Mozdony egy algebrista képerny jén
|
|
- Nóra Nagy
- 8 évvel ezelőtt
- Látták:
Átírás
1 Mozdony egy algebrista képerny jén Czédli Gábor (Szeged, Egyetemi Tavasz, ) április 18.
2 Csoport (a SZIMMETRIA absztrakciójából) 0'/20 Deníció Évariste Galois (1811. okt május 31.) Csoport: (G; ), (xy)z = x(yz), van egységelem, azaz egy olyan 1 G, hogy 1 x = x = x 1, és minden x G elemnek van inverze, azaz egy olyan y G, hogy xy = yx = 1. (Az x inverzét x 1 jelöli, tehát xx 1 = 1 = x 1 x.)
3 Példák csoportra 1'/19 Példa ({nemnulla valós számok}; ). Inverz = reciprok. Példa ({sík (tér) egybevágósági transzformációi}; ). Szorzás: egymás utáni végrehajtás. Egybevágósági transzformáció szimmetria!
4 Példák csoportra 1'/19 Példa ({nemnulla valós számok}; ). Inverz = reciprok. Példa ({sík (tér) egybevágósági transzformációi}; ). Szorzás: egymás utáni végrehajtás. Egybevágósági transzformáció szimmetria!
5 A D 5 szimmetriacsoport 1'/19 Példa D 5 = ({1, α, α 2, α 2, α 3, α 4, τ 1, τ 2, τ 3, τ 4, τ 5 }; ), a szabályos ötszög szimmetriacsoportja. Példa Adott síkidom, mértani test, Rubik-kocka, kristályrács, stb. szimmetriacsoportja.
6 A D 5 szimmetriacsoport 1'/19 Példa D 5 = ({1, α, α 2, α 2, α 3, α 4, τ 1, τ 2, τ 3, τ 4, τ 5 }; ), a szabályos ötszög szimmetriacsoportja. Példa Adott síkidom, mértani test, Rubik-kocka, kristályrács, stb. szimmetriacsoportja.
7 Így számolunk D 5 -ben 2'/18 ( ) ( Számolás a D 5 csoportban: τ 2 α = ) = ( ) = τ Példa Sík periodikus lefedései (parkettázás, csempézés, tapétázás) sokszögekkel. M. C. Escher :
8 Csoport és csempézés (Escher) 3'/17 Példa M. C. Escher]
9 Középkori iszlám m vészet: mind a 17 3'/17 Periodikusan, teljes él mentén illeszked szabályos sokszögekkel: 17 Alhambra palotaer d (Granada, Spanyolország). Példa (Seville, Spain)
10 Gráf szimmetriacsoportja 4'/16 Példa ( ) 1 2 3, ( ) 1 2 3, Irányított gráf szimmetriái is csoportot alkotnak; ( esetünkben ) ennek elemei:
11 Polinom Galois-csoportja 4'/16 Deníció Legyen f (x) egy n-edfokú egész együtthatós polinom. Legyen irreducibilis ( szorzat). Gyökei: x 1,..., x n (különböz k). Az f (x) szimmetriacsoportja, más néven Galois-csoportja azon {x 1,..., x n } {x 1,..., x n } permutációkból áll, amelyek meg rzik az algebrai összefüggéseket. Algebrai összefüggés: bármi, amit az x 1,..., x n -b l és egész számokból az összeadás, szorzás, kivonás segítségével fel tudunk írni. Pl. 3x 1 + x 1 x 3 x 2 2 = 0.
12 Melyik polinom a legkevésbé szimmetrikus? 5'/15 Példa (A négy közül melyik lóg ki a sorból szimmetria szempontból?) c { 8, 2, 8, 12}-re az f (x) = x 3 12x +c polinom grakonja
13 Még mindig a négy polinomról 6'/14 A Galois-csoport lehetséges elemei: ( ) x1 x 2 x 3, x 1 x 2 x 3 ( ) x1 x 2 x 3, x 1 x 3 x 2 ( ) x1 x 2 x 3, x 2 x 3 x 1 ( ) x1 x 2 x 3, x 3 x 2 x 1 ( ) x1 x 2 x 3, x 3 x 1 x 2 ( ) x1 x 2 x 3 x 2 x 1 x 3
14 4 polinom: szabad a gazda (felülr l a második) 6'/14 Válasz (c { 8, 2, 8, 12}, f (x) = x 3 12x + c) Amikor c = 8, akkor csak az els három permutáció szimmetria. A másik három esetben mind a hat. (A hat nem meglep, a 3 viszont igen.)
15 Na de miért? Számoljunk... 8'/12 Indoklás (c = 8-ra f (x) = x 3 12x + 8, miért csak 3 szimmetriája van?) x , x , x x 2 1 /2 4 x 2, x 2 2 /2 4 x 3, x 2 3 /2 4 x 1 (hiba < 10 8 ). S t, itt = van, hiszen ha u gyök, u 3 12u + 8 = 0, azaz u 3 = 12u 8, akkor elemi iskolai számolással: f (u 2 /2 4) = = u 6 /8 u u 2 8 = (u 3 ) 2 /8 3u u u 2 8 = (12u 8) 2 /8 3u (12u 8) + 18u 2 8 = = 0.
16 Na de miért? Számoljunk... 8'/12 Indoklás (c = 8-ra f (x) = x 3 12x + 8, miért csak 3 szimmetriája van?) x , x , x x 2 1 /2 4 x 2, x 2 2 /2 4 x 3, x 2 3 /2 4 x 1 (hiba < 10 8 ). S t, itt = van, hiszen ha u gyök, u 3 12u + 8 = 0, azaz u 3 = 12u 8, akkor elemi iskolai számolással: f (u 2 /2 4) = = u 6 /8 u u 2 8 = (u 3 ) 2 /8 3u u u 2 8 = (12u 8) 2 /8 3u (12u 8) + 18u 2 8 = = 0.
17 Na de miért? Számoljunk... 8'/12 Indoklás (c = 8-ra f (x) = x 3 12x + 8, miért csak 3 szimmetriája van?) x , x , x x 2 1 /2 4 x 2, x 2 2 /2 4 x 3, x 2 3 /2 4 x 1 (hiba < 10 8 ). S t, itt = van, hiszen ha u gyök, u 3 12u + 8 = 0, azaz u 3 = 12u 8, akkor elemi iskolai számolással: f (u 2 /2 4) = = u 6 /8 u u 2 8 = (u 3 ) 2 /8 3u u u 2 8 = (12u 8) 2 /8 3u (12u 8) + 18u 2 8 = = 0.
18 S t, irányított gráal is szemléltethetjük 11'/9 Jelen esetben (de nem mindig!) az f gyökei között talált összefüggést gráal is szemléltethetjük. Innen már látszik, hogy csak három szimmetria van (a forgatások) A másik három (a tengelyes tükrözések) nem rzik meg az élek irányát, ezért ki vannak zárva.
19 Normális és szubnormális részcsoportok 12'/8 Deníció (G csoport normális részcsoportja) Ha S G, bármely a, b S esetén ab S, és bármely x S és y G esetén y 1 xy S, akkor S normális részcsoportja G-nek. Tétel (Lagrange-tétel ) Ilyenkor S elemszáma osztja G elemszámát, ha az utóbbi véges. Példa S = {1, α, α 2, α 2, α 3, α 4 } normális részcsoportja D 5 -nek; Deníció (Szubnormális részcsoport) Normális részcsoport normális részcsoportjának... szubnormális normális részcsoportja.
20 Normális és szubnormális részcsoportok 12'/8 Deníció (G csoport normális részcsoportja) Ha S G, bármely a, b S esetén ab S, és bármely x S és y G esetén y 1 xy S, akkor S normális részcsoportja G-nek. Tétel (Lagrange-tétel ) Ilyenkor S elemszáma osztja G elemszámát, ha az utóbbi véges. Példa S = {1, α, α 2, α 2, α 3, α 4 } normális részcsoportja D 5 -nek; Deníció (Szubnormális részcsoport) Normális részcsoport normális részcsoportjának... szubnormális normális részcsoportja.
21 Normális és szubnormális részcsoportok 12'/8 Deníció (G csoport normális részcsoportja) Ha S G, bármely a, b S esetén ab S, és bármely x S és y G esetén y 1 xy S, akkor S normális részcsoportja G-nek. Tétel (Lagrange-tétel ) Ilyenkor S elemszáma osztja G elemszámát, ha az utóbbi véges. Példa S = {1, α, α 2, α 2, α 3, α 4 } normális részcsoportja D 5 -nek; Deníció (Szubnormális részcsoport) Normális részcsoport normális részcsoportjának... szubnormális normális részcsoportja.
22 Normális és szubnormális részcsoportok 12'/8 Deníció (G csoport normális részcsoportja) Ha S G, bármely a, b S esetén ab S, és bármely x S és y G esetén y 1 xy S, akkor S normális részcsoportja G-nek. Tétel (Lagrange-tétel ) Ilyenkor S elemszáma osztja G elemszámát, ha az utóbbi véges. Példa S = {1, α, α 2, α 2, α 3, α 4 } normális részcsoportja D 5 -nek; Deníció (Szubnormális részcsoport) Normális részcsoport normális részcsoportjának... szubnormális normális részcsoportja.
23 Hálók (a REND, HIERARCHIA absztrakciójából) 13'/7 Deníció (Véges háló deníciója) Vízszintes élek nélküli gráf; x y élek mentén felfelé haladva x-b l eljutunk y-ba; bármely x, y elemnek van egyesítése (= legkisebb olyan elem, amelyik mindkett nél nagyobb vagy egyenl ) és metszete. Példa (hálóra) a 1, 0 1, b e; a és c egyesítése e, metszetük 0.
24 Még egy példa, Wielandt-tétel 14'/6 Példa (hálóra) Az A = {a, b, c} részhalmazainak hálója; jelentése:, azaz részhalmaza; egyesítés, metszet: a szokásos. Tétel (Wielandt-tétel, 1939) Véges G csoport szubnormális részcsoportjainak SubNorm(G) halmaza háló a "-re nézve!
25 Még egy példa, Wielandt-tétel 14'/6 Példa (hálóra) Az A = {a, b, c} részhalmazainak hálója; jelentése:, azaz részhalmaza; egyesítés, metszet: a szokásos. Tétel (Wielandt-tétel, 1939) Véges G csoport szubnormális részcsoportjainak SubNorm(G) halmaza háló a "-re nézve!
26 Kompozíciólánc fogalma 14'/6 Deníció (G véges csoport kompozíció lánca) A (SubNorm(G); ) hálóban egy élekb l álló lánc az aljától a tetejéig; az éleire számokat írunk a Lagrange-tétel szerint (ezek nincsenek az ábrán feltüntetve).
27 és szemléltetése 14'/6 G kompozíciólánca
28 Irreducibilis polinom fogalma 15'/5 Deníció (Irreducibilis polinom) f (x) irreducibilis, ha nem áll el két alacsonyabb fokú polinom szorzataként.
29 A csoport- és Galois-elmélet egy alkalmazása 15'/5 Tétel (A Galois-elmélet fontos következménye ) Legyen f (x) egy egészegyütthatós irreducibilis polinom. Ekkor az alábbiak ekvivalensek: f (x)-nek van olya gyöke, amelyik felírható egész számokból a négy alapm velet és gyökonások alkalmazásával (pozitív egész gyökkitev ket megengedve). az f (x) Galois-csoportjának van olyan kompozíciólánca, amelynek az éleire csakis prímszámok vannak írva. Tétel (RuniAbel-tétel, a fentib l is következik) Ötödfokú egyenletre nincs megoldóképlet.
30 A csoport- és Galois-elmélet egy alkalmazása 15'/5 Tétel (A Galois-elmélet fontos következménye ) Legyen f (x) egy egészegyütthatós irreducibilis polinom. Ekkor az alábbiak ekvivalensek: f (x)-nek van olya gyöke, amelyik felírható egész számokból a négy alapm velet és gyökonások alkalmazásával (pozitív egész gyökkitev ket megengedve). az f (x) Galois-csoportjának van olyan kompozíciólánca, amelynek az éleire csakis prímszámok vannak írva. Tétel (RuniAbel-tétel, a fentib l is következik) Ötödfokú egyenletre nincs megoldóképlet.
31 JordanHölder-tétel 16'/4 Tétel (JordanHölder-tétel véges csoportra, 1870) Bármely két kompozíciólánc hossza azonos és az egyik élei párba állíthatók a másik éleivel úgy, hogy az egymásnak megfeleltetett éleken a szám azonos. Ezért az oldal els tételében mindegy, melyik kompozícióláncot tekintjük.
32 A JordanHölder-tétel szemléltetése 16'/4 JordanHölder-tétel személtetése
33 Még jobb párosítás 17'/3 GrätzerNation-tétel (2010): A JordanHölder-párosítás így is lehetséges.
34 és annak unicitása 17'/3 Tétel (CzGSchmidt, 2011) Véges csoport két kompozíciólánca között mindig pontosan egy JordanHölderGrätzerNation-párosítás van.
35 Hálóelméleti bizonyítás 18'/2 A bizonyításhoz hálóelmélet segítségével fogunk hozzá. Az ábrán fel-le kell menni! Miután megmutattuk, hogy elegend a hálónak csak egy ilyenszer részét nézni,
36 Négyszögek mentén 18'/2 kiderült, hogy az ábra négszögekre tagolódik. Továbbá csak úgy lehet felmenni egy élhez, majd onnan lejönni, hogy mindig szemközti négyszögélre lépkedünk.
37 Íme itt a címadó mozdony 19'/1 d c=x k x k-1 x 3 x 2 b x 1 x 0 a Mintha egy sín talpfáin lépkednénk; menjünk (azaz személtessük) ezt inkább vonattal. (Egy konferenciael adásom ábrája.)
38 amely nem össze-vissza közlekedik 19'/1 Vasúti KRESZ" (pl. a sín nem ágazhat el, a vonat balról jobbra megy, továbbá a fenti irányváltás tilalma), és ezekb l a tétel már adódik:
39 Mozdony, valamint a bizonyítás vége 20'/0 A KRESZ csak egyféleképpen engedi a vonatokat menni. Ezért két kompozíciólánc között pontosan egy JordanHölderGrätzerNation-párosítás van: indulási állomás célállomás. Q.e.d. (Popular math. talks)
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
RészletesebbenMM CSOPORTELMÉLET GYAKORLAT ( )
MM4122-1 CSOPORTELMÉLET GYAKORLAT (2008.12.01.) 1. Ismétlés szeptember 1.szeptember 8. 1.1. Feladat. Döntse el, hogy az alábbi állítások közül melyek igazak és melyek (1) Az A 6 csoportnak van 6-odrend
RészletesebbenAlgebra gyakorlat, 4. feladatsor, megoldásvázlatok
Algebra gyakorlat, 4. feladatsor, megoldásvázlatok 0. Ha G egy véges csoport, akkor nyilván csak véges sok részcsoportja van. Legyen most G végtelen. Ha van végtelen rend g G elem, akkor g (Z, +), aminek
RészletesebbenVektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Részletesebbenn =
15. PÉLDÁK FÉLCSOPORTOKRA ÉS CSOPORTOKRA 1. Az R 3 tér vektorai a derékszög½u koordinátarendszerben az a = (a 1 ; a 2 ; a 3 ) alakban adottak az a 1 ; a 2 ; a 3 2 R valós számokkal. A vektoriális szorzás
Részletesebben1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK
MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,
Részletesebben1. Szimmetriák. Háromszög-szimmetria. Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3
Egy kis reklám A Matematikatanárok Klubjának honlapja: https://www.cs.elte.hu/ miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. https://www.youtube.com/watch?v=iy4dzcwyf5s
RészletesebbenMatematika szóbeli érettségi témakörök 2017/2018-as tanév
Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,
RészletesebbenAlgoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
RészletesebbenPermutációk véges halmazon (el adásvázlat, február 12.)
Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz
Részletesebben16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési
RészletesebbenPolinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
RészletesebbenMatematikatanárok Klubja
Tanárklub 2015. okt. 7. 1 / 17 Matematikatanárok Klubja Szimmetriák és leszámlálások Kiss Emil http://ewkiss.web.elte.hu/wp/wordpress/ ewwkiss@gmail.com 2015. okt. 7. Tanárklub 2015. okt. 7. 2 / 17 Egy
RészletesebbenAnalízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két
RészletesebbenMATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
RészletesebbenOsztályozóvizsga-tematika 8. évfolyam Matematika
Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenDISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok
Részletesebben17.2. Az egyenes egyenletei síkbeli koordinátarendszerben
Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
RészletesebbenSE EKK EIFTI Matematikai analízis
SE EKK EIFTI Matematikai analízis 2. Blokk A számelmélet a matematikának a számokkal foglalkozó ága. Gyakran azonban ennél sz kebb értelemben használják a számelmélet szót: az egész számok elméletét értik
RészletesebbenMTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenOsztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
RészletesebbenCsoportelmélet ( ) ϕ ψ adatokra ( ) ( ) ( ) ( )
Csoportelmélet ( A csoportaxiómák nem tartalmaznak ellentmondást mert az { } csoportot alkot. Fizika felépítése: fizikai valóság fizikai modellek matematikai modellek (átjárhatók reprezentációk (áttranszformálhatók
RészletesebbenHALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenEgybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
RészletesebbenMATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
Részletesebben5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.
Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok
RészletesebbenAz alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet
Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok halmaz halmaz megadása, jelölésmód üres halmaz véges halmaz végtelen halmaz halmazok egyenlısége részhalmaz, valódi részhalmaz halmazok uniója
RészletesebbenBevezetés. 1. fejezet. Algebrai feladatok. Feladatok
. fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális
RészletesebbenMM4122/2: CSOPORTELMÉLET GYAKORLAT ( ) 1. Ismétlés február 8.február Feladat. (2 pt. közösen megbeszéltük)
MM4122/2: CSOPORTELMÉLET GYAKORLAT (2007.05.11) 1. Ismétlés február 8.február 15. 1.1. Feladat. (2 pt. közösen megbeszéltük) (1) Egy csoport rendelkezhet egynél több egységelemmel. (2) Bármely két háromelem
RészletesebbenAz osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
RészletesebbenHatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Részletesebben1. Mellékosztály, Lagrange tétele
1. Mellékosztály, Lagrange tétele 1.1. Definíció. Legyen (G, ) csoport, H G részcsoport és g G tetszőleges elem. Ekkor a {gh h H} halmazt a H részcsoport g elem szerinti baloldali mellékosztályának nevezzük
Részletesebben1. feladatsor Komplex számok
. feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4
RészletesebbenOsztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
Részletesebben1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.
1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az
RészletesebbenOsztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
RészletesebbenAz osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenKomplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
RészletesebbenMBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós
MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak
RészletesebbenÓra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
RészletesebbenMatematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
RészletesebbenKlasszikus algebra előadás. Waldhauser Tamás március 24.
Klasszikus algebra előadás Waldhauser Tamás 2014. március 24. Irreducibilitás 3.33. Definíció. A p T [x] polinom irreducibilis, ha legalább elsőfokú, és csak úgy bontható két polinom szorzatára, hogy az
RészletesebbenOsztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
RészletesebbenMatematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. Biró Zsolt. 1. Célkit zések Általános követelmények 1
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 2 4. Oktatási módszer 2 5. Követelmények, pótlások 2 6. Tematika 2 6.1. Alapfogalmak, matematikai
Részletesebben1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:
. Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
RészletesebbenKongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
Részletesebben6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)
6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz
RészletesebbenOSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A
Részletesebben1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet
RészletesebbenSZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
RészletesebbenCsoportelméleti feladatok feldolgozása
Csoportelméleti feladatok feldolgozása SZAKDOLGOZAT Készítette: Dukán András Ferenc Matematika BSc - tanári szakirány Témavezeto : Dr. Szabó Csaba, egyetemi docens ELTE TTK Algebra és Számelmélet Tanszék
RészletesebbenKőszegi Irén MATEMATIKA. 9. évfolyam
-- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...
Részletesebbenx = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2
Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
RészletesebbenEgy kis csoportos elmélet
Egy kis csoportos elmélet Molnár Attila 1. Röviden és tömören és keveset... 1. Definíció (Csoport). Egy G halmaz csoport, ha értelmezett rajta egy művelet, melyre teljesül, hogy Asszociatív: Van neutrális
RészletesebbenMagasabbfokú egyenletek
86 Magasabbfokú egyenletek Magasabbfokú egyenletek 5 90 a) =! ; b) =! ; c) = 5, 9 a) Legyen = y Új egyenletünk: y - 5y+ = 0 Ennek gyökei: y=, y= Tehát egyenletünk gyökei:, =!,, =! b) Új egyenletünk: y
RészletesebbenNT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
RészletesebbenTANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 9. a, b osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
RészletesebbenAlgebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
Részletesebben20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
RészletesebbenRelációk. 1. Descartes-szorzat. 2. Relációk
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum
RészletesebbenPolinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu
Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:
RészletesebbenMatematika javítóvizsga témakörök 10.B (kompetencia alapú )
Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése
Részletesebben2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
RészletesebbenKomplex számok. Wettl Ferenc Wettl Ferenc () Komplex számok / 14
Komplex számok Wettl Ferenc 2012-09-07 Wettl Ferenc () Komplex számok 2012-09-07 1 / 14 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet egy speciális
RészletesebbenLineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Részletesebben24. szakkör (Csoportelméleti alapfogalmak 3.)
24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenMi az, hogy egyenlet. Megoldhatók-e az egyenletek. Mi az, hogy egyenlet. Mi az, hogy egyenlet. Számokat keresünk 3.
A probléma Megoldhatók-e az egyenletek. Időutazás a matematika 4000 éves történetében. Klukovits Lajos TTIK Bolyai Intézet 2015. november 24. Egy egyszerű definíció. Egy vagy több olyan matematikai objektumot
RészletesebbenP ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP
J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.
RészletesebbenKomplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23
Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet
Részletesebben1. Algebrai alapok: Melyek műveletek az alábbiak közül?
1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy
RészletesebbenVEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok
VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják
RészletesebbenMatematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
RészletesebbenMatematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
RészletesebbenRelációk. 1. Descartes-szorzat
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram.. Descartes-szorzat A kurzuson már megtanultuk mik a halmazok
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,
Részletesebben1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
RészletesebbenAlgebra gyakorlat, 8. feladatsor, megoldásvázlatok
Algebra gyakorlat, 8. feladatsor, megoldásvázlatok 1. Jelölje I az (x 2 + 1 ideált. Most az x + I R[x]/(x 2 + 1 négyzete (x + I 2 x 2 + I 1+x 2 +1+I 1+I, hiszen x 2 +1 I. Így ( x+i(x+i (x+i 2 1+I. Tehát
Részletesebben1. Interpoláció. Egyértelműség (K2.4.10) Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1,a 2,...,a n számok. Az
RészletesebbenTANMENET. a matematika tantárgy tanításához 10. E.osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához 10. E.osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Részletesebben1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
RészletesebbenDiszkrét matematika 1.
Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett
RészletesebbenSztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013
UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS
Részletesebben1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.
1. Interpoláció Az interpoláció alapproblémája. Feladat Olyan polinomot keresünk, amely előre megadott helyeken előre megadott értékeket vesz fel. A helyek: páronként különböző a 1, a,...,a n számok. Az
RészletesebbenLineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )
Lineáris leképezések 1 Lineáris-e az f : R 2 R 2 f(x, y = (3x + 2y, x y leképezés? A linearitáshoz ellen riznünk kell, hogy a leképzés additív és homogén Legyen x = (x 1, R 2, y = (y 1, y 2 R 2, c R Ekkor
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
Részletesebben