011 1. Tantárgy Áramlástan GEATAG01 Képzés egyetem x főiskola Mérés A B C Nap kedd 12-14 x Hét páros páratlan A mérés dátuma 2010.??.?? A MÉRÉSVEZETŐ OKTATÓ TÖLTI KI! DÁTUM PONTSZÁM MEGJEGYZÉS
Innovációs Környezetvédelmi Verseny EKO 2005. Pályázat
Innovációs Környezetvédelmi Verseny EKO 2005 Pályázat Vegyes ütemű üzemmódú motor működése A célkitűzés A belső égésű motorok kipufogógázainak a környezetre gyakorolt káros anyag kibocsátásának szennyező
A BIZOTTSÁG.../.../EU IRÁNYELVE (XXX)
EURÓPAI BIZOTTSÁG Brüsszel, XXX [ ](2013) XXX draft A BIZOTTSÁG.../.../EU IRÁNYELVE (XXX) a mezőgazdasági vagy erdészeti traktorok hajtására szánt motorok gáz- és szilárd halmazállapotú szennyezőanyag-kibocsátása
Munka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Bels égés motorok BMW Valvetronic
Belsőégésű motorok BMW Valvetronic Gas engine (atmospheric) (1855) Alfred Drake HOW THE ATMOSPHERIC ENGINE WORKS Admission mixture flame Expansion Exhaust exhaust Dr. Jorge Martins 4-stroke engine (1876)
Vérkeringés. A szív munkája
Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása
Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.
A pneumatika alapjai 2.
A pneumatika alapjai. A pneumatikában alkalmazott építőelemek és működésük vezérlő elemek (szelepek) PTE PMMFK - útváltók, - áramlásszelepek, - nyomásszabályozó szelepek, - zárószelepek, - logikai elemek
ÁRAMLÁSTAN MFKGT600443
ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK
Vegyipari géptan 3. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.
egyiari gétan 3. Hidrodinamikai Rendszerek Tanszék, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 6 80 Fax: 463 30 9 www.hds.bme.hu Légszállító géek. entilátorok. Centrifugál ventilátor. Axiális ventilátor.
4.GYAKORLAT (8. oktatási hét)
4.GYAKORLAT (8. oktatási hét) Lehetséges témakörök a 8. heti 4. gyakorlatra: - izoterm atmoszféra - Bernoulli-egyenlet instacioner áramlásokra (=0, =áll., instac., pot.erőtér, ❶->❷ áramvonal) PÉLDA (izoterm
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Útváltók. Fenyvesi D. Dr. Harkay G. OE-BGK
Útváltók Fenyvesi D. Dr. Harkay G. OE-BGK Irányítóelemek Irányítóelemek A hidraulikus rendszer alapvető irányítási feladatait, a működtetett rendszer igényei határozzák meg, mint pl. Mozgásirány: útváltók.
A járművekben alkalmazott belsőégésű dugattyús motorok szerkezeti felépítése, munkafolyamatai, üzemi jellemzői
A járművekben alkalmazott belsőégésű dugattyús motorok szerkezeti felépítése, munkafolyamatai, üzemi jellemzői JKL rendszerek Nyerges Ádám J ép. 024 adam.nyerges@gjt.bme.hu 1 Belsőégésű motorok története
Kis / Nagyker : www.csstuning.hu Dynoteq Kft. Email: info@csstuning.hu www.dynoteq.com Tel: 06/20/55-85-277. Az Ön partnere:...
Az Ön partnere:... Hagyományos üzemanyagrendszer A hagyományos EFI (Elektromos Üzemanyag Befecskendezés) a következő részegységekből áll: Nagynyomású üzemanyag szivattyú (üzemanyagtartályon belül vagy
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
8. oldaltól folytatni
TARTÁLY ÉS TORONY JELLEGŰ KÉSZÜLÉKEK KIVÁLASZTÁSA, MEGHIBÁSODÁSA, KARBANTARTÁSA 8. oldaltól folytatni 2015.09.15. Németh János Tartály jellegű készülékek csoportosítása A készülékekben uralkodó maximális
12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján.
12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 525 02 Gépjármű mechatronikus Tájékoztató A vizsgázó az első lapra írja fel a nevét!
H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA
H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA 1. A mérés célja A mérési feladat moduláris felépítésű járműmodellen a c D ellenállástényező meghatározása különböző kialakítások esetén, szélcsatornában.
Az alábbiakban az eredeti kézirat olvasható!
Az alábbiakban az eredeti kézirat olvasható! A porlasztók (karburátorok) problematikája A benzinbefecskendező rendszer A Bánki Donát és Csonka János által felfedezett (1891), de Maybach által szabadalmaztatott
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Hidraulikai alapismeretek I. 13.lecke A hidraulika alapjai A folyadékok vizsgálatával
IMI INTERNATIONAL KFT
Épületgépész Szakosztály IMI INTERNATIONAL KFT www.imi-international.hu IMI International, Department, Name Vörös Szilárd okl. épületgépész-mérnök 0//00 Mihez kezdesz egy kazánházban a Bernoulli-egyenlettel?.
Az 2,0 literes PD-TDI motor
Az 2,0 literes PD-TDI motor Dr. Nagyszokolyai Iván, X-Meditor Autóinformatika, 2008 - furatnöveléssel lett 2 literes, 103 kw-os az 1,9- es, 96 kw-os alapmotorból, - 16 szelepes, 2 vezértengelyű, keresztáramú
N=20db. b) ÜZEMMELEG ÁLLAPOT MOTORINDÍTÁS UTÁN (TÉLEN)
ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI
KORSZERŰ DÍZEL ÉGÉSTEREK ÉS ALKALMAZÁSUK KATONAI GÉPJÁRMŰVEKBEN
VEZETÉS- ÉS SZERVEZÉSTUDOMÁNY VARTMAN GYÖRGY KORSZERŰ DÍZEL ÉGÉSTEREK ÉS ALKALMAZÁSUK KATONAI GÉPJÁRMŰVEKBEN A belsőégésű motor a hőerőgépek egyik fajtája, melyben a tüzelőanyagot egy alkalmasan megválasztott
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
A nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
Belsőégésű motorok töltetcsere vezérlő szerkezeteiben lejátszódó súrlódási folyamatok elemzése
Ph.D. értekezés Belsőégésű motorok töltetcsere vezérlő szerkezeteiben lejátszódó súrlódási folyamatok elemzése Írta: Gál Péter okleveles gépészmérnök gépjármű szakmérnök Budapest 2005 Tartalomjegyzék 1.
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus