A DNS szerkezete. Genom kromoszóma gén DNS genotípus - allél. Pontos méretek Watson genomja. J. D. Watson F. H. C. Crick. 2 nm C G.
|
|
- Edit Szőke
- 8 évvel ezelőtt
- Látták:
Átírás
1 1955: 46 emberi kromoszóma van 1961: mrns 1975: DNS szekvenálás 1982: gén-bank adatbázisok 1983: R (polymerase chain reaction) Mérföldkövek 1 J. D. Watson F. H.. rick Watson genomja DNS szerkezet Humán enom rojekt 2 befejezése enom kromoszóma gén DNS genotípus - allél DNS szerkezete 2 nm haploid humán kromoszóma szett T T 3,4 nm 10 bp teljes hossz = 2 m 3 4 kromoszóma szerkezete ontos méretek hiszton DNS 30 nm kromoszóma
2 Mi a rendelkezésre álló információ? TTT TT T T TT TTT T T TTTT TTT TTT TTT T T T TTT TTT TTT T TTTTT TT T TTT TT T TT TT TTT T TTTT TTTTT TTTT TTTT TT TT TTTT TTTT TT TT TTTT T T T TT T T T TT TT T T TT TTT TT T T TT T T TT TT TTT T TT TT TT TT TT nyers szekvencia (Humán enom rojekt) Replikáció DNS két funkciója: és a fehérje-szintézis irányítása, azaz: génkifejeződés - génexpresszió ost-genomic era 7 8 DNS-funkciói I. replikáció 1. DNS kettős spirál szétnyílik 2. beilleszkednek a komplementer bázisok 3. két új DNS molekula jön létre 9 DNS-funkciói entrális Dogma DNS (génkifejeződés) mrns fehérje fehérje szintézis 10 lomin könyv: molekuláris genetika "központi dogmája" Box 4.1, keretes szöveg (44. old): fehérje szintézis genetikai kódja Kodon (3 mrns betű), melyből lesz 1 aminosav (pl. UUU = phenylalanine) redundáns (gyakran több kodon határoz meg 1 aminosavat determinált (egy kodon mindig egy adott aminosavat határoz meg) univerzális (minden élőlényben ebből a 20 aminosavból épülnek fel a fehérjék) vesszőmentes (folyamatos) mrns aminosavak első betű második betű U U he Tyr ys U Ser Leu Stop Stop Stop Trp His U Leu ro rg ln sn Ser U Ile Thr Lys rg Met Start sp U Val la ly lu UUUU ys Val Ser Val la Thr lu 11 harmadik betű DNS-szekvenciából fehérjék: a kivágás=splicing variabilitása MDIÓEQLÉÁTREWWHFIEŐ WLDHRÚŰQLKÓSTWLŐŰ QNVQURÜEŰHFKUTYMN DRWTERELIMNŐRZIUQRT HQILKKŐEQWIXYYTREQ JNYÁJHÁZTLKÓÜQLTYE 12 2
3 DNS-szekvenciából fehérjék: a kivágás=splicing variabilitása ok: fehérjéket kódoló szekvenciák Intronok: kivágódnak (nem íródnak át RNS-é) DNS-szekvenciából fehérjék: a kivágás=splicing variabilitása Ugyanarról a génrészletről alternatív fehérjék termelődhetnek! I. kutya tereli IV. V. a VI. nyáj V VI at I. kutya IV. örzi V. a VI. V ház VI at puli gén MDIÓEQLÉÁTREWWHFIEŐ WLDHRÚŰQLKÓSTWLŐŰ QNVQURÜEŰHFKUTYMN DRWTERELIMNŐRZIUQRT HQILKKŐEQWIXYYTREQ JNYÁJHÁZTLKÓÜQLTYE komondor gén MDIÓEQLÉÁTREWWHFIEŐ WLDHRÚŰQLKÓSTWLŐŰ QNVQURÜEŰHFKUTYMN DRWTERELIMNŐRZIUQRT HQILKKŐEQWIXYYTREQ JNYÁJHÁZTLKÓÜQLTYE JNYÁJHÁZTTTTLKÓÜQ Humán enom rojekt: TT T T TTT TTT Humán enom rojekt Hierarchikus módszer T T T TT TTT T TT T T TTT T J. Watson T, a H első elnöke TT TT TT T Markerek, clone by clone T technika T T TT TTTTT TT T TTT TT TT T cél: egyetlen ember haploid (azaz fél) TT TT T TT kromoszóma készletének információját TTT T TTTT felderíteni. TTTTT (nem ismert, hogy ki) TT T T 1989-ben TTTT alapított állami TTTT szektor TT TTT TT TTT 1992: 1$/bp, TT 100,000 T bp/év reménytelennek TT tűnt TT T nemzetközi koordináció T 16 T T TTT TTT H egyenes útja Hogyan keresi a matematikus az oroszlánt a sivatagban? TT Watson által T kidolgozott T Hierarchikus módszer: TTT TTT Humán genom T projekt T fő stratégiája T a genom TT hierarchikus TTT lebontása T mind kisebb TT és kisebb T szerkezeti T egységre, és TTT T csupán ezt követte a szekvenálási T munka. Sokan TT kritizálták TT a TT tervet a rendkívül T időigényes hierarchikus T rendszer kiépítése T T miatt. TT TTTTT TT T DNS-szekvenálás TTT technikai TT kivitelezése TT maximum T 500 betűs sorozatokban történik. TT Ezért TT a végeláthatatlan T DNSmolekulákat T ilyen nagyságrendű TTTT TTTTT darabokra kell bontani, és TT TTT csupán ezeket a kisebb fragmenteket szekvenálják. kapott TT T T TTTT TTTT TT nyers szekvenciákat azután összerakják, és így készül el a TTT TT TTT TT T TT végleges szekvencia. részek összerakása azonban nem TT T T könnyű. 17 T T TTT TTT z alternatív Humán enom rojekt shotgun módszer TT T T TTT TTT T T T TT TTT T TT T T TTT T T TT TT TT T T T T TT TTTTT TT T TTT TT TT T Shotgun módszer: TT TT T TT TTT genomot T felszabdalták, TTTT ezeket TTTTT a darabokat szekvenálták, majd az TT átfedő szekvenciák T T segítségével TTTT összeillesztették. TTTT TT (a módszer bizonyítottan működött kisebb (bakteriális) genomoknál) TTT TT TTT TT T TT Így a hierarchikus módszert elhagyva egy gyorsabb módszert TT T T dolgozott ki. T T TTT TTT 18 3
4 Humán enom rojekt eredményei 2001 Első (nyers) genom szekvencia 50 évvel a DNS kettősspirál megfejtése után Humán enom eredményei szabadon hozzáférhetők könyv kellene a DNS-nek (ezer oldalas, egy oldalon ezer betű) Ezt a hatalmas információ-tömeget ezért praktikusan egy szabadon hozzáférhető internetes adatbázisban tárolják. szabadon hozzáférhető adatok helye: lick on one of the chromosomes! 2003 H befejezése posztgenomikus éra kezdete 19 Összehasonlító vizsgálatok hasznos információ (gének) a genom 1-2%-át foglalják el! Ma: kb fehérje kódoló gén rvos-biológiai periódusos rendszer humán gének humán fehérjék 21 simpánz emberi genom: kb. 95%-ban azonos 22 humán genom polimorf jellege T T T Nem rokon emberek között: azonosság % (kb. 3 millió bp különbség) Mutációk és olimorfizmusok Ember és csimpánz: azonosság ~ 95%
5 Sajtóhibák?! TT T T TTT TTT T T T TT TTT T TT T T TTT T T TT TT TT T T T T TT TTTTT TT T TTT TT TT T TT TT T TT TTT T TTTT TTTTT TT T T TTTT TTTT TT TTT TT TTT TT T TT TT T T 25 T T TTT TTT amikor a sajtóhiba végzetes mutáció: ritka allélváltozatok (1%-nál kisebb gyakoriságú) általában monogénes öröklődésű betegségek TT T T TTT TTT T T T TT TTT T TT T T TTT T T TT TT TT T T Desease genes identified T T TT TTTTT TT T TTT TT TT T TT TT T TT TTT T TTTT TTTTT TT T T TTTT TTTT TT TTT TT TTT TT T TT TT T T 26 T T TTT TTT veszélytelen sajtóhibák enetikai polimorfizmusok: 1%-nál gyakoribb génváltozatok További diploid genomok SN VNTR T T T T T T T 2 ismétlődés 3 ismétlődés 4 ismétlődés 5 ismétlődés Single Nucleotide olymorphism Egypontos nukleotid variációk Variable Number of Tandem Repeats Változó számú ismétlődések humán genom polimorf jellege Kromoszómális foltokban mért polimorfizmusok (NV copy number variations) News Feature T T Nem rokon emberek között: azonosság - 95% eltérések (polimorfizmusok) SN, VNTR, NV (kb. 3 millió SN) Nature 437, (20 ctober 2005) Human genome: atchwork people Erika heck T
6 Szakirodalom Sasvari-Szekely Mária. Humán enom rojekt. Lege rtis Medicine 2003, 13: Sasvari-Szekely M, Szekely, Nemoda Z, Ronai Z. genetikai polimorfizmusok pszichológiai és pszichiátriai vonatkozásai. Kognitív idegtudomány. léh, ulyás B, Kovács. (Eds). siris Kiadó Budapest 2003: ikk részletek (fontos részek sárgával jelölve): heck, E Human genome: patchwork people. Nature. 437:
Humán genom projekt ( ) (+2007, 2008) Humán fenom projekt
Nature Genetics, May 2003 Humán genom projekt (1989-2003) (+2007, 2008) Humán fenom projekt (2003- ) fenotípus ASSZOCIÁCIÓ genotípus 1 2 : 1989-2003 A Humán Genom projekt eredményei A Humán Genom polimorf
Nőknél előfordulhat X-hez kötött recesszív rendellenesség? Ha igen, hogyan? Miért van sokkal kevesebb színtévesztő nő?
Nőknél előfordulhat X-hez kötött recesszív rendellenesség? Ha igen, hogyan? Igen: érintett apa és érintett anya esetében, vagy érintett apa és hordozó anya esetében Miért van sokkal kevesebb színtévesztő
10. CSI. A molekuláris biológiai technikák alkalmazásai
10. CSI. A molekuláris biológiai technikák alkalmazásai A DNS mint azonosító 3 milliárd bázispár az emberi DNS-ben (99.9%-ban azonos) 0.1%-nyi különbség elegendő az egyedek megkülönböztetéséhez Genetikai
A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet
A HUMÁN GENOM PROJEKT Sasvári-Székely Mária* Semmelweis Egyetem, Orvosi Vegytani, Molekuláris Biológiai és Pathobiokémiai Intézet *Levelezési cím: Dr. Sasvári-Székely Mária, Semmelweis Egyetem, Orvosi
A genetikai lelet értelmezése monogénes betegségekben
A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M
I. A sejttől a génekig
Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.
3. Sejtalkotó molekulák III.
3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció
transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék
Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti
A PKU azért nem hal ki, mert gyógyítják, és ezzel növelik a mutáns allél gyakoriságát a Huntington kór pedig azért marad fenn, mert csak későn derül
1 Múlt órán: Genetikai alapelvek, monogénes öröklődés Elgondolkodtató feladat Vajon miért nem halnak ki az olyan mendeli öröklődésű rendellenességek, mint a Phenylketonuria, vagy a Huntington kór? A PKU
BIOLÓGIA ÍRÁSBELI ÉRETTSÉGI FELVÉTELI FELADAT (1999) MEGOLDÁSOK
BIOLÓI ÍRÁSBELI ÉRETTSÉI FELVÉTELI FELDT (1999) MEOLDÁSOK I. LÉZÉS Állapítsa meg, hogy az alábbi állatcsoportok közül melyikre (melyekre) vonatkoznak a sorszámozott állítások. Megoldólapjára a feladatok
Molekuláris genetikai vizsgáló. módszerek az immundefektusok. diagnosztikájában
Molekuláris genetikai vizsgáló módszerek az immundefektusok diagnosztikájában Primer immundefektusok A primer immundeficiencia ritka, veleszületett, monogénes öröklődésű immunhiányos állapot. Családi halmozódást
A géntechnológia genetikai alapjai (I./3.)
Az I./2. rész (Gének és funkciójuk) rövid összefoglalója A gének a DNS információt hordozó szakaszai, melyekben a 4 betű (ATCG) néhány ezerszer, vagy százezerszer ismétlődik. A gének önálló programcsomagként
Genetika. Tartárgyi adatlap: tantárgy adatai
Genetika Előadás a I. éves Génsebészet szakos hallgatók számára Tartárgyi adatlap: tantárgy adatai 2.1. Tantárgy címe Genetika 2.2. Előadás felelőse Dr. Mara Gyöngyvér, docens 2.3. Egyéb oktatási tevékenységek
++ mm. +m +m +m +m. Hh,fF Hh,fF hh,ff hh,ff. ff Ff. Hh hh. ff ff ff ff. Hh Hh hh hh
Múlt órán: Genetikai alapelvek, monogénes öröklődés Elgondolkodtató feladat Vajon miért nem halnak ki az olyan mendeli öröklődésű rendellenességek, mint a Phenylketonuria, vagy a Huntington kór? A PKU
Human genome project
Human genome project Pataki Bálint Ármin 2017.03.14. Pataki Bálint Ármin Human genome project 2017.03.14. 1 / 14 Agenda 1 Biológiai bevezető 2 A human genome project lefolyása 3 Alkalmazások, kitekintés
DNS-szekvencia meghatározás
DNS-szekvencia meghatározás Gilbert 1980 (1958) Sanger 3-1 A DNS-polimerázok jellemzői 5'-3' polimeráz aktivitás 5'-3' exonukleáz 3'-5' exonukleáz aktivitás Az új szál szintéziséhez kell: templát DNS primer
A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások. Egyed Balázs ELTE Genetikai Tanszék
A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások Egyed Balázs ELTE Genetikai Tanszék Endoszimbiotikus gén-transzfer (Timmis et al., 2004, Nat Rev Gen) Endoszimbiotikus
A replikáció mechanizmusa
Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,
Többgénes jellegek. 1. Klasszikus (poligénes) mennyiségi jellegek. 2.Szinte minden jelleg több gén irányítása alatt áll
Többgénes jellegek Többgénes jellegek 1. 1. Klasszikus (poligénes) mennyiségi jellegek Multifaktoriális jellegek: több gén és a környezet által meghatározott jellegek 2.Szinte minden jelleg több gén irányítása
TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)
Biokémia és molekuláris biológia I. kurzus (bb5t1301) Tematika 1 TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) 0. Bevezető A (a biokémiáról) (~40 perc: 1. heti előadás) A BIOkémia tárgya
NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag
NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak
Poligénes v. kantitatív öröklődés
1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé
ADATBÁNYÁSZAT I. ÉS OMICS
Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére TÁMOP-4.1.1.C-13/1/KONV-2014-0001 ADATBÁNYÁSZAT
Human Genome Project, 1990-2005 5 évvel a tervezett befezés előtt The race is over, victory for Craig Venter. The genome is mapped* - now what?
2000 június 26 Új út kezdete, vagy egy út vége? Human Genome Project, 1990-2005 5 évvel a tervezett befezés előtt The race is over, victory for Craig Venter. The genome is mapped* - now what? 2000 június
A bioinformatika gyökerei
A bioinformatika gyökerei 1944: Avery a transforming principle a DNS 1952: Hershey és Chase perdöntő bizonyíték: a bakteriofágok szaporodásakor csak a DNS jut be a sejtbe 1953: Watson és Crick a DNS szerkezete
Temperamentum, kognitív teljesítmény és hipnábilitás pszichogenetikai asszociációvizsgálatai
Temperamentum, kognitív teljesítmény és hipnábilitás pszichogenetikai asszociációvizsgálatai Habilitációs dolgozat Veres-Székely Anna, Ph.D. 2010 TARTALOMJEGYZÉK BEVEZETÉS... 4 Ábrajegyzék... 6 Táblázatok
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása
HAPMAP -2010 Nemzetközi HapMap Projekt. SNP GWA Haplotípus: egy kromoszóma szegmensen lévő SNP mintázat
HAPMAP -2010 Nemzetközi HapMap Projekt A Nemzetközi HapMap Project célja az emberi genom haplotípus* térképének(hapmap; haplotype map) megszerkesztése, melynek segítségével katalogizálni tudjuk az ember
NÖVÉNYGENETIKA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A
NÖVÉNYGENETIKA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A citológia és a genetika társtudománya Citogenetika A kromoszómák eredetét, szerkezetét, genetikai funkcióját,
1953 DNS szerkezet Watson genomja. A Humán Genom Projekt. befejezése. J. D. Watson F. H. C. Crick. 1955: 46 emberi kromoszóma van
1 1955: 46 emberi kromoszóma van 1961: mrns 1975: DNS szekvenálás 1982: gén-bank adatbázisok 1983: PCR (polymerase chain reaction) Mérföldkövek J. D. Watson F. H. C. Crick 1953 DNS szerkezet 2008 2003
Kromoszómák, Gének centromer
Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két
A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor,
1 A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor, (Debreceni Egyetem Állattenyésztéstani Tanszék) A bármilyen
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
Gén kópiaszám és mikrorns kötőhely polimorfizmusok vizsgálata
Gén kópiaszám és mikrorns kötőhely polimorfizmusok vizsgálata Doktori tézisek Dr. Kovács-Nagy Réka Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola Témavezető: Dr. Rónai Zsolt egyetemi adjunktus,
Johann Gregor Mendel Az olmüci (Olomouc) és bécsi egyetem diákja Brünni ágostonrendi apát (nem szovjet tudós) Tudatos és nagyon alapos kutat
10.2.2010 genmisk1 1 Áttekintés Mendel és a mendeli törvények Mendel előtt és körül A genetika törvényeinek újbóli felfedezése és a kromoszómák Watson és Crick a molekuláris biológoa központi dogmája 10.2.2010
Transzláció. Szintetikus folyamatok Energiájának 90%-a
Transzláció Transzláció Fehérje bioszintézis a genetikai információ kifejeződése Szükséges: mrns: trns: ~40 Riboszóma: 4 rrns + ~ 70 protein 20 Aminosav aktiváló enzim ~12 egyéb enzim Szintetikus folyamatok
A Hardy-Weinberg egyensúly. 2. gyakorlat
A Hardy-Weinberg egyensúly 2. gyakorlat A Hardy-Weinberg egyensúly feltételei: nincs szelekció nincs migráció nagy populációméret (nincs sodródás) nincs mutáció pánmixis van allélgyakoriság azonos hímekben
A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános
A sejtek élete 5. Robotoló törpék és óriások Az aminosavak és fehérjék e csak nézd! Milyen protonátmenetes reakcióra képes egy aminosav? R 2 5.1. A fehérjeépítőaminosavak általános képlete 5.2. A legegyszerűbb
13. RNS szintézis és splicing
13. RNS szintézis és splicing 1 Visszatekintés: Az RNS típusai és szerkezete Hírvivő RNS = mrns (messenger RNA = mrna) : fehérjeszintézis pre-mrns érett mrns (intronok kivágódnak = splicing) Transzfer
Bakteriális identifikáció 16S rrns gén szekvencia alapján
Bakteriális identifikáció 16S rrns gén szekvencia alapján MOHR ANITA SIPOS RITA, SZÁNTÓ-EGÉSZ RÉKA, MICSINAI ADRIENN 2100 Gödöllő, Szent-Györgyi Albert út 4. info@biomi.hu, www.biomi.hu TÖRZS AZONOSÍTÁS
Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály
Prenatalis diagnosztika lehetőségei mikor, hogyan, miért? Dr. Almássy Zsuzsanna Heim Pál Kórház, Budapest Toxikológia és Anyagcsere Osztály Definíció A prenatális diagnosztika a klinikai genetika azon
Biológus MSc. Molekuláris biológiai alapismeretek
Biológus MSc Molekuláris biológiai alapismeretek A nukleotidok építőkövei A nukleotidok szerkezete Nukleotid = N-tartalmú szerves bázis + pentóz + foszfát N-glikozidos kötés 5 1 4 2 3 (Foszfát)észter-kötés
Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes.
2 Egygénes, mendeli öröklődésű betegségek Mendel borsóval végzett keresztezési kísérletei alapján 1866-ben tette közzé az öröklődés alapvető törvényszerűségeinek összefoglalását: Kísérletek növényhibridekkel,
Humán genom variációk single nucleotide polymorphism (SNP)
Humán genom variációk single nucleotide polymorphism (SNP) A genom ~ 97 %-a két különböző egyedben teljesen azonos ~ 1% különbség: SNP miatt ~2% különbség: kópiaszámbeli eltérés, deléciók miatt 11-12 millió
Genetika előadás. Oktató: Benedek Klára benedekklara@ms.sapientia.ro
Genetika előadás Oktató: Benedek Klára benedekklara@ms.sapientia.ro Genetika = Az öröklés törvényeinek megismerése 1. Molekuláris genetika: sejt és molekuláris szint 2. Klasszikus genetika: egyedi szint
RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek
RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció Ősi
12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!!
Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció 1859 1865 1869 1952 Hershey & Chase 1953!!! 1879 1903 1951 1950 1944 1928 1911 1 1. DNS szerkezete Mi az örökítő anyag? Friedrich Miescher
Cserző Miklós Bioinformatika és genomanalízis az orvostudományban. Integrált biológiai adatbázisok
Bioinformatika és genomanalízis az orvostudományban Integrált biológiai adatbázisok Cserző Miklós 2018 A mai előadás A genom annotálás jelentősége Genome Reference Consortium Gene Ontology Az ensembl pipeline
TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?
TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis,
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
Tartalomjegyzék TARTALOMJEGYZÉK
Tartalomjegyzék TARTALOMJEGYZÉK Tartalomjegyzék... 1 Rövidítések jegyzéke... 3 Ábrák és táblázatok jegyzéke... 5 Ábrák... 5 Táblázatok... 5 Bevezetés... 6 Irodalmi háttér... 8 Komplex öröklõdésû jellegek
Diagnosztikai célú molekuláris biológiai vizsgálatok
Diagnosztikai célú molekuláris biológiai vizsgálatok Dr. Patócs Attila, PhD MTA-SE Molekuláris Medicina Kutatócsoport, Semmelweis Egyetem II. sz. Belgyógyászati Klinika Laboratóriumi Medicina Intézet Genetikai
Epigenetikai Szabályozás
Epigenetikai Szabályozás Kromatin alapegysége a nukleoszóma 1. DNS Linker DNS Nukleoszóma mag H1 DNS 10 nm 30 nm Nukleoszóma gyöngy (4x2 hiszton molekula + 146 nukleotid pár) 10 nm-es szál 30 nm-es szál
Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia
Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra
Genomadatbázisok Ld. Entrez Genome: Összes ismert genom, hierarchikus szervezésben (kromoszóma, térképek, gének, stb.)
Genomika Új korszak, paradigmaváltás, forradalom: a teljes genomok ismeretében a biológia adatokban gazdag tudománnyá válik. Új kutatási módszerek, új szemlélet. Hajtóerõk: Genomszekvenálási projektek
Populációgenetikai vizsgálatok eredményei hangulatzavarokban. Képalkotó vizsgálatok alkalmazása a neuropszichofarmakológiában
Populációgenetikai vizsgálatok eredményei hangulatzavarokban Képalkotó vizsgálatok alkalmazása a neuropszichofarmakológiában Juhász Gabriella Semmelweis Egyetem, GYTK, Gyógyszerhatástani Intézet Neuroscience
Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 projekt
Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 projekt ÁLLATGENETIKA Debreceni Egyetem Nyugat-magyarországi Egyetem Pannon Egyetem A projekt az Európai Unió támogatásával, az
GENOMIKA TÖBBFÉLE MAKROMOLEKULA VIZSGÁLATA EGYIDŐBEN
GENOMIKA TÖBBFÉLE MAKROMOLEKULA VIZSGÁLATA EGYIDŐBEN Strukturális genomika Genomkönyvtárak DNS szekvenálás Genom programok Polimorfizmusok RFLP DNS könyvtár készítés humán genom 1. Emésztés RE-kal Emberi
A HUMÁNGENETIKA LEGÚJABB EREDMÉNYEI Péterfy Miklós
A HUMÁNGENETIKA LEGÚJABB EREDMÉNYEI Péterfy Miklós Összefoglalás A humángenetika korunk egyik legdinamikusabban fejlődő tudományága. Ennek a fejlődésnek legfőbb mozgatórugója az, hogy a humángenetika,
1.1. A Humán Genom Projekt A Humán Genom Projekt célja A humán genom elsõ munkapéldányából levonható következtetések
VIII. 1. A GENETIKAI POLIMORFIZMUSOK PSZICHOLÓGIAI ÉS PSZICHIÁTRIAI VONATKOZÁSAI Sasvári-Székely Mária 1, Székely Anna 2, Nemoda Zsófia 1 és Rónai Zsolt 1 1 Semmelweis Egyetem, Orvosi Vegytani, Molekuláris
Tutorial 1 The Central Dogma of molecular biology
oday DN RN rotein utorial 1 he entral Dogma of molecular biology Information flow in genetics:» ranscription» ranslation» Making sense of genomic information Information content in DN - Information content
10. Genomika 2. Microarrayek és típusaik
10. Genomika 2. 1. Microarray technikák és bioinformatikai vonatkozásaik Microarrayek és típusaik Korrelált génexpresszió mint a funkcionális genomika eszköze 2. Kombinált megközelítés a funkcionális genomikában
Genomika. Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel. DNS szekvenálási eljárások. DNS ujjlenyomat (VNTR)
Genomika (A genom, génállomány vizsgálata) Mutációk (SNP-k) és vizsgálatuk egyszerű módszerekkel DNS szekvenálási eljárások DNS ujjlenyomat (VNTR) DNS chipek statikus és dinamikus információk vizsgálata
Conserved ortholog set (COS) markerek térképezése Aegilops kromoszómákon
Conserved ortholog set (COS) markerek térképezése Aegilops kromoszómákon Rövid tanulmányút 2011. 01.03-03. 30., John Inn Centre, Dept. of Crop Genetics, Norwich Research Park, Norwich NR4 7UH, UK Supervisor:
A géntechnológiát megalapozó felfedezések
2010. december BIOTECHNOLÓGIA Rova tvezető: Dr. Heszky László akadémikus A géntechnológia genetikai alapjai c. I. fejezet 1-5. részében azokat a tudományos eredményeket mutattuk be, melyek bizonyítják,
Az immunválasz genetikai szabályozása. Falus András Semmelweis Egyetem GSI Intézet
Az immunválasz genetikai szabályozása Falus András Semmelweis Egyetem GSI Intézet a modell..a humán genom Nature 171, 737-738 1953. április 25. 2001. február 15-16...az enciklopédia...1000-2500-5 millió
A kromoszómák kialakulása előtt a DNS állomány megkettőződik. A két azonos információ tartalmú DNS egymás mellé rendeződik és egy kromoszómát alkot.
Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két
Igazságügyi genetika alapjai
Nyomok - Death Valley, CA 2007 / 10 / 11 Igazságügyi genetika alapjai Molekuláris orvostudomány - molekuláris bűnjelek genetikai analízise Pádár Zsolt Igazságügyi genetika vannak az ÉLET dolgai és vannak
A nyelv genetikai háttere
A nyelv genetikai háttere Szalontai Ádám ELTE Elméleti Nyelvészeti Doktori Program MTA Nyelvtudományi Intézet 2014. április 29. 1 / 41 Az előadás menete Genetikai bevezető Gének és nyelv elmélet KE család
Populációgenetikai. alapok
Populációgenetikai alapok Populáció = egyedek egy adott csoportja Az egyedek eltérnek egymástól morfológiailag, de viselkedésüket tekintve is = genetikai különbségek Fenotípus = külső jellegek morfológia,
Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK
Juhász Angéla MTA ATK MI Alkalmazott Genomikai Osztály SZEKVENCIA ADATBÁZISOK Fehérjét kódol? Tulajdonságai? -Hol lokalizálódik? -Oldható? -3D szerkezete? -Accession #? -Annotációja elérhető? Már benne
Orvosi Genomtudomány 2014 Medical Genomics 2014. Április 8 Május 22 8th April 22nd May
Orvosi Genomtudomány 2014 Medical Genomics 2014 Április 8 Május 22 8th April 22nd May Hét / 1st week (9. kalendariumi het) Takács László / Fehér Zsigmond Magyar kurzus Datum/ido Ápr. 8 Apr. 9 10:00 10:45
RNS SZINTÉZIS ÉS ÉRÉS
RNS SZINTÉZIS ÉS ÉRÉS A genom alapvetõ funkciója, hogy a sejt mûködéséhez esszenciális gépek (fehérjék) elõállí tására vonatkozó információt tartalmazza. A DNS-ben rejlõ információ egy kétlépéses folyamatban
Élettan. előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45
Élettan előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45 oktató: Dr. Tóth Attila, adjunktus ELTE TTK Biológiai Intézet, Élettani és Neurobiológiai tanszék
A rák, mint genetikai betegség
A rák, mint genetikai betegség Diák: Ferencz Arnold-Béla la Felkész szítı tanár: József J Éva Bolyai Farkas Elméleti leti LíceumL Mi is a rák r tulajdonképpen? A rák r k egy olyan betegség g ahol sejt
CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI
A GENETIKAI INFORMÁCI CIÓ TÁROLÁSA ÉS S KIFEJEZŐDÉSE A DNS SZERKEZETE Két antiparalel (ellentétes lefutású) polinukleotid láncból álló kettős helix A két lánc egy képzeletbeli közös tengely körül van feltekeredve,
A genetikai vizsgálatok jelene, jövője a Ritka Betegségek vonatkozásában
Budapest, 2014. február 22. Ritka Betegségek Világnapja A genetikai vizsgálatok jelene, jövője a Ritka Betegségek vonatkozásában dr. Kósa János PentaCore Laboratórium, Budapest Semmelweis Egyetem I. sz.
A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?
A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis, a kódolás hogy lehetséges?
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál
DNS replikáció DNS RNS Polipeptid Amino terminus Templát szál Karboxi terminus Szuper-csavarodott prokarióta cirkuláris DNS Hisztonok komplexe DNS hisztonokra történő felcsvarodása Hiszton-kötött negatív
Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. www.meetthescientist.hu 1 26
Hamar Péter RNS világ Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. 1 26 Főszereplők: DNS -> RNS -> fehérje A kód lefordítása Dezoxy-ribo-Nuklein-Sav: DNS az élet kódja megkettőződés (replikáció)
ISMÉTLDÉSI POLIMORFIZMUSOK A KUTYA DOPAMINERG GÉNJEIBEN
ISMÉTLDÉSI POLIMORFIZMUSOK A KUTYA DOPAMINERG GÉNJEIBEN Biológia Doktori Iskola Vezet: Prof. Erdei Anna Doktori tézisek Héjjas Krisztina Eötvös Loránd Tudományegyetem Szerkezeti Biokémia Doktori Program
Bevezetés a bioinformatikába. Harangi János DE, TEK, TTK Biokémiai Tanszék
Bevezetés a bioinformatikába Harangi János DE, TEK, TTK Biokémiai Tanszék Bioinformatika Interdiszciplináris tudomány, amely magába foglalja a biológiai adatok gyűjtésének,feldolgozásának, tárolásának,
MOLEKULÁRIS GENETIKA A LABORATÓRIUMI MEDICINÁBAN. Laboratóriumi Medicina Intézet 2017.
MOLEKULÁRIS GENETIKA A LABORATÓRIUMI MEDICINÁBAN Laboratóriumi Medicina Intézet 2017. 1 Történeti áttekintés Humán genom projekt 20-25 000 gén azonosítása 1,800 betegséghez köthető gén 1000 genetikai teszt
BIOINFORMATIKA Ungvári Ildikó
1 BIOINFORMATIKA Ungvári Ildikó Az elmúlt évtizedekben a molekuláris biológiai, genomikai technológiák robbanásszerű fejlődése a biológiai adatok mennyiségének exponenciális növekedéséhez vezetett. Ebben
Hátterükben egyetlen gén áll, melynek általában számottevő a viselkedésre gyakorolt hatása, öröklési mintázata jellegzetes.
Múlt órán: Lehetséges tesztfeladatok: Kitől származik a variáció-szelekció paradigma, mely szerint az egyéni, javarészt öröklött különbségek között a társadalmi harc válogat? Fromm-Reichmann Mill Gallton
Zárójelentés. A D4-es dopamin receptor gén 5 régiójának haplotípus szerkezete: molekuláris és pszichiátriai vonatkozások (2003 2006) F042730
Zárójelentés A D4-es dopamin receptor gén 5 régiójának haplotípus szerkezete: molekuláris és pszichiátriai vonatkozások (2003 2006) F042730 Betegségeink kialakításában két f etiológiai faktor, a környezeti
A gének világa, avagy a mi világunk is
Kovács Árpád Ferenc folyóirata Kovács Árpád Ferenc A gének világa, avagy a mi világunk is 1. rész: A genetika a kezdetektől napjainkig 2010 A gének világa, avagy a mi világunk is 1. Bevezetés életünk központjába
MUTÁCIÓ ÉS HIBAJAVÍTÁS
1 5. A DNS Mutáció Hibajavítás MUTÁCIÓ ÉS HIBAJAVÍTÁS DIA 29 DIA 30 DIA 31 DIA 32 MUTÁCIÓK Definíció: a mutáció a DNS nukleotid sorrendjének megváltozása. Csoportosítás A mutációkat többféleképpen csoportosíthatjuk.
Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása.
Növények klónozása Klónozás Klónozás: tökéletesen egyforma szervezetek csoportjának előállítása, vagyis több genetikailag azonos egyed létrehozása. Görög szó: klon, jelentése: gally, hajtás, vessző. Ami
Tudománytörténeti visszatekintés
GENETIKA I. AZ ÖRÖKLŐDÉS TÖRVÉNYSZERŰSÉGEI Minek köszönhető a biológiai sokféleség? Hogyan történik a tulajdonságok átörökítése? Tudománytörténeti visszatekintés 1. Keveredés alapú öröklődés: (1761-1766,
TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben
esirna mirtron BEVEZETÉS TÉMAKÖRÖK Ősi RNS világ RNS-ek tradicionális szerepben bevezetés BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek
Prof. Dr. Szabad János Tantárgyfelelős beosztása
Tantárgy neve Genetika Tantárgy kódja BIB 1506 Meghírdetés féléve 5 Kreditpont 4 Összóraszám (elmélet + gyakorlat) 3+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) BIB 1411 Tantárgyfelelős
Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét. Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet
Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet Gén mrns Fehérje Transzkripció Transzláció A transzkriptum : mrns Hogyan mutatható
7. SOKFÉLESÉG. Sokféleség
Sokféleség DIA 1 Egy populáció egyedei fenotípusos jegyeikben különböznek egymástól. Az egypetéjű ikreket leszámítva, nincs két egyforma egyed. A fenotípusos változékonyságot a genetikai változékonyság
Génszerkezet és génfunkció
Általános és Orvosi Genetika jegyzet 4. fejezetének bővítése a bakteriális genetikával 4. fejezet Génszerkezet és génfunkció 1/ Bakteriális genetika Nem szükséges külön hangsúlyoznunk a baktériumok és
Kappelmayer János. Malignus hematológiai megbetegedések molekuláris háttere. MOLSZE IX. Nagygyűlése. Bük, 2005 szeptember
Kappelmayer János Malignus hematológiai megbetegedések molekuláris háttere MOLSZE IX. Nagygyűlése Bük, 2005 szeptember 29-30. Laboratóriumi vizsgálatok hematológiai malignómákban Általános laboratóriumi
1. A genomika alapjai - A humán genom. 1.1. Genomika
1. A genomika alapjai - A humán genom.... 1 1.1. Genomika... 1 1.2. Humán Genom Projekt... 1 1.3. DNS szekvenálás... 3 1.4. Résztvevők a humán genom projektben... 4 1.5. A HGP néhány eredménye... 4 1.6.
A DOPAMIN D4-ES RECEPTOR GÉN PROMOTER RÉGIÓJÁNAK FUNKCIONÁLIS VIZSGÁLATA
A DOPAMIN D4-ES RECEPTOR GÉN PROMOTER RÉGIÓJÁNAK FUNKCIONÁLIS VIZSGÁLATA Doktori értekezés Kereszturi Éva Semmelweis Egyetem Molekuláris Orvostudományok Doktori Iskola Pathobiokémia Doktori Program Témavezető: