5. A villamos tér. C. A proton töltése ugyanekkora, de pozitív

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. A villamos tér. C. A proton töltése ugyanekkora, de pozitív"

Átírás

1 5. A villamos tér A villamos töltéssel renelkező részecskék erőhatást gyakorolnak egymásra, amely lehet vonzó vagy taszító. Közismert, hogy az azonos nemű töltések taszítják, különneműek vonzzák egymást. Ennek megfelelően két különnemű töltést különböztetünk meg, melyek elnevezése pozitív (+) és negatív (-) töltés. A továbbiakban a nyugvó villamos töltésektől származó hatásokkal foglalkozunk. A térnek azt a részét, amelyben a nyugvó töltésektől származó villamos kölcsönhatás kimutatható villamos térnek nevezzük. Tehát a nyugvó töltések között illetve a töltések kölcsönös helyzetének következtében fellépő hatásokat írjuk le a villamos tér segítségével. Az elektrotechnikának ezt a részét elektrosztatikának is nevezzük, ezzel is utalva a jelenségeket létrehozó nyugvó (sztatikus) töltésekre. Az anyagok mikrofizikai felépítésének ismeretében ma már ismert, hogy az elektron és a proton a villamos töltéssel renelkező elemi részecskék. Megállapoás szerint az elektron töltése negatív, a proton töltése pozitív. Az elektron töltésének nagyságát elemi töltésnek nevezzük, melynek értéke e = 16, A proton töltése ugyanekkora, e pozitív e + =+ 16, Villamos töltés alatt ezen elemi töltések meghatározott mennyiségét értjük, amely a fenti elemi töltés egész számú többszöröse lehet A oulomb-törvény A villamos jelenségekre vonatkozó, mennyiségi kapcsolatot felállító, legrégebben ismert törvény a oulomb-törvény. Eszerint két nyugvó pontszerű töltés által egymásra gyakorolt erő arányos a két töltéssel (Q 1, Q ), forítottan arányos távolságuk ( ) négyzetével. Pont-szerűeknek vagy ponttöltéseknek nevezzük azokat a töltéseket, amelyek átmérője a köztük mért távolsághoz () képest elhanyagolható. F =± k Q 1 Q A ± előjel az erő irányát (taszító vagy vonzó) fejezi ki. Az azonos előjelű (egynemű) töltések vonzzák, a különneműek taszítják egymást. A oulomb törvény kísérleti úton megállapított, tapasztalati törvény. A kifejezésben szereplő "k" együttható az alkalmazott mértékegység-renszertől függő állanó: 1 k = 4 π ε, ahol az ε a töltések közötti teret kitöltő anyagra jellemző állanó, melynek neve: permittivitás vagy ielektromos állanó. A villamos tér jelenléte a térbe helyezett villamos töltéssel kimutatható, mert a tér a behelyezett töltésre erőhatást fejt ki. Az erőhatás a közbeeső téren keresztül, közvetlenül jön létre. Alakítsuk át a oulomb törvényt az alábbi kifejezésre: 1 Q F = 1 Q = E Q 4 ð å Ez alapján megállapíthatjuk, hogy a Q töltésre azért hat erő, mert a Q töltés helyén - annak oahelyezése előtt, tehát attól függetlenül - a Q 1 töltés különleges állapotot ún. villamos erőteret hozott létre. Tehát erőhatást tapasztalunk, ha villamos töltést helyezünk a térbe. A villamos erőtér jellemzésére a villamos térerősséget használjuk. 1

2 5.. A villamos térerősség fogalma Az erő vektormennyiség (nagysága és iránya is van), ezért a bevezetett térjellemző, a térerősség is vektor-mennyiség (a töltés skaláris mennyiség, mert csak nagysága és polaritása van). A fenti összefüggésből a térerősséget kifejezve (tetszőleges Q töltésre felírva): Ha a térbe helyezett töltés egységnyi pozitív töltés (Q = 1 ), akkor a villamos teret jellemző mennyiséget, a villamos térerősséget kapjuk meg. Tehát a villamos térerősség a nyugvó villamos töltés terébe helyezett egységnyi pozitív töltésre ható erő. A fenti péla alapján a fellépő erő nagysága (Q = 1 ) esetén: 1 Q F = E = 1 4 π ε A térerősség vektormennyiség, iránya megegyezik a pozitív töltésre ható erő irányával. A térerősség értéke függ a létrehozó töltés (Q 1 ) nagyságától és az ε anyagjellemzőtől, amelyet permittivitásnak nevezünk: ε = ε ε 1 1 ahol ε o - a vákuum (levegő) permittivitása:ε o = = 885, 10 4 π ε r - relatív permittivitás (anyagjellemző) A térerősség mértékegysége a efiníciós összefüggés alapján: V A s [ ] [ F] N m V A s V E = = = = = Q A s A s A s m 5.3. A villamos tér szemléltetése F E = Q o [ ] m Az erővonalakkal történő szemléltetésnek vannak szabályai, amiket minig be kell tartanunk: A kialakuló erőtér szemléltetése ún. erővonalakkal történik, amelyek alkalmasak arra, hogy a térerősség nagyságát és irányát is ábrázoljuk. A térerősség nagyságát az erővonalak sűrűsége mutatja meg. Tehát a vonalakat sűrűbben rajzoljuk ott, ahol a térerősség nagyobb. Az erővonalak aott pontjában húzott érintő iránya a térerősség vektor irányát aja meg a térnek abban a pontjában. 1. Az erővonal a pozitív töltés felületéről inul, és a negatív töltésű test felületén végzőik.. Az erővonal a töltés felületére merőlegesen lép ki, illetve lép be. 3. Az erővonalak nem keresztezik egymást, mivel minen pontban a villamos térerősségnek (erőhatásnak) egyetlen meghatározott iránya van. Ezen tulajonságok ismeretében egy illetve több pontszerű töltésből álló elrenezés tere könnyen megszerkeszthető. Egyeülálló pontszerű töltés esetén az erővonalak a töltés felületén erenek és a végtelen távoli negatív töltésen végzőnek, ha a töltés pozitív (1a ábra). Negatív töltés esetén a a) b) végtelen távol lévő pozitív töltésről érkeznek az 1.ábra erővonalak (1b ábra). gyanis az aott töltéssel megegyező nagyságú, e ellentétes előjelű töltés egy olyan - végtelen nagy sugarú - gömb r Vm

3 felszínén helyezkeik el, amelynek középpontjában található az általunk vizsgált pontszerű töltés. A gömb felszínére merőleges irány a sugár iránya, tehát egy Q töltéssel renelkező pontszerű töltésnél az általa keltett térerősség a tér minen pontjában sugárirányú, így a ponttöltés tere gömbszimmetrikus. A. ábrán két egyenlő nagyságú pozitív és negatív töltés terét ábrázoltuk. Egy pontban megszerkesztettük a térerősség vektort a szuperpozíció elve alapján. Mivel levegőben (vákuumban) vizsgálóunk, ez az elv itt is alkalmazható. Az ábrákon feltüntettük az egyes töltések hatására kialakuló térerősségeket, valamint a parallelogramma szabály alkalmazásával megszerkesztett ereő térerősségeket is. Jól látható, hogy ezek iránya az erővonal aott pontjába húzott érintő irányával egyezik meg. A 3. ábrán két egyenlő felületű, egymással párhuzamos lemezen helyezkenek el az azonos nagyságú (Q 1 = Q ), e ellentétes előjelű töltések. A térerősség a. ábra helytől függetlenül irány és nagyság szerint állanó (homogén tér), a teret ábrázoló erővonalak azonos sűrűséggel és egymással párhuzamosan rajzoltuk, mert homogén villamos tér alakul ki. Homogén (egynemű) térről beszélünk, ha a térjellemző (térerősség) nagysága és iránya a tér minen pontjában azonos. Ezt az elrenezést síkkonenzátornak nevezzük. Ha a távolságban lévő, párhuzamos lemezpárra feszültséget kapcsolunk, akkor homogén villamos tér esetén a kialakuló térerősséget az alábbi jólismert - összefüggéssel határozhatjuk meg: E = Q 3..ábra A fémek belsejében a villamos térerősség + + Q - + minig E = 0, azaz a nem kompenzált nyugvó töltések csak a vezetők felületén helyezkehetnek el. Ha egy vezetőt külső villamos térbe helyezünk, akkor a vezetőben 4..ábra lévő töltések mozgása bekövetkezik. A mozgás befejeztével egy - a tér által megszabott - töltéseloszlás jön létre. A 4. ábrán a Q pontszerű töltést közelítjük az egyébként villamosan semleges fém tárgyhoz. A közelítés hatására a fémben lévő negatív tőltéseket horozó részecskék (elektronok) elmozulhatnak a Q töltés irányába, tehát a töltéshez közeli részen a negatív töltések, míg a test átellenes részen a pozitív töltések kerülnek túlsúlyba. Így a felületen nem kompenzált töltések lesznek. A jelenséget villamos megosztásnak (influenciának) nevezzük, melynek fontos szerepe van pl. a konenzátorok műköésében A szigetelőanyagok (ielektrikumok) jellemzői Q A szigetelőkben elvileg nincsenek szaba, külső tér hatására elmozulni képes töltéshorozók, ezért az előzőleg megismert megosztás sem hozható létre. A továbbiakban azt vizsgáljuk meg, hogy a külső villamos tér hatására milyen jelenségek lépnek fel a szigetelőanyagban. A villamos tér hatására bekövetkező változások az. ún. szigetelőanyagokban atomi illetve molekuláris szinten jönnek létre: a villamos tér az elektronok pályáit eformálja. Az elektron eigi körpályája megváltozik, mert az elektron a pozitív lemez közelében (a magtól távolabb) hosszabb, a negatívnál peig (a maghoz közelebb) 3

4 röviebb ieig tartózkoik. Ezért a pozitív és negatív töltések súlypontja nem fog egybeesni, az atom polarizálóik, ipólussá alakul. Tehát a megosztás atomi (vagy molekuláris) méretekben megy végbe. Ez az ún. elektron polarizáció, amely atomi méretekben minen szigetelőanyagban végbemegy külső villamos tér hatására. A polarizáció jelenségével magyarázható az átütés, a ielektromos veszteség (a szigetelőanyag melegszik), és még néhány egyéb jelenség is A konenzátor A villamos töltések tárolására alkalmas berenezéseknek ma már számos formája létezik, amelyeket összefoglaló néven konenzátoroknak nevezünk. Konenzátor minen olyan - villamos töltés tárolására alkalmas - elrenezés, amely szigetelőanyaggal elválasztott két fémelektróából áll. Az elektróákon azonos nagyságú, e ellentétes előjelű töltések vannak. A konenzátor töltéstároló képességét a kapacitásával jellemezzük. Közismert tény, hogy egy konenzátor elektróáira feszültséget () kapcsolva a szétváló töltés nagysága (Q) arányos a rákapcsolt feszültséggel: Q = Az arányossági tényező jellemző az aott elrenezésre, annak geometriai kialakításától, anyagától függ. A testeknek ezt a tulajonságát töltésbefogaó képességnek, iegen szóval kapacitásnak nevezzük. A kapacitást a fenti összefüggésből kifejezve: = Q Egy elrenezés kapacitása tehát annál nagyobb, minél több töltés vihető fel rá, minél kisebb feszültség mellett. A töltésnek és a feszültségnek a hányaosa, a kapacitás jellemző az aott elrenezésre, és csak annak szerkezeti kialakításától, és a benne található ielektrikumtól (szigetelőanyagtól) függ. [ Q] A s Az összefüggés alapján a kapacitás mértékegysége : [ ] = = = F (fara) V A kapacitás értéke megaja az 1 V rákapcsolásakor felvihető töltés nagyságát. 1 F a kapacitása annak a renszernek, amelyre 1 V rákapcsolásakor 1 A s töltést vihetünk fel az elektróákra. Az 1 F igen nagy kapacitás, ezért a gyakorlatban csak kisebb (µf, nf, pf) értékekkel találkozhatunk. A gyakorlatban minen elrenezésnek (pl. egy kapcsoló nyitott érintkezőinek) is van kapacitása. Az ilyen - igen kis értékű - kapacitásokat ún. szórt kapacitásoknak fegyverzet nevezzük. A ielektrikum 5.6. A síkkonenzátor kapacitása Két egymástól szigetelőanyaggal elválasztott párhuzamos fémlemez (fegyverzet) síkkonenzátort alkot (5. ábra). A két sík fém- + - lemez között elhelyezkeő szigetelőanyagot 5..ábra ielektrikumnak nevezzük. Az A felületen Q töltésmennyiség van. A kapacitás értéke a már jólismert összefüggéssel határozható meg, amiből a síkkonenzátor kapacitása: [ ] = ε ε 0 r A 4

5 Tehát a síkkonenzátor kapacitása egyenesen arányos a szigetelőanyag permittivitásával és a felülettel, e forítottan arányos a lemezek távolságával. Renezzük át a = Q összefüggést: = Q Ez az összefüggés a konenzátor fegyverzetei között fellépő feszültséget aja meg. Hatására a ielektrikumban E villamos térerősség alakul ki, amely a szigetelőben polarizációt, nagy térerősség esetén átütést okozhat. Azt a legnagyobb feszültséget, amelynél a konenzátor ielektrikuma még biztosan nem károsoik, a konenzátor névleges feszültségének nevezzük. Értéke a ielektrikum anyagától és vastagságától függ. A kapacitás és a névleges feszültség fontos katalógusaat. A konenzátorok legfontosabb jellemzőit a konenzátor külső burkolatán is feltüntetik. Pélák 1. Mekkora kapacitása van annak a konenzátornak, amelyet egymástól 0,5 mm távolságra levő b 15x15 cm-es alumínium lemez alkot? Mennyi lesz a kapacitás értéke, ha a lemezek távolságát a felére csökkentjük? A lemezek között levegő van, ezért ε r =1. A = 15 cm 15 cm = 5 cm =, 5 10 m A 1, 5 10 m 1 = ε 0 ε r = 8, = F = 400 pf Vm 3 0, 5 10 m A lemezek távolságának felére csökkentésekor a kapacitás kétszeres lesz, így: = 800 pf.. Mennyi töltés van a 4 µf-os konenzátorban, ha fegyverzetei között 100 V feszültség mérhető? 6 4 A megolás: Q = = 4 10 F 100 V = Egy polietilén szigetelésű síkkonenzátorra 100 V feszültséget kapcsolunk. Ezt követően - a töltőkészülékről leválasztva - eltávolítjuk a szigetelőanyagot a lemezek közül. Mi fog történni, és miért? A konenzátor aatai: A = 10 m = 0,1 mm ε r =, A konenzátor kapacitása: A 1 01, m 8 = ε o ε r = 8, 85 10, 3 = 10 F = 0 nf Vm m 9 6 A konenzátor töltése: Q = = 0 10 F 100V = 10 A töltőkészülékről történő leválasztás után a konenzátor töltése nem változhat! A szigetelőanyag eltávolítása után a konenzátor kapacitása lecsökken:, A 1 01, m 9 = ε o ε r = 8, = 10 F = 8,85 nf Vm m 6, Q 10 Ezért a konenzátor feszültsége megnő: = = = 6V, 9 8, F,, 6 V 6 V kv A térerősség a konenzátor lemezei között: E = = = 6, 10 = 6, m m cm Ez nagyobb mint a levegő átütési szilársága, a konenzátorban átütés lép fel. Tehát a szigetelőanyag alkalmazásával jelentősen nő a konenzátor töltéstároló képessége, mert nagyobb lesz a kapacitása ( nagyobb) - nagyobb feszültséget kapcsolhatunk rá, mert nagyobb térerősség engehető meg. 5

6 5.7. A konenzátorok kapcsolása Két vagy több konenzátor párhuzamosan van kapcsolva, ha a feszültségük azonos. Az feszültség rákapcsolásának hatására az egyes konenzátorokon kapacitásukkal arányos töltés halmozóik fel (6. ábra). Az ereő töltés az egyes konenzátorok töltésének összege: Qe = Q1 + Q + Q3. A töltést a kapacitással és a feszültséggel kifejezve: Q1 = 1 Q = Q3 = 3 Az ereő (helyettesítő) konenzátorra felírva: Q = A töltésekre felírt összefüggésbe visszahelyettesítve: e = = ( ). e e + + Q 1 Q Q Q e e Minkét olalt val elosztva, tetszőleges számú (n b) konenzátor párhuzamos kapcsolásakor az ereő kapacítás: e = n Megállapítható, hogy párhuzamos kapcsolásban a kapacitások összegzőnek. Az ereő kapacitás nagyobb a kapcsolást alkotó bármelyik konenzátor értéknél. Azonos kapacitású, n arab párhuzamosan kapcsolt konenzátor esetén az ereő kapacitás: e = n. Péla: Egy µf-os konenzátort 300 V-ra, egy 4 µf-os konenzátort peig 400 V-ra töltünk fel. Mekkora lesz a közös feszültség, ha az áramforrásról való lekapcsolás után a két konenzátort azonos polaritással összekapcsoljuk? Aatok: 1 = µf = 3 µf 1 = 00 V = 400 V A konenzátorok töltése az összekapcsolás előtt: 6 4 Q1 = 1 = V = 4 10 V 6 3 Q = = V = 1, 10 V Párhuzamos kapcsolás után az ereő töltés: Qe = Q1 + Q = , 10 = 16, 10 Q 3 e Qe 16, 10 A közös feszültség: k = = = = 30 V e V Két vagy több konenzátor sorba van kapcsolva, ha a töltésük azonos. A konenzátorok soros kapcsolását az 7. ábrán láthatjuk. Az feszültség rákapcsolásakor csak a két szélső konenzátor lemezeivel áll galvanikus kapcsolatban a generátor. A konenzátor fegyverzetein a villamos megosztás elve alapján jelenik meg töltés, ezért minen konenzátornak ugyanakkora lesz a töltése ábra 6 - Q e = Q 1 + Q + Q 3

7 Így az ábrának megfelelően: Q = 1 1 = = 3 3, illetve Q = e. A sorbakapcsolt konenzátorok feszültségei összeaónak, így: = A feszültségeket a kapacitással és a töltéssel kifejezve, maj a közös Q-val egyszerűsítve, tetszőleges számú (n b) konenzátor sorbakapcsolása esetén: = e 1 3 n e Q e = Q 1 = Q = Q ábra Tehát a sorbakapcsolt konenzátorok ereő kapacitásának reciprok értéke egyenlő az egyes konenzátorok kapacitásának reciprok értékeinek összegével. Fontos megjegyezni, hogy a soros kapcsolás ereője minig kisebb, mint a kapcsolást alkotó legkisebb kapacitás érték. Azonos n arab sorosan kapcsolt kapacitások esetén: e =. n Két sorosan kapcsolt konenzátor esetén egyszerű matematikai átalakítással az alábbi - már ismert alakú (l. ellenállások párhuzamos kapcsolása) összefüggéshez jutunk: e = 1 = Összefoglalva megállapíthatjuk, hogy konenzátorokat akkor kapcsolunk sorba, ha a kapocsfeszültséget akarjuk növelni, míg párhuzamos kapcsolásuk esetén az aott kapocsfeszültségen nagyobb töltést tuunk tárolni A konenzátor energiája A feltöltött konenzátor energiáján azt a munkát értjük, ami ahhoz szükséges, hogy az ereetileg töltésmentes (semleges) konenzátor fegyverzeteire a Q töltést feljuttassuk. Tehát az általunk befektetett munka, amit a konenzátor tárol, tehát megegyezik a konenzátor energiájával: 1 W = Nagy feszültség és nagy kapacitás esetén a tárolt energia jelentős. Ezt használjuk fel pl. fotózáskor villanókészülékekben. A konenzátor energiáját hosszú ieig megőrzi, ezért egy feltöltött konenzátor halálos áramütést is okozhat. A konenzátorok, konenzátor-telepek üzemeltetésére előirt biztonsági, balesetvéelmi előírásokat szigorúan be kell tartani. Péla: 1. Mennyi energia és töltés van a fotózásra használt villanókészülék konenzátorában, ha annak kapacitása 1000 µf, és 35 V-ra van feltöltve? A tárolt energia: W = = Ws = 5, 8 Ws 6 A konenzátor töltése: Q = = V = 0, 35 V 7

8 . A sorbakapcsolt 4 µf-os és 1 µf-os konenzátorokra 400 V-ot kapcsolunk. Mekkora a 4 µf-os konenzátor energiája? = 500 V 1 = 4 µf = 1 µf A 4 µf-os konenzátor feszültsége: 1µ F 1 = = 400 V = 300 V µ F + 4µ F A 4 µf-os konenzátor energiája: W 1 = 1 1 = V = 018, Ws. V 5.9. A konenzátor feltöltése és kisütése Ha a kapacitású konenzátort az 0 feszültségű generátorról egy R ellenálláson át fogjuk feltölteni, akkor. a konenzátor 0 feszültségre töltőik fel, így a konenzátorban 1 tárolt energia: W = 0. A konenzátor energiája ugrásszerűen nem változhat, mert az ugrásszerű energiaváltozáshoz végtelen nagy teljesítményre lenne szükség. Tehát a konenzátor energiája véges iő alatt és folyamatosan növekehet nulláról W értékre, így a konenzátor feszültsége is folyamatos növekeéssel éri el nulláról az 0 értéket. A töltés sebességét a kör R ellenállása és a kapacitás értéke határozza meg. Minél nagyobb a kapacitás, annál több töltést kell a konenzátorra felvinni, illetve minél nagyobb R értéke, annál kisebb árammal történik a töltés. Tehát a töltés kezeti sebességét a kettő szorzata határozza meg, amit a kör villamos iőállanójának nevezünk. A töltés kezeti pillanatában a konenzátor feszültsége nulla, így a töltőáram kezeti értékét az R ellenállás határozza meg. Az állanósult állapot kialakulásakor a kör árama és így az ellenállásra jutó feszültség is nulla lesz. A konenzátor feszültségének illetve a kör áramának iőfüggvényét matematikai függvénnyel is felírhatjuk. t t uc() t = o 1 e τ illetve it () R e = o τ A konenzátor energiája kisütéskor sem változhat ugrásszerűen, tehát a feltöltött konenzátor ekkor 0 feszültségű generátorként viselkeik. A kisütő áram kezeti értéke is I0 = 0 R, ha a konenzátort az R ellenálláson keresztül sütjük ki. Az áram a töltőáramhoz képest ellentétes irányú, a konenzátor termelőként viselkeik. A konenzátor feszültsége és árama folyamatosam csökken, t = iő múlva minkettő nulla lesz. A konenzátorban tárolt energia az R ellenálláson hővé alakul. A konenzátor áramának és feszültségének t t iőfüggvénye kisütéskor: uc() t = o e τ illetve it () = o R e τ Az iőállanó a töltési és a kisütési folyamat sebességét jellemző mennyiség, a kör R ellenállásának és a konenzátor kapacitásának szorzata, jele: τ. V τ = = = A V s Mértékegysége: [ ] [ R] [ ] τ = R 8

9 A τ iő alatt a konenzátor feszültsége a rákapcsolt feszültség 63 %-át éri el, töltőárama a kezeti érték 37 %-ra csökken. A villamos iőállanónak szemléletes jelentés ahatunk: τ iő alatt tölthetjük fel a konenzátort, ha a töltőáram kezeti értékének megfelelő, állanó I 0 árammal töltjük! A gyakorlatban a folyamatot 5 τ iő után befejezettnek tekintjük, ez az iő a feltöltési illetve kisütési iő Az elektrolízis Már a XVIII. száza végén megfigyelték, hogy a vizen áthalaó egyenáram hatására gáz képzőik, a fémsók olataiból fém és oxigén válik ki. Nemcsak a kémiai vegyületek (bázisok, savak, sók) vizes olatai, hanem az egyes megolvasztott sók is vezetik az áramot. Az áram vezetésére alkalmas folyaékot elektrolitnak nevezzük. A fémek, fémötvözetek esetén a töltéshorozók a szaba elektronok, ugyanakkor az elektrolitban az elmozuló töltéshorozók a pozitív vagy negatív töltésű atomok illetve atomcsoportok az un. ionok. A esztillált víz jó szigetelő, rajta keresztül áramvezetés nem jöhet létre. Ha a szigetelőanyagból készült kába konyhasó (Nal) vizes olatát tesszük, akkor zárt áramkört hozunk létre, mert a vízben olott konyhasó molekuláinak egy része pozitív nátrium-ionra és negatív klór-ionra esik szét. Ezt a jelenséget elektrolitos isszociációnak (szétesés) hívjuk. Az áram hozzávezetésére szolgáló, az elektrolitba merülő fémes vezetők az elektróák. Az elektronok kilépésének helye a pozitív elektróa (anó), míg az elektronoknak az elektro-litba történő visszalépése a negatív elektróán (kató) történik. Tehát a negatív ionok az anó felé vánorolnak (anionok), míg a pozitív ionok a kató felé (kationok). Mivel a fémes vezetőkben az elektronok, az elektrolitban peig az ionok vezetik az áramot, ezért azokon a helyeken, ahol az áram fémes vezetőből elektrolitba, illetve elektrolitból fémes vezetőbe lép, kémiai változásnak kell létrejönnie. A kémiai változás magyarázata, hogy az áram ezeken a határfelületeken csak ionok keletkezése illetve semlegesítése révén halahat át, mert a szaba elektronok nem léphetnek be az olatba. Az áram hatására létrejövő kémiai változást elektrolízisnek nevezzük. Faraay már az 1830-as években kimutatta, hogy az áram kémiai hatása az áram erősségével és az iővel, tehát az áthalaó töltés mennyiségével arányos: m= k I t = k Q ahol m az elektrolízis során kivált anyag tömege mg I az áramerősség A t az elekrolízis iőtartama s k elektrokémiai egyenérték (az aott anyagra jellemző állanó) mg/ Pontos mérésekkel Faraay meghatározta, hogy egy grammegyenértéksúlynyi mennyiség kiválasztásához minig ugyanannyi (96500 ) töltés szükséges egyenáram esetén. Ez a szám az ún. Faraay állanó, tehát F = Az egyenértéksúlynyi mennyiség az aott anyag atomtömegével megegyező tömegű anyag grammban kifejezve, ha az anyag vegyértéke egy, egyébként az atomtömeg (A) és a vegyérték (v) hányaosa. Ez alapján az elektrokémiai egyenérték: m A 1 k = = Q v F 9

10 Néhány anyag elektrokémiai jellemzőit az 1.táblázatban foglaltuk össze. Pl. ezüst esetén: 107, 88 g 1 mg k Ag = = 1118, Péla: Határozzuk meg a katóon kiváló ezüst tömegét, ha fél órán keresztül 10 A-es állanó egyenárammal végeztük az elektrolízist! A fenti összefüggésbe behelyettesítve: 3 g mag = kag I t = 1118, A 1800 s = 0, 1 g Az elektrolízist a gyakorlatban számos esetben alkalmazzuk. Ezek közül a továbbiakban az akkumulátorokkal foglalkozunk. 1.táblázat Néhány anyag elektrokémiai jellemzői Megnevezés Atomtömeg (A) Vegyérték (v) Egyenértéksúly (A/v), g Elektrokémiai egyenérték (k), mg/ Sűrűség, kg/m 3 Alumínium 6,98 3 9,0 0,093,7 Arany 197, 1 197,,043 19,1 Ezüst 107, ,88 1,118 10,49 ink 65,38 3,69 0,339 7,13 Kamium 11,41 56,1 0,58 8,65 Króm 5,01 6 8,67 0,0897 7,19 Nikkel 58,69 9,35 0,304 8,90 3 0,03 Ón 118,7 0,615 7,8 4 9,63 0,307 Platina 195, ,81 0,506 1,45 Réz 63, ,54 31,77 0,659 0,39 8, Szekuner elemek (akkumulátorok) Az akkumulátor olyan speciális fogyasztó, amely a felvett energiát vegyi energia formájában - akár hosszabb iőn keresztül is - tárolni képes, egy olyan speciális áramköri elem, amely villamos energia tárolására alkalmas vegyi folyamatok segítségével. Kisütéskor termelőként jelenik meg az áramkörben, a tárolt energiát a fogyasztók számára leaja. Töltéskor fogyasztóként műköik, tehát a hálózatból energiát vesz fel. Az akkumulátorok alapegysége a cella, amely egy speciális kialakítású galvánelem. Az akkumulátor több sorbakapcsolt cellából álló mechanikus egység, melynek feszültségét a sorbakapcsolt cellák száma határozza meg. A jelenleg alkalmazott akkumulátorokat - az elektrolittól függően - két nagy csoportba sorolhatjuk: a) savas akkumulátorok b) lúgos akkumulátorok a) Savas akkumulátorok Az akkumulátor elektrolitja tömény kénsav és víz meghatározott arányú elegye. Feltöltött állapotban a negatív elektróa ólom, a pozitív elektróa ólomioxi (PbO ). Kisütéskor minkét elektróán fehér színű ólomszulfát válik ki. Az ólomioxiból 10

11 felszabauló oxigén a kénsav molekulák hirogénjével vizet képez, tehát kisütéskor csökken az elektrolit sűrűsége (csökken a kénsav, növekszik a víz aránya). Töltéskor a fentiekkel ellentétes folyamatok játszónak le. Az akkumulátor műköését jellemző kémiai folyamatokat az alábbiak szerint foglalhatjuk össze: kisülés Pb + H SO 4 + PbO negatív elektrolit pozitív elektróa elektróa Az elektrolit sűrűségének növelésével növelhető ugyan az akkumulátor kapocsfeszültsége, e a tömény elektrolit az elektróák gyors elszulfátosoását, az akkumulátor tönkremenetelét okozza. b) Lúgos akkumulátorok A lúgos akkumulátorok elektrolitja káliumhiroxi (KOH) vizes olata. Ez a töltési kisütési folyamatban közvetlenül nem vesz részt, csupán az ionos vezetésben tölt be közvetítő szerepet. Ezért ezek az akkumulátorok viszonylag kis mennyiségű elektrolittal készülhetnek. A nikkel vas (Ni-Fe) akkumulátorok pozitív elektróája grafittal kevert Ni(OH) 3 nikkelhiroxi, ahol a grafit a megfelelő vezetőképességet illetve porozitást (nagy felületet) biztosítja. Negatív elektróájuk szivacsos vas. A Ni-Fe akkumulátorok kevezőtlen tulajonsága, hogy önkisülésre hajlamosak. Ezt megelőzhetjük, ha vas helyett kamiumot alkalmazunk. A Ni- akkumulátorok szinte korlát-lan ieig töltött állapotban tarthatók, teljesen kiszorították már a Ni-Fe akkumulátorokat. Az akkumulátorokkal szemben támasztott egyik legalapvetőbb elvárásunk, hogy minél kisebb tömeg illetve térfogat mellett, minél nagyobb töltés (energia) tárolására legyenek képesek. Az eig ismertetett akkumulátorokénál lényegesen jobb ereményeket érhetünk el ezüstakkumulátorokkal, amelyek anója ezüstoxi (Ag O ), katója peig cink. Az elektrolit ennél is káliumhiroxi vizes olata. A nagy tárolóképesség oka, hogy a töltéstárolást biztosító vegyi folyamatok két lépésben jönnek létre. A továbbiakban az akkumulátorok legfontosabb jellemzőit foglaljuk össze. Az akkumulátorok energiatároló funkciójukat töltések tárolásával biztosítják. Ezért legfontosabb jellemzőjük töltéstároló képességük vagy kapacitásuk. Az akkumulátorból kivehető töltés mennyisége függ a kisütőáram értékétől. Minél nagyobb árammal sütjük ki az akkumulátort, annál kisebb lesz a kivehető töltés mennyisége. A hőmérséklet növelésekor nő a kivehető töltés mennyisége. Tehát az akkumulátorok töltéstároló képességének megaásakor rögzíteni kell a kisütés feltételeit. A névleges tárolóképesség (kapacitás) az a villamos töltés amperórában (Ah) kifejezve, amelyet egy akkumulátor leani képes 5 o -on, I 0 áramerősség mellett, előírt cellafeszültség eléréséig. Az I 0 áramerősséget úgy kapjuk meg, hogy az amperórában kifejezett kapacitást osztjuk 0 órával: I 0 töltés Q = 0 0 PbSO 4 + H O + PbSO 4 negatív elektrolit pozitív elektróa elektróa Pélául 44 Ah a kapacitása annak az akkumulátornak, amely 5 o -on, 0 órán keresztül, A kisütőáramot képes szolgáltatni. Ennél nagyobb áram esetén a kivehető töltés kisebb, kisebb áram esetén viszont nagyobb lesz 11

12 Az akkumulátor névleges áramának a 0 órás kapacitás (Q 0 ) amperórában kifejezett értékének tizerészét tekintjük, ami a fenti I 0 áram kétszerese: Q0 In = = I0 10 Az akkumulátor töltését a fenti névleges árammal vagy annál kisebb árammal végezhetjük úgy, hogy a töltőfeszültség nem emelkehet a cellára megengeett feszültség fölé (pl. savas ólomakkumulátornál max.,4 V). Közismert, hogy minen energiaátalakítás veszteségekkel jár. Ez alól az akkumulátorok töltése és kisütése sem kivétel. A töltés során bevitt energiát nem tujuk maraéktalanul visszanyerni, tehát a hatásfok 100 %-nál kisebb. Qkisüté s Megkülönböztetünk töltési (vagy amperóra) hatásfokot: η Ah = Qtölté s Wkisüté s illetve energia (vagy wattóra) hatásfokot: η W =. Wtölté s A töltőfeszültség minig nagyobb a kisütő feszültségnél, illetve a kisütési folyamat alatt is tapasztalható a kapocsfeszültség csökkenése, ezért az energia hatásfok kisebb a töltési hatásfoknál. Ebben nyilvánvalóan szerepet játszik, hogy az akkumulátor is egy reális (veszteséges) feszültségforrás, tehát véges belső ellenállással renelkezik. Közismert, hogy az akkumulátor min a töltés, min a kisütés során melegszik, veszteség lép fel. Az akkumulátorok belső ellenállása általában 1 mω...1 Ω között változik, és a kivezetések, az elektróák és az elektrolit olat ellenállásából tevőik össze. Értéke függ a hőmérséklettől, e az akkumulátor töltöttségi állapotától is. A különböző akkumulátorok legfontosabb jellemzőit a.táblázatban foglaltuk össze. A gyakorlatban széleskörűen használjuk ma is a savas ólomakkumulátort, aminek magyarázata - a többi típushoz képesti viszonylagos olcsósága is..táblázat Akkumulátorok jellemző aatai Savas Lúgos Ólom Ni - Ezüst A cella névleges feszültsége, V,0 1, 1,5 A cela üzemi feszültsége, V,4...1,8 (1,7) 1,5...1,1,0...1,4 A töltés hatásfoka, % >90 A kisütés hatásfoka, % >90 Fajlagos energia- Wh/kg tároló képesség, Wh/m Tárolás csak feltöltve tetszőleges állapotban Önkisülés 1 %/nap 3 %/hónap Min. üzemi hőmérséklet 0-0 1

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek.

Villamos tér. Elektrosztatika. A térnek az a része, amelyben a. érvényesülnek. III. VILLAMOS TÉR Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos töltések által keltett villamos tér törvényeivel foglalkozik.

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Elektromos alapjelenségek

Elektromos alapjelenségek Elektrosztatika Elektromos alapjelenségek Dörzselektromos jelenség: egymással szorosan érintkező, vagy egymáshoz dörzsölt testek a szétválasztásuk után vonzó, vagy taszító kölcsönhatást mutatnak. Ilyenkor

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

ELEKTROSZTATIKA. Ma igazán feltöltődhettek!

ELEKTROSZTATIKA. Ma igazán feltöltődhettek! ELEKTROSZTATIKA Ma igazán feltöltődhettek! Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Elektrosztatikai alapjelenségek Az egymással

Részletesebben

Elektrosztatikai alapismeretek

Elektrosztatikai alapismeretek Elektrosztatikai alapismeretek THALÉSZ: a borostyánt (élektron) megdörzsölve az a könnyebb testeket magához vonzza. Az egymással szorosan érintkező anyagok elektromosan feltöltődnek, elektromos állapotba

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

1. Elektromos alapjelenségek

1. Elektromos alapjelenségek 1. Elektromos alapjelenségek 1. Bizonyos testek dörzsölés hatására különleges állapotba kerülhetnek: más testekre vonzerőt fejthetnek ki, apróbb tárgyakat magukhoz vonzhatnak. Ezt az állapotot elektromos

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Egyenáram Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai Elektromos áram Az elektromos töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük.

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Savas akkumulátorok és az Ő ellenségük, az ólomszulfát.

Savas akkumulátorok és az Ő ellenségük, az ólomszulfát. Savas akkumulátorok és az Ő ellenségük, az ólomszulfát. Ólom akkumulátorok felépítése Működése Szulfátosodás Küzdelem az ólomszulfát ellen 2015 március 29. összeállította: HA5GY Vincze István Akkumulátorok

Részletesebben

Elektromosság, áram, feszültség

Elektromosság, áram, feszültség Elektromosság, áram, feszültség Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

Elektrotechnika 9. évfolyam

Elektrotechnika 9. évfolyam Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér

Bevezetés az analóg és digitális elektronikába. III. Villamos és mágneses tér Bevezetés az analóg és digitális elektronikába III. Villamos és mágneses tér Villamos tér A térnek az a része, amelyben a villamos erőhatások érvényesülnek. Elektrosztatika A nyugvó és időben állandó villamos

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

Elektromos töltés, áram, áramkörök

Elektromos töltés, áram, áramkörök Elektromos töltés, áram, áramkörök Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor

TestLine - Fizika 8. évfolyam elektromosság alapok Minta feladatsor Mi az áramerősség fogalma? (1 helyes válasz) 1. 1:56 Normál Egységnyi idő alatt áthaladó töltések száma. Egységnyi idő alatt áthaladó feszültségek száma. Egységnyi idő alatt áthaladó áramerősségek száma.

Részletesebben

1. konferencia: Egyenáramú hálózatok számítása

1. konferencia: Egyenáramú hálózatok számítása 1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell

Részletesebben

Elektromos töltés, áram, áramkör

Elektromos töltés, áram, áramkör Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Mágneses mező jellemzése

Mágneses mező jellemzése pólusok dipólus mező mező jellemzése vonalak pólusok dipólus mező kölcsönhatás A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonalak vonzó és taszító erő pólusok dipólus mező pólusok északi

Részletesebben

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.

-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el. 1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Elektromos áram, áramkör

Elektromos áram, áramkör Elektromos áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban ezek

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

AZ EGYENÁRAM HATÁSAI

AZ EGYENÁRAM HATÁSAI AZ EGYENÁRAM HATÁSAI 1) HŐHATÁS Az elektromos áram hatására a zseblámpa világít, mert izzószála felmelegszik, izzásba jön. Oka: az áramló elektronok kölcsönhatásba kerülnek a vezető helyhez kötött részecskéivel,

Részletesebben

Elektromos áram, áramkör, kapcsolások

Elektromos áram, áramkör, kapcsolások Elektromos áram, áramkör, kapcsolások Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Fizika A2E, 8. feladatsor

Fizika A2E, 8. feladatsor Fizika AE, 8. feladatsor ida György József vidagyorgy@gmail.com. feladat: Az ábrán látható áramkörben határozzuk meg az áramer sséget! 4 5 Utolsó módosítás: 05. április 4., 0:9 El ször ki kell számolnunk

Részletesebben

Fizika Vetélkedő 8 oszt. 2013

Fizika Vetélkedő 8 oszt. 2013 Fizika Vetélkedő 8 oszt. 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány proton elektromos töltése egyenlő nagyságú 6 elektron töltésével 2 Melyik állítás fogadható el az alábbiak közül? A

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test

A semleges testeket a + és a állapotú anyagok is vonzzák. Elnevezés: töltés: a negatív állapotú test negatív töltéssel, a pozitív állapotú test Elektrosztatika Elektromos alapjelenségek Egymással szorosan érintkező ( pl. megdörzsölt) felületű anyagok a szétválás után elektromos állapotba kerülnek. Azonos elektromos állapotú anyagok taszítják egymást,

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

Elektrosztatika tesztek

Elektrosztatika tesztek Elektrosztatika tesztek 1. A megdörzsölt ebonitrúd az asztalon külön-külön heverő kis papírdarabkákat messziről magához vonzza. A jelenségnek mi az oka? a) A papírdarabok nem voltak semlegesek. b) A semleges

Részletesebben

ELEKTROMOSSÁG ÉS MÁGNESESSÉG

ELEKTROMOSSÁG ÉS MÁGNESESSÉG ELEKTROMOSSÁG ÉS MÁGNESESSÉG A) változat Név:... osztály:... 1. Milyen töltésű a proton? 2. Egészítsd ki a következő mondatot! Az azonos elektromos töltések... egymást. 3. A PVC-rudat megdörzsöltük egy

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

Időben változó elektromos erőtér, az eltolási áram

Időben változó elektromos erőtér, az eltolási áram őben változó elektromos erőtér, az olási áram Ha az ábrán látható, konenzátort tartalmazó áramkörbe iőben változó feszültségű áramforrást kapcsolunk, akkor az árammérő áramot mutat, annak ellenére, hogy

Részletesebben

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása

É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása. Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása É11. Nyugvó villamos mező (elektrosztatika) Cz. Balázs kidolgozása Elméleti kérdések: 1.Az elektromos töltések fajtái és kölcsönhatása A testek elektromos állapotát valamilyen közvetlenül nem érzékelhető

Részletesebben

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás

Vegyes témakörök. 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás Vegyes témakörök 9. Bevezetés az elektronikába - alapfogalmak, Ohm törvény, soros és párhuzamos kapcsolás Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom F. M.

Részletesebben

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük.

A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak nevezzük. Az áram irányán a pozitív részecskék áramlási irányát értjük. Elektromos mezőben az elektromos töltésekre erő hat. Az erő hatására az elektromos töltések elmozdulnak, a mező munkát végez. A töltéshordozók meghatározott irányú rendezett mozgását elektromos áramnak

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?

Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind

Részletesebben

Megújuló energiaforrások

Megújuló energiaforrások Megújuló energiaforrások Energiatárolási módok Marcsa Dániel Széchenyi István Egyetem Automatizálási Tanszék 2015 tavaszi szemeszter Energiatárolók 1) Akkumulátorok: ólom-savas 2) Akkumulátorok: lítium-ion

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Kötések kialakítása - oktett elmélet

Kötések kialakítása - oktett elmélet Kémiai kötések Az elemek és vegyületek halmazai az atomok kapcsolódásával - kémiai kötések kialakításával - jönnek létre szabad atomként csak a nemesgázatomok léteznek elsődleges kémiai kötések Kötések

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

Fizika 2. Feladatsor

Fizika 2. Feladatsor Fizika 2. Felaatsor 1. Egy Q1 és egy Q2 =4Q1 töltésű részecske egymástól 1m-re van rögzítve. Hol vannak azok a pontok amelyekben a két töltéstől származó ereő térerősség nulla? ( Q 1 töltéstől 1/3 méterre

Részletesebben

EHA kód:...2009-2010-1f. As,

EHA kód:...2009-2010-1f. As, MŰSZAKI FIZIKA I. RMINB135/22/v/4 1. ZH A csoport Név:... Mérnök Informatikus EHA kód:...29-21-1f ε 1 As = 9 4π 9 Vm µ = 4π1 7 Vs Am 1) Két ± Q = 3µC nagyságú töltés közti távolság d = 2 cm. Határozza

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok

Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.

Részletesebben

Fizika A2 Alapkérdések

Fizika A2 Alapkérdések Fizika A2 Alapkérdések Az elektromágnesség elméletében a vektorok és skalárok (számok) megkülönböztetése nagyon fontos. A következ szövegben a vektorokat a kézírásban is jól használható nyíllal jelöljük

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

Számítási feladatok a 6. fejezethez

Számítási feladatok a 6. fejezethez Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz

Részletesebben

Feladatlap X. osztály

Feladatlap X. osztály Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS Gépjármű-villamosság Készítette: Dr.Desztics Gyula Járművek elektromos berendezései A traktorok és közúti járművek villamos berendezései

Részletesebben

Elektromos áram, egyenáram

Elektromos áram, egyenáram Elektromos áram, egyenáram Áram Az elektromos töltések egyirányú, rendezett mozgását, áramlását, elektromos áramnak nevezzük. (A fémekben az elektronok áramlanak, folyadékokban, oldatokban az oldott ionok,

Részletesebben