Időben változó elektromos erőtér, az eltolási áram

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Időben változó elektromos erőtér, az eltolási áram"

Átírás

1 őben változó elektromos erőtér, az olási áram Ha az ábrán látható, konenzátort tartalmazó áramkörbe iőben változó feszültségű áramforrást kapcsolunk, akkor az árammérő áramot mutat, annak ellenére, hogy az áramkör nem zárt (a konenzátor? lemezei között nincs ető). Ennek az az oka, hogy a konenzátorra kapcsolt feszültség változása a rajta lévő? töltés megváltozásával jár, vagyis a konenzátorba befolyó illetve onnan kifolyó töltések áramlását észleljük. Mivel a (t) (t) ető szakaszokon áram folyik, természetesnek tűnik, hogy a ető körül minenütt kialakul egy mágneses erőtér, amely iőben változik, e az inukcióvonalak a U(t) szokásos képet mutatják (ábra). Felmerül a kérés, hogy van-e ilyen mágneses erőtér a konenzátor lemezei között. tapasztalat azt mutatja, hogy a lemezek közötti térrészben ugyanolyan jellegű mágneses erőtér jön létre, mint a ető körül, annak ellenére, hogy itt nyilvánvalóan nem folyhat szokásos értelemben vett elektromos áram (nincsenek töltéshorozók). Ha viszont nincs elektromos áram, akkor vajon mi ki a mágneses erőteret? Ha a létrejött mágneses erőteret vizsgáljuk, akkor úgy látszik, mintha az áramkör mégis zárt lenne, hiszen a mágneses erőtér minenütt megjelenik. lemezek közötti térrészben tehát kell lenni valamilyen mechanizmusnak, amely ugyanolyan hatást k, mint a valói áram. Ezzel kapcsolatban két fontos megállapítást tehetünk: z egyetlen olog, ami a lemezek között történik, az az elektromos erőtér változása, vagyis a jelenségnek ezzel kell kapcsolatban állnia. z elektromos erőtér változásának oka az, hogy a konenzátor lemezein változik az elektromos töltés. Mivel a lemezeken lévő töltés változása szoros kapcsolatban áll a etőben létrejött árammal, lehetőség nyílik arra, hogy kitaláljuk a lemezek közötti térben létrejött áramot formálisan megaó összefüggést. Számítsuk ki az elektromos erőtér változása és a etőben folyó áram közötti összefüggést egy egyszerű moell-áramkör segítségével, amelybe egy síkkonenzátort kapcsoltunk be. etőben folyó áram és a konenzátor töltésének változása között fennáll az Q QC = = összefüggés, hiszen a ető egy keresztmetszetén iő alatt az a Q = QC töltés folyik át, ami a konenzátor lemezére áramlott (vagy onnan ávozott). etőben folyó áram a fenti összefüggés segítségével kifejezhető a konenzátor lemezein Q lévő σ = C töltéssűrűséggel ( a lemezek felülete): QC σ = = Másrészt tujuk, hogy homogén, izotróp, lineáris ielektrikummal kitöltött síkkonenzátorban az elektromos térerősség σ σ E = =. ε ε ε r Ezzel a etőben folyó áram az σ E = = ε

2 2 alakba írható. Ha a konenzátor mágneses erőterére vonatkozó tapasztalatunk alapján fételezzük, hogy a konenzátort tartalmazó áramkör is zárt, akkor a lemezek közötti térrészben ugyanekkora áramot kell fételeznünk. fenti kifejezés ennek az áramnak a megaására alkalmasnak látszik, mert azon kívül, hogy a kívánt nagyságú áramot aja a lemezek közötti térrészben bekövetkező térerősség-változással van kapcsolatban. z így beetetett nem töltésmozgással kapcsolatos áramot történeti okok miatt olási áramnak neik, amit az E = = ε összefüggéssel ahatunk meg. tapasztalat azt mutatja, hogy az itt tárgyalt jelenség és a kapott összefüggés nem csak síkkonenzátort tartalmazó áramkörben igaz, hanem általánosabban is: a változó elektromos erőtér olyan hatást fejt E ki, mint az elektromos áram, vagyis ha valahol változik az elektromos térerősség, akkor ott mágneses erőtér jön létre, amelynek inukcióvonalai a térerősség változását megaó vektort úgy veszik körül, mint a valói elektromos áramot az általa kett inukcióvonalak. z elektromos térerősség változása és az inukcióvonalak iránya közötti összefüggés sematikusan az ábrán látható. z olási áram létezése azt jelenti, hogy az elektromos- és mágneses erőtér egyfajta szimmetriát mutat: a mágneses erőtér változása elektromos erőteret-, az elektromos erőtér változása mágneses erőteret k. Ez a szimmetria teszi lehetővé, hogy egy elektromos vagy mágneses zavar (erőtér-változás) a térben tovaterjejen, és elektromágneses hullám jöjjön létre. z olási áramra kapott kifejezés általánosabb alakba is írható, ha figyelembe vesszük, hogy abban az elektromos térerősség fluxusának Φ E = E megváltozása szerepel: E Φ E = = = ε ε ε E. kifejezés tovább egyszerűsíthető, ha beetjük az elektromos olás vektorát a homogén, izotróp, lineáris ielektrikumokra érvényes = εe összefüggéssel. Ekkor az olási áramra azt kapjuk, hogy Φ = =. Vagyis az olási áram az olási vektor fluxusának változási sebességével aható meg. (z olási áram elneés egyébként éppen innen származik.) tapasztalat szerint ez az Φ összefüggés nem csak az itt fételezett = µ egyszerűsítő fevések esetén használható, hanem általában is érvényes. z olási áram beetésével a hagyományos értelmezés szerint r = µ megszakítottnak számító áramkörök is = µ zártaknak tekinthetők, és a gerjesztési törvény r egy áramkör tetszőleges helyén (a

3 3 megszakításnál is) ereeti alakjában érvényes, ha ott a törvényben áramként az olási áramot írjuk be (ábra). fenti kifejezés egyébként irány szerint is helyesen aja meg az áramot. Ha a gerjesztési törvényben a zárt görbék körüljárását az ábrán látható móon választjuk meg, akkor az áramok pozitívnak számítanak. Ha az olási vektor fluxusának számításakor a felületvektort most is a Faraay enz-törvénynél alkalmazott megállapoás szerint irányítjuk, akkor az elemi felületvektorok az felületen jobbra mutatnak. Mivel a konenzátor balolali lemezére pozitív töltések érkeznek, az olási vektor megváltozása is jobbra mutat, vagyis >. Ebből következik, hogy az olási vektor fluxusának változása: Φ >, ezért az olási áram is pozitív. Mivel a kétféle áram együtt is felléphet, a gerjesztési törvény általános alakja Φ = µ ( ) = µ µ. tt az zárt hurok által körülöl áramok előjeles összege, peig az elektromos erőtér változása miatt esetleg fellépő olási áramot jelenti. Ha beetjük a H mágneses térerősséget (homogén, izotróp, lineáris anyagokban = µ H), akkor a törvény a Φ H = alakot ölti. gerjesztési törvénynek ez az alakja nem csak az itt fételezett egyszerűsítések esetén, hanem általában is érvényes. Ha az áramerősséget az áramsűrűséggel fejezzük ki, akkor a gerjesztési törvény újabb alakját kapjuk: H = j. Ha az hurok iőben állanó alakú, akkor az integrálás és a ifferenciálás sorrenje felcserélhető, és az integrálok összevonhatók. Ekkor a törvényt a H = j alakba írhatjuk. átható, hogy az olási áram sűrűsége a j = összefüggéssel aható meg, amivel a gerjesztési törvény a H = ( j ) j alakba is írható. ***************** ******************* ********************** Ha figyelembe vesszük az elektromos olás = ε E P e efiníciós egyenletét, akkor az olási áramsűrűség a E P j = ε e

4 4 alakba írható. Ez azt jelenti, hogy az olási áram létrejöttében szerepet játszik a jelenlévő anyag is, hiszen a polarizáció változása is olási áramot okoz és mágneses erőteret k. Ezt az áramot polarizációs áramnak neik. ***************** ******************* ********************** z elektromágnességtan alapegyenletei integrális alakban (Maxwellegyenletek) z elektromos és mágneses erőtér vizsgálata során kierült, hogy a két erőtér egymással igen szoros kapcsolatban áll (minkettőt elektromos töltések hozzák létre, egyik erőtér változása létrehozza a másikat), ezért a két erőteret elektromágneses erőtérnek, a velük kapcsolatos jelenségeket elektromágneses jelenségeknek-, az ezeket vizsgáló tuományterületet peig elektromágnességtannak neik. z elektromágneses erőtér jellemzésére különböző térmennyiségeket (E, P e,,, P m, H) ettünk be, és az elektromágneses erőtér különböző megnyilvánulásait általános törvények alakjában foglaltuk össze. Ezek az általános törvények, amelyeket kiolgozójuk, J. C. Maxwell tiszteletére Maxwell-egyenleteknek nenek, az összes elektromágneses jelenséget leírják, az elektromágneses térre vonatkozó összes speciális törvény (pl. Coulomb-törvény, iot Savart-törvény) ezekből leethető. Most egyelőre integrális alakjukban összefoglaljuk a Maxwell-egyenleteket és a hozzájuk csatlakozó kiegészítő összefüggéseket. z egyenletek felírásánál először csak az E,, és a P e, P m mennyiségeket alkalmazzuk, és nem etjük be a elektromos olást és a mágneses térerősséget. Φ. E = vagy részletezve E = (tt az zárt hurok által bezárt felületet jelenti) Ez az egyenlet egyrészt azt fejezi ki, hogy a mágneses inukcióvektor fluxusának változása az elektromágneses inukció olyan inukált elektromos erőteret hoz létre, amely nem konzervatív. Megjegyzés: E mennyiséget az E erőtér örvényerősségének neik. Ha ez nulla, akkor az erőteret örvénymentesnek-, ha nem nulla, akkor örvényesnek neik. z elneés azzal függ össze, hogy amint kimutatható örvényes erőtérben az erővonalak lehetnek zárt hurkok, az örvénymentes erőtérben viszont ez nem lehetséges. z örvényerősség fogalmát felhasználva azt monhatjuk, hogy az inukált elektromos erőtér örvényes, erővonalai lehetnek zárt hurkok (és tapasztalatból tujuk, hogy valóban azok). Másrészt abban a speciális esetben, amikor a térmennyiségek iőben állanóak, az egyenlet jobbolalán nulla áll: E =, vagyis visszakapjuk az elektrosztatika. alaptörvényét. lyenkor az erőteret elektromos töltések hozzák létre, és ez a sztatikus elektromos erőtér konzervatív és örvénymentes, vagyis erővonalai a tapasztalattal összhangban nem lehetnek önmagukba záróó vonalak. z. törvény akkor is igaz, ha egyiejűleg minkét fajta elektromos erőtér jelen van.

5 5 ********************** ************************* ********************** Q E = Pe vagy részletezve ε ε E = ρv Pe ε ε (tt V az zárt felület által bezárt térfogatot jelenti) Ez az egyenlet azt fejezi ki, hogy a töltések által kett elektromos erőtér térerősségvonalai töltéseken kezőnek és töltéseken végzőnek. Ezek a töltések lehetnek szaba töltések (Q), vagy polarizációs töltések, amelyeknek járulékát az egyenlet jobbolalán álló a P e elektromos polarizáció vektor által meghatározott másoik tag aja meg. Megjegyzés: E mennyiséget az elektromos erőtér forráserősségének neik. Ha ez nulla, akkor az erőteret forrásmentesnek-, ha nem nulla, akkor forrásosnak neik. Kimutatható, hogy forrásos erőtérben az erőtér vonalai valahol kezőnek vagy végzőnek, forrásmentes erőtérben viszont nincs kező- és végpontjuk, lehetnek pl. önmagukba záróóak. forráserősség fogalmát használva a töltések által kett elektromos erőtér forrásos. Ebben az egyenletben nem jelenik meg az elektromágneses inukció által kett, inukált elektromos erőtér, hiszen töltések hiányában E =. Ez azt jelenti, hogy az inukált erőtér erővonalai nem kezőnek és nem végzőnek sehol. z. törvényt is figyelembe véve, levonható az a következtetés, hogy az inukált elektromos erőtér erővonalai önmagukba zárónak. szokásos elneést használva, az elektromágneses inukció által kett, inukált elektromos erőtér örvényes és forrásmentes. ********************** ************************* ********************** m e vagy részletezve = µ j µ Pm µ ( ε E Pe ). = µ µ P µ ( ε E P ) (tt az zárt görbe által határolt felületet jelenti) Ez az egyenlet azt fejezi ki, hogy a mágneses inukcióvektor a valói áramokkal, a mágneses ipólusokkal, az elektromos térerősség- és az elektromos polarizáció fluxusának változásával hozható összefüggésbe, az inukcióvonalak lehetnek zárt hurkok (tapasztalatból tujuk, hogy tényleg azok). Fontos része a törvénynek, hogy tükrözi azt a tapasztalatot is, hogy az elektromos erőtér változása mágneses erőteret hoz létre. z örvényerősség fogalmát használva azt monhatjuk, hogy a mágneses erőtér örvényes. ********************** ************************* ********************** V. = V

6 6 Ez a törvény azt mutatja, hogy az inukcióvonalak sehol nem kezőhetnek vagy végzőhetnek.. törvénnyel együtt ez azt jelenti, hogy csak önmagukba záróhatnak, ami egybevág a tapasztalatokkal. z örvényerősség és forráserősség fogalmát használva azt monhatjuk, hogy a mágneses erőtér örvényes és forrásmentes. Ha beetünk két újabb térmennyiséget, akkor a Maxwell-egyenletek egyszerűbb és sok esetben praktikusabb formába írhatók át. Fontos azonban tununk, hogy az egyenletek enélkül is teljes értékűek, az új mennyiségek beetése nem kötelező, csak sokszor előnyös. két új térmennyiség az elektromos olás- () és a mágneses térerősség (H) vektora, amelyeknek efiníciós egyenletei, az ún. anyagi egyenletek az alábbiak: = ε E Pe = µ ( H Pm ). Ezekkel a Maxwell-egyenletek a következő alakot öltik:. E =.. H = Q = V. = Ezekből az egyenletekből kierülnek a két új térmennyiség sajátságai: z olási vektor forrásai a Q valói töltések, az anyag jelenlétében megjelenő elektromos ipólusok viszont nem hoznak létre elektromos olást. mágneses térerősség az valói áramoktól vagy az elektromos olás fluxusának változásából származhat, e az anyag jelenlétében megjelenő mágneses ipólusok nem hoznak létre mágneses térerősséget. és H beetésének éppen az az előnye, hogy közvetlenül egyiket sem befolyásolja az anyag jelenléte 1. Homogén, izotróp, lineáris anyag esetén az anyagi egyenletek egyszerűsönek: = ε ε re = εe = µ µ H = µ H. r 1 vizsgált térrésznek anyaggal való kitöltése közvetlenül valóban nem változtatja meg a és H vektorokat, e azok mégis megváltozhatnak, ha az elrenezés olyan, hogy az anyag megjelenése a valói töltéseket illetve a valói áramokat megváltoztatja. illetve H vektorok csak bizonyos, speciális elrenezésekben maranak változatlanok az anyaggal való kitöltés során. Ez a helyzet pl. akkor, ha egy ieális síkkonenzátort illetve ieális tekercset homogén, izotróp anyaggal töltünk ki (mint tujuk, E és ezekben az esetekben is függ a teret kitöltő anyagtól).

7 7 Ezzel a Maxwell-egyenletek is egyszerűbbé válnak, mert az anyag jelenlétének hatását a P e és P m vektorok helyett az ε r és µ r anyagállanókkal vesszük figyelembe. Ha az egyenleteknek csak az E és vektorokat tartalmazó alakját használjuk, akkor ebben az esetben azt kapjuk, hogy. E =.. 1 E = ε V ρv = µ j µε E V. = z egyenletek tovább egyszerűsíthetők, ha csak etési áramok vannak. lyenkor az áramsűrűség is kifejezhető az elektromos térerősséggel, ha felhasználjuk a j = γe anyagi egyenletet.

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektomos eőté, az olási áam Ha az ábán látható, konenzátot tatalmazó áamköbe iőben változó feszültségű áamfoást kapcsolunk, akko az áamméő áamot mutat, annak ellenée, hogy az áamkö nem zát

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Fizika 1 Elektrodinamika belépő kérdések

Fizika 1 Elektrodinamika belépő kérdések Fizika 1 Elektrodinamika belépő kérdések 1) Maxwell-egyenletek lokális (differenciális) alakja rot H = j+ D rot = B div B=0 div D=ρ H D : mágneses térerősség : elektromos megosztás B : mágneses indukció

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér: forrásos

Részletesebben

A teljes elektromágneses spektrum

A teljes elektromágneses spektrum A teljes elektromágneses spektrum Fizika 11. Rezgések és hullámok 2019. március 9. Fizika 11. (Rezgések és hullámok) A teljes elektromágneses spektrum 2019. március 9. 1 / 18 Tartalomjegyzék 1 A Maxwell-egyenletek

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Pótlap nem használható!

Pótlap nem használható! 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika. Felaatsor 1. Egy Q 1 és egy Q =4Q 1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok, amelyekben a két töltéstől származó ereő térerősség nulla? (k=9 10 9 Nm /C ). Félkör

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

László István, Fizika A2 (Budapest, 2013) Előadás

László István, Fizika A2 (Budapest, 2013) Előadás László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben

Részletesebben

Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk:

Mindkét oldal divergenciáját véve, és kihasználva a másik E térre vonatkozó egyenletet, Laplace-egyenletet kapunk: 1 / 6 A TételWiki wikiből 1 Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. [1] 2 Vezetők, szigetelők, dielektrikumok, elektormos polarizáció, magnetosztatika. 2.1 Vezetők [3] 2.2 Dielektrikumok

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Összeállította: Dr. Pipek János, Dr. zunyogh László 20. február 5. Elektrosztatika Írja fel a légüres térben egymástól r távolságban elhelyezett Q és Q 2 pontszer pozitív töltések

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika)

Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika) Eötvös Loránd Tudományegyetem Természettudományi Kar TANTÁRGYI ADATLAP és tantárgyi követelmények 2006/07 Földtudományi Szak Kötelező tantárgy Tantárgycím: Kísérleti Fizika II. (Elektrodinamika és Optika)

Részletesebben

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek

Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

A hordófelület síkmetszeteiről

A hordófelület síkmetszeteiről 1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük

Részletesebben

TARTALOMJEGYZÉK EL SZÓ... 13

TARTALOMJEGYZÉK EL SZÓ... 13 TARTALOMJEGYZÉK EL SZÓ... 13 1. A TÖLTÉS ÉS ELEKTROMOS TERE... 15 1.1. Az elektromos töltés... 15 1.2. Az elektromos térer sség... 16 1.3. A feszültség... 18 1.4. A potenciál és a potenciálfüggvény...

Részletesebben

Elektrotechnika- Villamosságtan

Elektrotechnika- Villamosságtan Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Elektro- és magnetosztatika, áramkörök

Elektro- és magnetosztatika, áramkörök 1. fejezet Elektro- és magnetosztatika, áramkörök Coulomb- és Gauss-törvény, szuperpozíció elve, stacionárius áram. Vezet k, szigetel k, dielektrikumok, kondenzátor, magnetosztatika. Stacionárius áram,

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

Gingl Zoltán, Szeged, szept. 1

Gingl Zoltán, Szeged, szept. 1 Gingl Zoltán, Szeged, 08. 8 szept. 8 szept. 4 A 5 3 B Csomópontok feszültség Ágak (szomszédos csomópontok között) áram Áramköri elemek 4 Az elemeken eső feszültség Az elemeken átfolyó áram Ezek összefüggenek

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező vonalak Tartalom, erőhatások pólusok dipólus mező, szemléltetése meghatározása forgatónyomaték méréssel Elektromotor nagysága különböző

Részletesebben

Galvanomágneses jelenségek

Galvanomágneses jelenségek isme d meg Galvanomágneses jelenségek Azokat a jelenségeket, amelyek az áramátjárta vezetőben mágneses tér hatására jönnek létre galvanomágneses jelenségebiek nevezzük. Ezek a jelenségek a közegben haladó

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály

Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (b) Elektromágneses hullámok Utolsó módosítás: 2016. szeptember 28. 1 Dipólsugárzás (1) Anyagi közeg jelenléte esetén a D vektor a polarizáció jelensége miatt módosul

Részletesebben

Geometriai és hullámoptika. Utolsó módosítás: május 10..

Geometriai és hullámoptika. Utolsó módosítás: május 10.. Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Elektrosztatikai jelenségek

Elektrosztatikai jelenségek Elektrosztatika Elektrosztatikai jelenségek Ebonit vagy üveg rudat megdörzsölve az az apró tárgyakat magához vonzza. Két selyemmel megdörzsölt üvegrúd között taszítás, üvegrúd és gyapjúval megdörzsölt

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

VI. AZ ELEKTROMOS ÁRAM

VI. AZ ELEKTROMOS ÁRAM I. AZ ELEKTROMOS ÁRAM Bevezetés. Az előző fejezetekben a nyugvó elektromos töltés fizikájával, az elektrosztatikával foglalkoztunk. Ezen az órán elkezjük tanulmányozni a mozgó elektromos töltés fizikáját.

Részletesebben

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatainak megolása. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

5. A villamos tér. C. A proton töltése ugyanekkora, de pozitív

5. A villamos tér. C. A proton töltése ugyanekkora, de pozitív 5. A villamos tér A villamos töltéssel renelkező részecskék erőhatást gyakorolnak egymásra, amely lehet vonzó vagy taszító. Közismert, hogy az azonos nemű töltések taszítják, különneműek vonzzák egymást.

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

2.Előadás ( ) Munkapont és kivezérelhetőség

2.Előadás ( ) Munkapont és kivezérelhetőség 2.lőadás (207.09.2.) Munkapont és kivezérelhetőség A tranzisztorokat (BJT) lineáris áramkörbe ágyazva "működtetjük" és a továbbiakban mindig követelmény, hogy a tranzisztor normál aktív tartományban működjön

Részletesebben

A TételWiki wikiből. A Maxwell-egyenletek

A TételWiki wikiből. A Maxwell-egyenletek 1 / 6 A TételWiki wikiből 1 A Maxwell-egyenletek 2 Indukció 2.1 Nyugalmiindukció 2.2 Mozgásiindukció 2.3 Kölcsönös- és önindukció 3 Az elektromágneses tér makroszkópikus mennyiségei 3.1 Energia 3.2 Impulzus

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Csordásné Marton Melinda. Fizikai példatár 4. FIZ4 modul. Elektromosságtan Nyugat-magyarországi Egyetem Geoinformatikai Kara Csordásné Marton Melinda Fizikai példatár 4 FIZ4 modul Elektromosságtan SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi LXXVI

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Kifejtendő kérdések június 13. Gyakorló feladatok

Kifejtendő kérdések június 13. Gyakorló feladatok Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.

Részletesebben

Kiadandó feladatok, Fizika 2.

Kiadandó feladatok, Fizika 2. Elektrosztatika (Az előző félévi sorból) Kiaanó felaatok, Fizika 2. 119. A hirogén atomban a mag körül egyetlen elektron kering. Az elektron töltése negatív, az atommagé pozitív, minkettő töltésének nagysága

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Mágnesesség. Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény. j g I A. A zárt görbe által körülfogott áramok előjelezése

Mágnesesség. Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény. j g I A. A zárt görbe által körülfogott áramok előjelezése Mágnesesség... Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény... A mágneses indukció-vektor bevezetése... A Lorentz-erő... 3 orgatónyomaték homogén mágneses mezőben nyugvó sík áramhurokra...

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.

Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1. Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS

Részletesebben

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola

Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

Fizika A2E, 9. feladatsor

Fizika A2E, 9. feladatsor Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két

Részletesebben

Mágnesesség. Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény

Mágnesesség. Mágneses tér gerjesztése: Az Ampère-féle gerjesztési törvény Mágnesesség... Mágneses tér gerjesztése: z mpère-féle gerjesztési törvény... mágneses indukció-vektor bevezetése... Lorentz-erő... 3 orgatónyomaték homogén mágneses mezőben nyugvó sík áramhurokra... 4

Részletesebben

A gravitáció összetett erőtér

A gravitáció összetett erőtér A gravitáció összetett erőtér /Az indukált gravitációs erőtér című írás (hu.scribd.com/doc/95337681/indukaltgravitacios-terer) 19. fejezetének bizonyítása az alábbiakban./ A gravitációs erőtér felbontható

Részletesebben

Elektromosságtan. Farzan Ruszlán SZE, Fizika és Kémia Tsz szeptember 29.

Elektromosságtan. Farzan Ruszlán SZE, Fizika és Kémia Tsz szeptember 29. Elektromosságtan Farzan Ruszlán SZE, Fizika és Kémia Tsz. 2006. szeptember 29. Coulomb-törvény Gauss-tétel Elektromos dipólus Az elektromos dipólus erővonalai Elektromos tér feszültsége Kondenzátor Elektrosztatikai

Részletesebben

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

Megjegyzés a villamos gép mágneses terét leíró kifejezéshez Comment on the Expression Describing the Magnetic Field of the Electrical Machine

Megjegyzés a villamos gép mágneses terét leíró kifejezéshez Comment on the Expression Describing the Magnetic Field of the Electrical Machine Megjegyzés a villamos gép mágneses terét leíró kifejezéshez Comment on the Expression Describing the Magnetic Field of the Electrical Machine Dr. Tóth Ferenc, Dr. zabó Loránd 2 Miskolci Egyetem, Magyarország

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben