Matematikatanárok Klubja
|
|
- Béla Király
- 8 évvel ezelőtt
- Látták:
Átírás
1 Tanárklub okt / 17 Matematikatanárok Klubja Szimmetriák és leszámlálások Kiss Emil ewwkiss@gmail.com okt. 7.
2 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html
3 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok.
4 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. Tassy Gergely: Catalan-számok, fák Prüfer kódja
5 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. Tassy Gergely: Catalan-számok, fák Prüfer kódja A mai előadás korábbi változata
6 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. Tassy Gergely: Catalan-számok, fák Prüfer kódja A mai előadás korábbi változata (Hogyan mondanám el középiskolásoknak?)
7 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. Tassy Gergely: Catalan-számok, fák Prüfer kódja A mai előadás korábbi változata (Hogyan mondanám el középiskolásoknak?) Kiss Emil: Bevezetés az algebrába.
8 Tanárklub okt / 17 Egy kis reklám A Matematikatanárok Klubjának honlapja: miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. Tassy Gergely: Catalan-számok, fák Prüfer kódja A mai előadás korábbi változata (Hogyan mondanám el középiskolásoknak?) Kiss Emil: Bevezetés az algebrába. Ingyen letölthető:
9 Szimmetriák Tanárklub okt / 17 Háromszög-szimmetria Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3 Hematit Ametiszt Kvarc vasoxid: Fe 2 O 3 szilicium-dioxid: SiO 2
10 Szimmetriák Tanárklub okt / 17 Hatszög-szimmetria Berill (berillium aluminium-szilikát): Be 3 Al 2 (SiO 3 ) 6 Vörös berill Smaragd Akvamarin
11 Szimmetriák Tanárklub okt / 17 Hatszög-szimmetria Berill (berillium aluminium-szilikát): Be 3 Al 2 (SiO 3 ) 6 Egy szimmetriatengely körüli 60 -os elforgatás. Vörös berill Smaragd Akvamarin
12 Szimmetriák Tanárklub okt / 17 Kocka oktaéder-szimmetria Galenit Gyémánt Fluorit ólom-szulfid: PbS szén: C kalcium-fluorid: CaF 2
13 Szimmetriák Tanárklub okt / 17 Kocka oktaéder-szimmetria Összesen 48 szimmetria. Galenit Gyémánt Fluorit ólom-szulfid: PbS szén: C kalcium-fluorid: CaF 2
14 Szimmetriák Tanárklub okt / 17 Kocka oktaéder-szimmetria Összesen 48 szimmetria. Hogyan számoljuk meg őket? Galenit Gyémánt Fluorit ólom-szulfid: PbS szén: C kalcium-fluorid: CaF 2
15 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik.
16 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás.
17 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás. Nyilván csúcs képe szimmetriánál csúcs lesz.
18 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás. Nyilván csúcs képe szimmetriánál csúcs lesz. Elég a csúcsok képeit ismerni, az meghatározza a transzformációt.
19 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás. Nyilván csúcs képe szimmetriánál csúcs lesz. Elég a csúcsok képeit ismerni, az meghatározza a transzformációt. Legyen X (rendszerint véges) halmaz (pl. egy kocka csúcsai). Az X halmazt önmagára képező kölcsönösen egyértelmű függvényeket az X halmaz permutációinak nevezük.
20 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás. Nyilván csúcs képe szimmetriánál csúcs lesz. Elég a csúcsok képeit ismerni, az meghatározza a transzformációt. Legyen X (rendszerint véges) halmaz (pl. egy kocka csúcsai). Az X halmazt önmagára képező kölcsönösen egyértelmű függvényeket az X halmaz permutációinak nevezük. Ezek a kompozíció (egymás után alkalmazás) műveletére nézve az S X szimmetrikus csoportot alkotják.
21 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás. Nyilván csúcs képe szimmetriánál csúcs lesz. Elég a csúcsok képeit ismerni, az meghatározza a transzformációt. Legyen X (rendszerint véges) halmaz (pl. egy kocka csúcsai). Az X halmazt önmagára képező kölcsönösen egyértelmű függvényeket az X halmaz permutációinak nevezük. Ezek a kompozíció (egymás után alkalmazás) műveletére nézve az S X szimmetrikus csoportot alkotják. A négyzet szimmetriái: négy forgatás és négy tükrözés.
22 Szimmetriák Tanárklub okt / 17 A szimmetria mint permutáció Egy négyzet, kocka szimmetriái a tér azon egybevágóságai, amelyek az egész alakzatot, mint halmazt önmagukba viszik. Például ilyen egy négyzet középpontja körüli 90 fokos forgatás. Nyilván csúcs képe szimmetriánál csúcs lesz. Elég a csúcsok képeit ismerni, az meghatározza a transzformációt. Legyen X (rendszerint véges) halmaz (pl. egy kocka csúcsai). Az X halmazt önmagára képező kölcsönösen egyértelmű függvényeket az X halmaz permutációinak nevezük. Ezek a kompozíció (egymás után alkalmazás) műveletére nézve az S X szimmetrikus csoportot alkotják. A négyzet szimmetriái: négy forgatás és négy tükrözés. Hogyan lehet a szimmetriákat általában megszámolni?
23 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor C A B
24 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: C A B
25 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), C A B
26 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. C A B
27 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. C A B
28 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. C P 1 A B
29 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 1 A B
30 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 1 A P 3 B
31 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 4 P 1 A P 3 B
32 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 4 P 5 P 1 A P 3 B
33 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 4 P 5 P 1 A P 3 P 6 B
34 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 4 P 1 pályája hatelemű. P 5 P 1 A P 3 P 6 B
35 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 2 C P 4 P 1 pályája hatelemű. P 5 P 1 A P 3 Q 1 P 6 B
36 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 5 P 2 C P 4 P 1 P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, A P 3 Q 1 P 6 B
37 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. P 5 P 2 C Q 2 P 4 P 1 P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, A P 3 Q 1 P 6 B
38 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van,
39 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű.
40 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű.
41 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen
42 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás).
43 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás). Q 1 -et 2 transzformáció hagyja fixen
44 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás). Q 1 -et 2 transzformáció hagyja fixen (egy tükrözés is).
45 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás). Q 1 -et 2 transzformáció hagyja fixen (egy tükrözés is). A középpontot 6 transzformáció hagyja fixen.
46 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás). Q 1 -et 2 transzformáció hagyja fixen (egy tükrözés is). A középpontot 6 transzformáció hagyja fixen. (Pálya elemszáma)
47 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás). Q 1 -et 2 transzformáció hagyja fixen (egy tükrözés is). A középpontot 6 transzformáció hagyja fixen. (Pálya elemszáma) (fixáló trafók száma) =
48 A szimmetriák száma Tanárklub okt / 17 Pálya és stabilizátor X a sík, G az ABC szabályos háromszög szimmetriái: három forgatás (k 120 ), három tükrözés. Alkalmazzuk egy P 1 pontra az összes szimmetriát. A P 2 C Q P 2 5 Q 3 Q 1 P 3 P 6 P 4 P 1 B P 1 pályája hatelemű. Q 1 az AB felező merőlegesén van, pályája háromelemű. A középpont pályája egyelemű. P 1 -et 1 transzformáció hagyja fixen (csak az identitás). Q 1 -et 2 transzformáció hagyja fixen (egy tükrözés is). A középpontot 6 transzformáció hagyja fixen. (Pálya elemszáma) (fixáló trafók száma) = szimmetriák száma
49 A szimmetriák száma Tanárklub okt / 17 A pálya és stabilizátor elemszámának összefüggése Legyen G az X véges halmaz permutációinak olyan összessége, amely bármely két elemének kompozícióját (egymás utánját) is tartalmazza (azaz részcsoport).
50 A szimmetriák száma Tanárklub okt / 17 A pálya és stabilizátor elemszámának összefüggése Legyen G az X véges halmaz permutációinak olyan összessége, amely bármely két elemének kompozícióját (egymás utánját) is tartalmazza (azaz részcsoport). Az A X pont pályáját úgy kapjuk, hogy az összes G-beli permutációt alkalmazzuk A-ra.
51 A szimmetriák száma Tanárklub okt / 17 A pálya és stabilizátor elemszámának összefüggése Legyen G az X véges halmaz permutációinak olyan összessége, amely bármely két elemének kompozícióját (egymás utánját) is tartalmazza (azaz részcsoport). Az A X pont pályáját úgy kapjuk, hogy az összes G-beli permutációt alkalmazzuk A-ra. Az A X pont stabilizátora azokból a G-beli permutációkból áll, amelyek A-t fixálják, azaz önmagába képzik.
52 A szimmetriák száma Tanárklub okt / 17 A pálya és stabilizátor elemszámának összefüggése Legyen G az X véges halmaz permutációinak olyan összessége, amely bármely két elemének kompozícióját (egymás utánját) is tartalmazza (azaz részcsoport). Az A X pont pályáját úgy kapjuk, hogy az összes G-beli permutációt alkalmazzuk A-ra. Az A X pont stabilizátora azokból a G-beli permutációkból áll, amelyek A-t fixálják, azaz önmagába képzik. Pálya stabilizátor-tétel Ha egy pont pályájának és stabilizátorának elemszámát összeszorozzuk, akkor a G elemszámát kapjuk.
53 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma T U D A V B W C
54 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U A T D V B W C ABCDUVWT egy kocka,
55 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U A T D V B W C ABCDUVWT egy kocka, G a szimmetriacsoportja.
56 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U A T D V B W C ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be
57 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel.
58 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba,
59 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba.
60 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű:
61 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}.
62 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben.
63 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H.
64 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó
65 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A,
66 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}.
67 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással
68 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ).
69 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű.
70 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban,
71 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L.
72 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű
73 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű {C, V}.
74 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű {C, V}. Végül L-ben C stabilizátora már egyelemű lesz.
75 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű {C, V}. Végül L-ben C stabilizátora már egyelemű lesz. Így G = 8 H
76 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű {C, V}. Végül L-ben C stabilizátora már egyelemű lesz. Így G = 8 H = 8 3 L
77 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű {C, V}. Végül L-ben C stabilizátora már egyelemű lesz. Így G = 8 H = 8 3 L =
78 A szimmetriák száma Tanárklub okt / 17 A kocka szimmetriáinak a száma U T D A V W C B ABCDUVWT egy kocka, G a szimmetriacsoportja. A átvihető B-be az AB felező merőleges síkjára tükrözéssel. Minden csúcs is a szomszédaiba, így minden csúcs minden csúcsba. Tehát az A csúcs pályája nyolcelemű: {A,B,C,D,U,V,W,T}. Legyen H az A csúcs stabilizátora G-ben. Ekkor G = 8 H. Minden h H távolságtartó és h(a) = A, így h(b) {B, D, U}. Ezeket meg is kapjuk AW körüli forgatással (±120 ). Ezért H-nál a B pályája háromelemű. Legyen L a B stabilizátora H-ban, akkor H = 3 L. L-nél C pályája a kételemű {C, V}. Végül L-ben C stabilizátora már egyelemű lesz. Így G = 8 H = 8 3 L = = 48.
79 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt?
80 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük?
81 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is?
82 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? Mivel 3 3 mező van, az első kérdésre a válasz ( ) 9 = 36. 2
83 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? Mivel 3 3 mező van, az első kérdésre a válasz Legyen G a négy forgatásból álló csoport, ( ) 9 = 36. 2
84 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? ( ) 9 Mivel 3 3 mező van, az első kérdésre a válasz = Legyen G a négy forgatásból álló csoport, ez permutálja a 36 megoldást.
85 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? ( ) 9 Mivel 3 3 mező van, az első kérdésre a válasz = Legyen G a négy forgatásból álló csoport, ez permutálja a 36 megoldást. Két megoldás akkor vihető forgatással egymásba, ha egy pályán vannak.
86 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? ( ) 9 Mivel 3 3 mező van, az első kérdésre a válasz = Legyen G a négy forgatásból álló csoport, ez permutálja a 36 megoldást. Két megoldás akkor vihető forgatással egymásba, ha egy pályán vannak. Ezért a második kérdés a pályák száma!
87 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? ( ) 9 Mivel 3 3 mező van, az első kérdésre a válasz = Legyen G a négy forgatásból álló csoport, ez permutálja a 36 megoldást. Két megoldás akkor vihető forgatással egymásba, ha egy pályán vannak. Ezért a második kérdés a pályák száma! Burnside-(Cauchy-Frobenius-)lemma A pályák száma a szimmetriák fixpontjainak átlagos száma.
88 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? ( ) 9 Mivel 3 3 mező van, az első kérdésre a válasz = Legyen G a négy forgatásból álló csoport, ez permutálja a 36 megoldást. Két megoldás akkor vihető forgatással egymásba, ha egy pályán vannak. Ezért a második kérdés a pályák száma! Burnside-(Cauchy-Frobenius-)lemma A pályák száma a szimmetriák fixpontjainak átlagos száma. Szimmetrák bármely kompozícióra zárt halmazát (azaz csoportját) tekinthetjük,
89 Lényegesen különböző megoldások Tanárklub okt / 17 Egy általános iskolai versenyfeladat A 3 3-as sakktáblán hányféleképp választhatunk két mezőt? És ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? És ha a tükrözéssel egymásba vihetőket is? ( ) 9 Mivel 3 3 mező van, az első kérdésre a válasz = Legyen G a négy forgatásból álló csoport, ez permutálja a 36 megoldást. Két megoldás akkor vihető forgatással egymásba, ha egy pályán vannak. Ezért a második kérdés a pályák száma! Burnside-(Cauchy-Frobenius-)lemma A pályák száma a szimmetriák fixpontjainak átlagos száma. Szimmetrák bármely kompozícióra zárt halmazát (azaz csoportját) tekinthetjük, ezért a harmadik kérdésre is választ kapunk.
90 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük?
91 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát.
92 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van.
93 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van. A 180 -os forgatásnak a középpontra tükrös megoldások a fixpontjai.
94 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van. A 180 -os forgatásnak a középpontra tükrös megoldások a fixpontjai.
95 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van. A 180 -os forgatásnak a középpontra tükrös megoldások a fixpontjai. Ezek száma (9 1)/2 = 4.
96 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van. A 180 -os forgatásnak a középpontra tükrös megoldások a fixpontjai. Ezek száma (9 1)/2 = 4. Egyik 90 -os forgatásnak sincs fixpontja a 36 között
97 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van. A 180 -os forgatásnak a középpontra tükrös megoldások a fixpontjai. Ezek száma (9 1)/2 = 4. Egyik 90 -os forgatásnak sincs fixpontja a 36 között (ehhez 1, vagy legalább 4 mezőt kellene választani a feladatban).
98 Lényegesen különböző megoldások Tanárklub okt / 17 A feladat megoldása A 3 3-as sakktáblán hányféleképp választhatunk két mezőt, ha a forgatással egymásba vihető megoldásokat azonosnak vesszük? Ki kell számolnunk a fixpontok átlagos számát. Az identitásnak nyilván 36 fixpontja van. A 180 -os forgatásnak a középpontra tükrös megoldások a fixpontjai. Ezek száma (9 1)/2 = 4. Egyik 90 -os forgatásnak sincs fixpontja a 36 között (ehhez 1, vagy legalább 4 mezőt kellene választani a feladatban). Így a pályák száma ( )/4 = 10.
99 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van.
100 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van. Az identitás, illetve a forgatások fixpontjainak száma ugyanaz, mint az előző esetben.
101 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van. Az identitás, illetve a forgatások fixpontjainak száma ugyanaz, mint az előző esetben. Mind a négy tengelyes tükrözés esetében hat fixpont van,
102 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van. Az identitás, illetve a forgatások fixpontjainak száma ugyanaz, mint az előző esetben. Mind a négy tengelyes tükrözés esetében hat fixpont van, ebből három olyan, ahol a kiválasztott mezők a tengelyen vannak.
103 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van. Az identitás, illetve a forgatások fixpontjainak száma ugyanaz, mint az előző esetben. Mind a négy tengelyes tükrözés esetében hat fixpont van, ebből három olyan, ahol a kiválasztott mezők a tengelyen vannak.
104 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van. Az identitás, illetve a forgatások fixpontjainak száma ugyanaz, mint az előző esetben. Mind a négy tengelyes tükrözés esetében hat fixpont van, ebből három olyan, ahol a kiválasztott mezők a tengelyen vannak.
105 Lényegesen különböző megoldások Tanárklub okt / 17 A forgatás és tükrözés esete Ha tükrözést is megengedünk, akkor nyolc szimmetria van. Az identitás, illetve a forgatások fixpontjainak száma ugyanaz, mint az előző esetben. Mind a négy tengelyes tükrözés esetében hat fixpont van, ebből három olyan, ahol a kiválasztott mezők a tengelyen vannak. Az eredmény ( )/8 = 8.
106 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van.
107 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig?
108 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat.
109 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64
110 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4
111 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
112 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
113 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
114 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
115 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
116 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 (1234) 6 permutáció 4 gráf fixpont 24 = 6 4 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
117 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 (1234) 6 permutáció 4 gráf fixpont 24 = 6 4 (12) 6 permutáció 16 gráf fixpont 96 = 6 16 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
118 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 (1234) 6 permutáció 4 gráf fixpont 24 = 6 4 (12) 6 permutáció 16 gráf fixpont 96 = 6 16 (12)(34) 3 permutáció 16 gráf fixpont 48 = 3 16 Az (123) permutáció ( és 4 4) fixpont-gráfjai:
119 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 (1234) 6 permutáció 4 gráf fixpont 24 = 6 4 (12) 6 permutáció 16 gráf fixpont 96 = 6 16 (12)(34) 3 permutáció 16 gráf fixpont 48 = 3 16 Összesen: 24 permutáció 264 = Az (123) permutáció ( és 4 4) fixpont-gráfjai:
120 Lényegesen különböző megoldások Tanárklub okt / 17 Négy csúcsú gráfok Négy számozott csúcson 2 (4 2) = 64 gráf van. És izomorfia erejéig? Az S 4 teljes szimmetrikus csoport permutálja ezeket a gráfokat. identitás 1 permutáció 64 gráf fixpont 64 = 1 64 (123) 8 permutáció 4 gráf fixpont 32 = 8 4 (1234) 6 permutáció 4 gráf fixpont 24 = 6 4 (12) 6 permutáció 16 gráf fixpont 96 = 6 16 (12)(34) 3 permutáció 16 gráf fixpont 48 = 3 16 Összesen: 24 permutáció 264 = Tehát 11 darab nemizomorf négycsúcsú gráf van. Az (123) permutáció ( és 4 4) fixpont-gráfjai:
121 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba.
122 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített),
123 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített), akkor minden g G esetén g(a) = B h 1 g(a) = A
124 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített), akkor minden g G esetén g(a) = B h 1 g(a) = A és k(a) = A hk(a) = B.
125 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített), akkor minden g G esetén g(a) = B h 1 g(a) = A és k(a) = A hk(a) = B. A g h 1 g és hk k megfeleltetések egymás inverzei a (G-beli) A B, illetve A A permutációk között.
126 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített), akkor minden g G esetén g(a) = B h 1 g(a) = A és k(a) = A hk(a) = B. A g h 1 g és hk k megfeleltetések egymás inverzei a (G-beli) A B, illetve A A permutációk között. Utóbbiak az A pont G-beli stabilizátorát alkotják.
127 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített), akkor minden g G esetén g(a) = B h 1 g(a) = A és k(a) = A hk(a) = B. A g h 1 g és hk k megfeleltetések egymás inverzei a (G-beli) A B, illetve A A permutációk között. Utóbbiak az A pont G-beli stabilizátorát alkotják. Az előzőek szerint az A pályájának minden B elemére teljesül, hogy annyi G-beli permutáció viszi A-et B-be, ahány eleme A stabilizátorának van G-ben.
128 Két bizonyítás Tanárklub okt / 17 A pálya-stabilizátor tétel bizonyítása Ha A X a G egy elemével átvihető B X-be, akkor ugyanannyi elem viszi A-et B-be, mint A-t A-ba. Bizonyítás Ha h(a) = B (h rögzített), akkor minden g G esetén g(a) = B h 1 g(a) = A és k(a) = A hk(a) = B. A g h 1 g és hk k megfeleltetések egymás inverzei a (G-beli) A B, illetve A A permutációk között. Utóbbiak az A pont G-beli stabilizátorát alkotják. Az előzőek szerint az A pályájának minden B elemére teljesül, hogy annyi G-beli permutáció viszi A-et B-be, ahány eleme A stabilizátorának van G-ben. Így G elemszáma a pálya és a stabilizátor elemszámának szorzata.
129 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k.
130 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.)
131 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.) Kétféleképpen megszámoljuk azokat a (g,a) párokat, ahol g(a) = A (és g G, A X). A számuk legyen N.
132 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.) Kétféleképpen megszámoljuk azokat a (g,a) párokat, ahol g(a) = A (és g G, A X). A számuk legyen N. Rögzített A mellett ez A stabilizátorának elemszáma.
133 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.) Kétféleképpen megszámoljuk azokat a (g,a) párokat, ahol g(a) = A (és g G, A X). A számuk legyen N. Rögzített A mellett ez A stabilizátorának elemszáma. A pálya-stabilizátor tétel miatt a G / O i számokat kell összeadni,
134 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.) Kétféleképpen megszámoljuk azokat a (g,a) párokat, ahol g(a) = A (és g G, A X). A számuk legyen N. Rögzített A mellett ez A stabilizátorának elemszáma. A pálya-stabilizátor tétel miatt a G / O i számokat kell összeadni, a G / O i -t annyiszor, ahány eleme O i -nek van.
135 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.) Kétféleképpen megszámoljuk azokat a (g,a) párokat, ahol g(a) = A (és g G, A X). A számuk legyen N. Rögzített A mellett ez A stabilizátorának elemszáma. A pálya-stabilizátor tétel miatt a G / O i számokat kell összeadni, a G / O i -t annyiszor, ahány eleme O i -nek van. Ezért N = k G (ahol k a pályák száma).
136 Két bizonyítás Tanárklub okt / 17 A Burnside-lemma bizonyítása Legyenek G pályái az X halmazon O 1,...,O k. (Ezek páronként nem metszik egymást és lefedik X-et.) Kétféleképpen megszámoljuk azokat a (g,a) párokat, ahol g(a) = A (és g G, A X). A számuk legyen N. Rögzített A mellett ez A stabilizátorának elemszáma. A pálya-stabilizátor tétel miatt a G / O i számokat kell összeadni, a G / O i -t annyiszor, ahány eleme O i -nek van. Ezért N = k G (ahol k a pályák száma). Rögzített g mellett g fixpontjainak számát kapjuk.
1. Szimmetriák. Háromszög-szimmetria. Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3
Egy kis reklám A Matematikatanárok Klubjának honlapja: https://www.cs.elte.hu/ miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. https://www.youtube.com/watch?v=iy4dzcwyf5s
RészletesebbenAlgebra2, alapszint 11. előadás 1 / 11. Algebra2, alapszint. ELTE Algebra és Számelmélet Tanszék. Előadó: Kiss Emil 11.
Algebra2, alapszint 11. előadás 1 / 11 Algebra2, alapszint ELTE Algebra és Számelmélet Tanszék Előadó: Kiss Emil ewkiss@cs.elte.hu 11. előadás Kristályok szimmetriái Algebra2, alapszint 11. előadás 2 /
RészletesebbenAlgebra gyakorlat, 4. feladatsor, megoldásvázlatok
Algebra gyakorlat, 4. feladatsor, megoldásvázlatok 0. Ha G egy véges csoport, akkor nyilván csak véges sok részcsoportja van. Legyen most G végtelen. Ha van végtelen rend g G elem, akkor g (Z, +), aminek
RészletesebbenEgybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
Részletesebben16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési
RészletesebbenFeladatok Házi feladat. Keszeg Attila
2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon
RészletesebbenGeometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
Részletesebben2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
RészletesebbenMozdony egy algebrista képerny jén
Mozdony egy algebrista képerny jén Czédli Gábor (Szeged, Egyetemi Tavasz, 2015.04.18.) 2015. április 18. Csoport (a SZIMMETRIA absztrakciójából) 0'/20 Deníció Évariste Galois (1811. okt. 11 1832. május
RészletesebbenMatematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
RészletesebbenWaldhauser Tamás december 1.
Algebra és számelmélet előadás Waldhauser Tamás 2016. december 1. Tizedik házi feladat az előadásra Hányféleképpen lehet kiszínezni az X-pentominót n színnel, ha a forgatással vagy tükrözéssel egymásba
RészletesebbenEgyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
RészletesebbenP ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP
J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.
RészletesebbenEgy negyedikes felvételi feladattól az egyetemi matematikáig
Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.
RészletesebbenGeometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
RészletesebbenNT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat
NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin
RészletesebbenMTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),
RészletesebbenOSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY
OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A
RészletesebbenMATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember
MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra
RészletesebbenTANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára
Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 9. a, b osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján
RészletesebbenVI.3. TORPEDÓ. A feladatsor jellemzői
VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont
RészletesebbenEgy kis csoportos elmélet
Egy kis csoportos elmélet Molnár Attila 1. Röviden és tömören és keveset... 1. Definíció (Csoport). Egy G halmaz csoport, ha értelmezett rajta egy művelet, melyre teljesül, hogy Asszociatív: Van neutrális
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai
Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x
RészletesebbenCsoporthatások. 1 Alapfogalmak 1 ALAPFOGALMAK. G csoport hatása az X halmazon egy olyan µ: G X X leképezés, amelyre teljesül
1 ALAPFOGALMAK Csoporthatások 1 Alapfogalmak G csoport hatása az X halmazon egy olyan µ: G X X leképezés, amelyre teljesül és µ(g, µ(h, x)) = µ(gh, x) µ(1 G, x) = x minden g, h G és x X esetén. Multiplikatív
RészletesebbenI. A geometriai transzformáció fogalma
8 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. A geometriai transzformáció fogalma Kártyakészlet a geometriai transzformációkhoz Módszertani megjegyzés: Ezeket a kártyákat a csoportok számának megfelelő
RészletesebbenSíkgeometria. Ponthalmazok
Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA
Részletesebben1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK
MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,
RészletesebbenGeometriai alapfogalmak
Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.
RészletesebbenTérbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
Részletesebben24. szakkör (Csoportelméleti alapfogalmak 3.)
24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,
RészletesebbenMatematika levelezős verseny általános iskolásoknak II. forduló megoldásai
Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"
RészletesebbenSZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
RészletesebbenOsztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
RészletesebbenHraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom
1. alkalom 1. Beszínezzük a koordináta-rendszer rácspontjait. Egyetlen szabályt kell betartanunk: az (a;b) pontnak ugyanolyan színűnek kell lennie, mint az (a-b;a) és az (a;b-a) pontnak (a és b egész számok).
RészletesebbenOsztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
RészletesebbenOsztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
RészletesebbenAz osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
Részletesebben2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
RészletesebbenSzámítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
RészletesebbenCsoportelmélet ( ) ϕ ψ adatokra ( ) ( ) ( ) ( )
Csoportelmélet ( A csoportaxiómák nem tartalmaznak ellentmondást mert az { } csoportot alkot. Fizika felépítése: fizikai valóság fizikai modellek matematikai modellek (átjárhatók reprezentációk (áttranszformálhatók
RészletesebbenSzámítógépes geometria
2011 sz A grakus szállítószalag terv a geometriai (matematikai) modell megalkotása modelltranszformáció (3D 3D) vetítés (3D 2D) képtranszformáció (2D 2D)... raszterizáció A grakus szállítószalag: koncepció
RészletesebbenJEGYZET Geometria 2., tanárszak
JEGYZET Geometria 2., tanárszak Hálás köszönet a segítségért Marosi Pollának, Kiss Györgynek, Lakos Gyulának, Tóth Árpádnak, Wintsche Gergőnek. Felhasznált fogalmak Felhasználjuk a valós vektortér és mátrix
RészletesebbenLehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
RészletesebbenMATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
Részletesebben1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
RészletesebbenAz alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet
Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok halmaz halmaz megadása, jelölésmód üres halmaz véges halmaz végtelen halmaz halmazok egyenlısége részhalmaz, valódi részhalmaz halmazok uniója
RészletesebbenFejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges
RészletesebbenAz osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
RészletesebbenFeladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
RészletesebbenGeometriai transzformációk
Geometriai transzformációk 11 elemi geometriafeladat 10. és DG Matektábor 2016. október 6. Röviden a transzformációkról Tengelyes tükrözés 10. és ( DG Matektábor) Geometriai transzformációk 2016. október
RészletesebbenA GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria
GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak
RészletesebbenMatematika szóbeli érettségi témakörök 2017/2018-as tanév
Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,
RészletesebbenTranszformációk síkon, térben
Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek
RészletesebbenÁtrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30.
Átrendezések és leszámlálások ÚTMUTATÓ Hegedüs Pál 1-2015.június 30. 1. Határozzuk meg, hány egybevágósága van egy négyzetnek! Melyek azonos jellegűek ezek között? Ez egy általános bevezető feladat tud
Részletesebben3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.
3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság
Részletesebben54. Mit nevezünk rombusznak? A rombusz olyan négyszög,
52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes
RészletesebbenLogikai szita (tartalmazás és kizárás elve)
Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát
RészletesebbenOsztályozóvizsga-tematika 8. évfolyam Matematika
Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges
RészletesebbenIV. Felkészítő feladatsor
IV. Felkészítő feladatsor 1. Az A halmaz elemei a (-7)-nél nagyobb, de 4-nél kisebb egész számok. B a nemnegatív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! I. 2. Adott a
Részletesebben2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat
1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer
RészletesebbenÉrdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
RészletesebbenFüggvény fogalma, jelölések 15
DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük
RészletesebbenA 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)
A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike
Részletesebben15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK
MATEMATIK A 9. évfolyam 15. modul: EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK KÉSZÍTETTE: BIRLONI SZILVIA Matematika A 9. évfolyam. 15. modul: VEKTOROK, EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Tanári útmutató 2 A modul célja
RészletesebbenAlgebra es sz amelm elet 3 el oad as Permut aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Permutációk Waldhauser Tamás 2014 őszi félév 1. Definíció. Permutációnak nevezzük egy nemüres (véges) halmaz önmagára való bijektív leképezését. 2. Definíció. Az {1, 2,...,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenEgybevágósági transzformációk
Egybevágósági transzformációk Párhuzamos eltolás Geometriai transzformációk Egybevágósági transzformációk (9. osztály) Helybenhagyás Tengelyes tükrözés Középpontos tükrözés Pont körüli forgatás Párhuzamos
RészletesebbenMatematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
RészletesebbenMatematika 6. osztály Osztályozó vizsga
Matematika 6. osztály Osztályozó vizsga 1. Számok és műveletek 1. A tízes számrendszer Számok írása, olvasása, ábrázolása Az egymilliónál nagyobb természetes számok írása, olvasása. Számok tizedestört
RészletesebbenEgybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
RészletesebbenGeometria 1, normálszint
Geometria 1, normálszint 2. előadás 1 / 46 Geometria 1, normálszint ELTE Matematikai Intézet, Geometriai Tanszék 2019 A diákat készítette: Moussong Gábor Előadó: Lakos Gyula lakos@math.elte.hu 2. előadás
Részletesebben1. Transzformációk mátrixa
1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)
RészletesebbenOktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
Részletesebbenx = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2
Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését
Részletesebben1. megold s: A keresett háromjegyű szám egyik számjegye a 3-as, a két ismeretlen számjegyet jelölje a és b. A feltétel szerint
A 004{005. tan vi matematika OKTV I. kateg ria els (iskolai) fordul ja feladatainak megold sai 1. feladat Melyek azok a 10-es számrendszerbeli háromjegyű pozitív egész számok, amelyeknek számjegyei közül
RészletesebbenOsztályozó és Javító vizsga témakörei matematikából 9. osztály
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,
RészletesebbenMatematika javítóvizsga témakörök 10.B (kompetencia alapú )
Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése
RészletesebbenDISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
RészletesebbenA parkettázás problémája
A parkettázás problémája Szakdolgozat Készítette: Kis László (Matematika BSC, Tanári szakirány) Témavezető: Szeghy Dávid (geometria tanszék) Eötvös Lóránd Tudományegyetem Természettudományi Kar Budapest,
RészletesebbenMegoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
RészletesebbenFejezetek az euklideszi geometriából
Fejezetek az euklideszi geometriából Ebben a fejezetben euklideszi térben dolgozunk: vagyis mindvégig feltételezzük, hogy érvényes az abszolút geometria axiómarendszere és az euklideszi párhuzamossági
RészletesebbenMATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
RészletesebbenIsmételjük a geometriát egy feladaton keresztül!
Laczkó László Készült a Fazekas ihály Oktatási Kulturális és Sport lapítvány támogatásával z árák elektronikus változatát Véges árton (009c) diák készítette feladat z hegyesszögű háromszög -nél levő szöge.
Részletesebben1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
RészletesebbenKoordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
RészletesebbenA továbbhaladás feltételei fizikából és matematikából
A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban
RészletesebbenÓra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.
MATEMATIKA ÉRETTSÉGI ELŐKÉSZTŐ 11. évfolyam Óra A tanítási óra anyaga Ismeretek, 1. Év eleji szervezési feladatok 2. A hatványozásról tanultak ismétlése, feladatok az n- edik gyök fogalmára, azonosságaira
RészletesebbenEGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
Részletesebben2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
Részletesebben20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
Részletesebben2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
RészletesebbenProgramozási nyelvek 2. előadás
Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai
Részletesebben1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni
1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:
RészletesebbenLin.Alg.Zh.1 feladatok
Lin.Alg.Zh. feladatok 0.. d vektorok Adott három vektor ā (0 b ( c (0 az R Euklideszi vektortérben egy ortonormált bázisban.. Mennyi az ā b skalárszorzat? ā b 0 + + 8. Mennyi az n ā b vektoriális szorzat?
Részletesebben1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
RészletesebbenAdd meg az összeadásban szereplő számok elnevezéseit!
1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok
Részletesebben