CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "CIÓ A GENETIKAI INFORMÁCI A DNS REPLIKÁCI"

Átírás

1 A GENETIKAI INFORMÁCI CIÓ TÁROLÁSA ÉS S KIFEJEZŐDÉSE A DNS SZERKEZETE Két antiparalel (ellentétes lefutású) polinukleotid láncból álló kettős helix A két lánc egy képzeletbeli közös tengely körül van feltekeredve, a tekeredés leggyakrabban jobbmenetes A két láncot egymáshoz komplementer bázispárok között kialakult hidrogén-hidak rögzítik A DNS ELSŐDLEGES SZERKEZETE N-tartalmú szerves bázis (A, T, C, G) Kémiai szerkezetük alapján megkülönböztetünk purinés pirimidin bázisokat Cukorfoszfát lánc foszfodiészter kötéssel egymáshoz kapcsolódó dezoxi-ribóz alegységekből áll A polinukleotid-lánc nem szimmetrikus szerkezetű, végei különböznek egymástól (5 -, 3 -vég) animáció PROKARIÓTA EUKARIÓTA A KROMOSZÓMA SZERVEZŐDÉSE A prokarióta sejtek DNS-e zárt, cirkuláris a DNS-nek nincsen szabad vége A replikáció alapvető problémáinak megértéséhez a prokariótákban történő DNS szintézis jó modellt nyújt Az eukarióta sejtek nukleáris DNS-e lineáris, és sokkal hosszabb, mint a prokarióta genom Az eukarióta DNS nem egy molekula, hanem annyi, ahány kromoszóma van a sejtben A DNS REPLIKÁCI CIÓJA A szerkezet sajátosságaiból 2 fontos dolog következik: A kettős spirál alakja vagy stabilitása független a nukleotidok sorrendjétől. Ezért kitűnően alkalmas információ tárolására. A szerkezet alapján könnyen elképzelhető annak megkettőződése olyan módon, hogy széttekeredik, és az új szál a régi nukleotid sorrendjével komplementer módon jön létre. SZEMIKONZERVATÍV REPLIKÁCI CIÓ Az új DNS molekula egyik lánca a mintául szolgáló és teljes egészében megőrződött szülői lánc, csak a másik lánc szintetizálódott újonnan. A DNS replikáció az S fázisban történik 1

2 A REPLIKÁCIÓ MECHANIZMUSA A DNS szemikonzervatív replikációjának lényege az, hogy a kettős spirál két lánca egymástól szétválik, és különkülön mindkettőről, mint mintáról (template) szintetizálódik egy új komplementer bázisszekvenciájú, antiparallel lefutású új lánc. A DNS kettős spirál széttekerésében a szupercsavart állapot megszüntetésében-, és replikációs villa kinyílásában topoizomeráz és helikáz enzimek vesznek részt. A mintául szolgáló DNS-lánccal komplementer, új DNSlánc szintézisét a DNS-polimeráz enzimek végzik. A folyamat meghatározott helyről indul, az ún. replikációs origóból. A másolás mindkét szálon megindul, de ellentétes irányban. A DNS szálak antiparalel lefutásúak, és a szintézis iránya mindig a mintául szolgáló szál 3 végétől indul az 5 vég felé. A replikációs villa a DNS szintézis helye. A DNS szintézis enzimaktivitás eredménye. A szintézishez DNS polimeráz enzim, nukleotid trifosztfátok (datp, dgtp, dctp, dttp), egyszálú templát DNS valamint kezdő vagy primer nukleinsav darab szükséges. PRIMER DNS + datp dgtp dctp dttp DNS polimeráz ÚJ J DNS A folyamatos szintézis iránya megegyezik a replikációs villa előrehaladásának irányával. A szintézis iránya mindkét szálon a mintául szolgáló szál 3 -végétől indul és az 5 -vége felé folytatóik. A két mintaszálat a szintézis eltérő miatt megkülönböztetik. A DNS polimeráz nem képes elkezdeni a polimerizációt egy kezdő, vagy primer szakasz nélkül. VEZETŐSZ SZÁL KÖVETŐSZÁL Ligáz z enzim A FEHÉRJ RJÉK K BIOSZINTÉZIS ZISÉNEK FOLYAMATAI A DNS-től a fehérjéig: miként olvassák a sejtek a genomot? A génexpresszió vagy kifejeződés 2 lépésben valósul meg: 1. TRANSZKRIPCIÓ - átírás 2. TRANSZLÁCIÓ - fordítás Az információáramlás iránya - CENTRÁLIS DOGMA: DNS TRANSZKRIPCIÓ RNS TRANSZLÁCIÓ FEHÉRJE TRANSZKRIPCIÓ A DNS alapú genetikai információ ugyan egy másik molekulába (RNS) íródik át, azonban a nyelvezet a nukleotidák nyelve -, továbbra is közös marad. TRANSZKRIPCIÓ A transzkripció egyszálú RNS-t produkál, amely komplementere a DNS egyik szálának. Az RNS szintézis templátja a 3-5 lefutású DNS szál (aktív szál). DNS függő RNS polimeráz Az RNS szintézis nem igényel primereket. Nincs szükség helikázokra és topoizomerázokra, az RNS polimeráz mindent egyedül végez el, vissza is tekeri a DNS helixét. 5-3 a szintézis iránya. A DNS-ben lévő start és stop szignálok jelzik az RNS polimerázoknak, hogy hol kezdjék és fejezzék be a transzkripciót. 2

3 A bioszintézis 3 fő szakaszra osztható: 1. Iniciáci ció a folyamat elindítása σ-faktor 2. Elongáci ció lánchosszabítás 3. Termináci ció a folyamat befejezése ELTÉRÉSEK A PROKARIÓTÁK ÉS S AZ EUKARIÓTÁK ÁTÍRÓ RENDSZERÉBEN Az mrns érése (splicing( splicing) A legmarkánsabb eltérés a prokarióta és eukarióta átíró rendszerek között. Eukariótákban kimutatták, hogy a DNS-ről átírt RNS mérete jóval nagyobb annál az mrns-nél, amely végül a fordítás templátjául szolgál. EXONOK kódoló szekvenciák INTRONOK aminosavsorrendjük nem határoz meg semmiféle eukarióta fehérjét Speciális nukleotida szekvenciák jelzik az exon intron határokat. A splicing az ún. spliceosomákban megy végbe, amely fehérjéből és a magban előforduló kis méretű RNS molekulákból áll. Az újonnan szintetizálódott mrns 5 -végére egy sapka kerül, ami metil-guaninból épül fel. A 3 -vége az RNS-nek poliadenilálódik, egy poli-a farok kerül rá. Transzláció A mrns-ben tárolt genetikai információ leforditása a nukleotidák nyelvéről az aminosavak nyelvére. A kódszótár Egy-egy aminosavnak megfelelő nukleotidhármast nevezünk kodonnak. Az mrns-ben jelen lévő 4 bázis mindegyike a kodonban 3 lehetséges helyen fordulhat elő 64 különböző kodon jön létre (a fehérjékbe csak 20 aminosav épül be). A mrns-ben lévő START és STOP kodonok jelzik a RIBOSZÓMÁNAK, hogy hol kezdje és fejezze be a transzlációt. Startkodon: AUG (Metionin) Stopkodonok: UGA, UAG, UAA 3

4 A kódszótár Az olvasási keret a START kodontól A STOP kodonig tart 60 kodon oszlik meg 19 aminosav között A trns Adapter szerepét látja el. A komplementerek által létrehozott másodlagos szerkezetsíkban kivetítve lóhere alakot hoz létre. Jellegzeteségei: HURKOK: I., II., III., IV. 3 OH végén CAA nukleotidsorrend (mozgékony) 5 vége foszforilálódott Egy aminosavat egynél több kodon is meghatározhat, egy kodon azonban mindig csak egy aminosavnak felel meg. A genetikai kód néhány kivételtől eltekintve univerzális! Térbeli szerkezete L alakú a hidrogénhidak által kialakított szerkezet miatt A trns Kodon-Antikodon lötyögés Azonos aminosavat jelző különböző kodonokat (ha azok csak a 3. betűjükben különböznek egymástól), gyakran ugyanaz a trns molekula ismeri fel. Dihidrouracil tartalmú nukleotid Timidin- Pszeudouridin- Citidin szekv. A kodon-antikodon kapcsolatban 3 bázispár alakul ki, a komplementerantiparalel nukleotidok kapcsolata nem olyan szigorú mint a DNS-ben. 5 oldalon egy pirimidint tartalmazó nukleotid Nagysága változatos (variábilis) A kodon 3. helyen lévő bázisa és az antikodon 1. helyen lévő bázisa között jön létre a kodonantikodonkapcsolat Az antikodon hurokban az ANTIKODONT 3 bázis alkotja 3 oldalon egy módosított purint tartalmazó nukleotid A alanin beépült oda, ahová az alaninnak kellett volna. Kautikus redukció Az aminosavat szállító trns felismerését, maga az aminosav nem befolyásolja Kísérleti úton a ciszteint katalitikus hidrogénezéssel redukálták. A cisztein SH- oldalláncát metilcsoporttá, így a ciszteint alaninná alakították Aminoacil-tRNS szintetázok A trns molekula és a az aminosav közötti kapcsolat kialakításáért felelősek. Aminosav aktiválása Aminoacil-AMP képződik A sejt legnagyobb specifitású enzimei közé tartoznak. Pirofoszfát hasad le AMP hasad le Savanhidrid kötés Aktivált aminosav átvitele a specifikus trns-re 4

5 Riboszómák Egy kisebb és egy nagyobb részegységből álló ribonukleoprotein részecskék Riboszómák A transzlációban éppen részt nem vevő inaktív riboszómák disszociált állapotban vannak. A polipeptidlánc szintézisének iniciációjakor a két alegység egyesül,a szintézis végén pedig ismét szétválik (ismétlődő riboszómaciklus). Riboszómák Policisztronos, azaz több polipeptidlánc szerkezetére vonatkozó információt hordoz. Az információ az AUG kodonnal kezdődik Prokarióta mrns A STOP kodont követi a következő polipeptid START kodonja (AUG) (Iniciáció) Az mrns a riboszóma kis alegységéhez kötődik Iniciációs komplex (30S) Az AUG kodonhoz az iniciátortrns antikodonja kapcsolódik A kezdő metionin formileződik, ezt szállítja az iniciátor trns (trns fmet ) Az AUG előtt egy nem kódoló szakasz van, a riboszómához kötődést segíti Az első polipeptidet kódoló szakasz a STOP kodonnal fejeződik be GTP + iniciációs faktorok (IF1, IF2, IF3) szükségesek a kialakulásához 50S alegység (Elongáció) EF-TU (Elongáció) A második aminosav aminocsoportja peptidkötést alkot a formil metionin karboxilcsoportjával A folyamatot az 50S alegység peptidil transzferáz enzime katalizálja EF-Ts 5

6 (Elongáció-Transzlokáció) Az AUG kodon és az üres iniciátor trns legördül a P helyről, ide a második aminosavnak megfelelő kodon és és a kéttagú peptidet hordozó trns kerül (Termináció) Az A helyen megjelenik valamelyik a STOP kodonok közül Újabb trns molekulák helyett terminációs faktorok kötődnek (RF1, RF2) A folyamat GTP-t igényel, amiben a EF-G (transzlokáz), segédkezik Az A helyen megjelenik a lánc 3. tagját meghatározó kodon A riboszóma alegységeire esik A polipeptid-transzferáz lehasítja a polipeptid láncot az utolsó trns-ről (P hely) Miután az első riboszóma elhagyta az mrns leolvasása közben az első kb. 80 nukleotidnyi szakaszt, újabb riboszóma kezdi el a szintézist a láncon. Poliszóma Fehérjeszintézis a mitokondriumban Osztódással szaporodik Önálló genetikai rendszerrel rendelkezik (cirkuláris DNS) 2 rrns gén 13 fehérje gén Annyi amennyi elfér a láncon. A poliszómaszerkezet stabilizálja a láncot. Az mrns 5 végén nem jelenik meg a Cap, de a 3 végén megtalálható a Poli-A farok 22 trns gén Nem tökéletesen érvényes a genetikai kód univerzálissága UGA=Triptofán AGG=STOP kodon AUA=Metionin 6

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár. Az endoplazmatikus membránrendszer Részei: DER /durva (szemcsés) endoplazmatikus retikulum/ SER /sima felszínű endoplazmatikus retikulum/ Golgi készülék Lizoszómák Peroxiszómák Szekréciós granulumok (váladékszemcsék)

Részletesebben

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék

transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti

Részletesebben

Transzláció. Szintetikus folyamatok Energiájának 90%-a

Transzláció. Szintetikus folyamatok Energiájának 90%-a Transzláció Transzláció Fehérje bioszintézis a genetikai információ kifejeződése Szükséges: mrns: trns: ~40 Riboszóma: 4 rrns + ~ 70 protein 20 Aminosav aktiváló enzim ~12 egyéb enzim Szintetikus folyamatok

Részletesebben

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak

Részletesebben

Biológus MSc. Molekuláris biológiai alapismeretek

Biológus MSc. Molekuláris biológiai alapismeretek Biológus MSc Molekuláris biológiai alapismeretek A nukleotidok építőkövei A nukleotidok szerkezete Nukleotid = N-tartalmú szerves bázis + pentóz + foszfát N-glikozidos kötés 5 1 4 2 3 (Foszfát)észter-kötés

Részletesebben

TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?

TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? TRANSZLÁCIÓ és fehérje transzport Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis,

Részletesebben

A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak?

A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? A TRANSZLÁCIÓ Hogyan lesz a DNS-ben kódolt információból fehérje? A DNS felszínén az aminosavak sorba állnak? mrns, trns, riboszómák felfedezése A GENETIKAI KÓD 20 AS és csak 4 bázis, a kódolás hogy lehetséges?

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

A replikáció mechanizmusa

A replikáció mechanizmusa Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,

Részletesebben

Transzláció. Leolvasás - fehérjeszintézis

Transzláció. Leolvasás - fehérjeszintézis Transzláció Leolvasás - fehérjeszintézis Fehérjeszintézis DNS mrns Transzkripció Transzláció Polipeptid A trns - aminosav kapcsolódás 1 A KEZDETEK ELŐTT Az enzim aktiválja az aminosavat azáltal, hogy egy

Részletesebben

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál

DNS replikáció. DNS RNS Polipeptid Amino terminus. Karboxi terminus. Templát szál DNS replikáció DNS RNS Polipeptid Amino terminus Templát szál Karboxi terminus Szuper-csavarodott prokarióta cirkuláris DNS Hisztonok komplexe DNS hisztonokra történő felcsvarodása Hiszton-kötött negatív

Részletesebben

13. RNS szintézis és splicing

13. RNS szintézis és splicing 13. RNS szintézis és splicing 1 Visszatekintés: Az RNS típusai és szerkezete Hírvivő RNS = mrns (messenger RNA = mrna) : fehérjeszintézis pre-mrns érett mrns (intronok kivágódnak = splicing) Transzfer

Részletesebben

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása

Részletesebben

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció Ősi

Részletesebben

15. Fehérjeszintézis: transzláció. Fehérje lebontás (proteolízis)

15. Fehérjeszintézis: transzláció. Fehérje lebontás (proteolízis) 15. Fehérjeszintézis: transzláció Fehérje lebontás (proteolízis) 1 Transzláció fordítás A C G T/U A C D E F G H I K L M N P Q R S T V W Y 4 betűs írás (nukleinsavak) 20 betűs írás (fehérjék) 2 Amit már

Részletesebben

2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód)

2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2.1 Nukleotidok, nukleinsavak Információátadás (örökítőanyag) Információs egység

Részletesebben

RNS SZINTÉZIS ÉS ÉRÉS

RNS SZINTÉZIS ÉS ÉRÉS RNS SZINTÉZIS ÉS ÉRÉS A genom alapvetõ funkciója, hogy a sejt mûködéséhez esszenciális gépek (fehérjék) elõállí tására vonatkozó információt tartalmazza. A DNS-ben rejlõ információ egy kétlépéses folyamatban

Részletesebben

BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok)

BIOLÓGIA ALAPJAI. Anyagcsere folyamatok 2. (Felépítő folyamatok) BIOLÓGIA ALAPJAI Anyagcsere folyamatok 2. (Felépítő folyamatok) A molekuláris biológiai alapjai DNS replikáció RNS transzkripció Fehérje szintézis (transzláció) (Az ábrák többsége Dr. Lénárd Gábor Biológia

Részletesebben

Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét. Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet

Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét. Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet Fehérje szintézis 2. TRANSZLÁCIÓ Molekuláris biológia kurzus 7. hét Kun Lídia Genetikai, Sejt- és immunbiológiai Intézet Gén mrns Fehérje Transzkripció Transzláció A transzkriptum : mrns Hogyan mutatható

Részletesebben

2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód)

2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2. Sejtalkotó molekulák II. Az örökítőanyag (DNS, RNS replikáció), és az öröklődés molekuláris alapjai (gén, genetikai kód) 2.1 Nukleotidok, nukleinsavak Információátadás (örökítőanyag) Információs egység

Részletesebben

Nukleinsavak, transzkripció, transzláció

Nukleinsavak, transzkripció, transzláció Nukleinsavak, transzkripció, transzláció 1. Nukleinsavak, transzkripció, transzláció Dr. Gyırffy Andrea PhD Experimentális Toxikológia Szakképzés Szent István Egyetem Állatorvos-tudományi Kar I. A DNS

Részletesebben

3. Sejtalkotó molekulák III.

3. Sejtalkotó molekulák III. 3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció

Részletesebben

Molekuláris biológiai alapok

Molekuláris biológiai alapok Biokémiai és Molekuláris Biológiai Intézet Molekuláris biológiai alapok Sarang Zsolt Dimenziók a biológiában Fehérjék (kb. 50 ezer különböző fehérje a szervezetben 21 féle aminosavból épül fel) Élő szervezetek

Részletesebben

Nukleinsavak. Szerkezet, szintézis, funkció

Nukleinsavak. Szerkezet, szintézis, funkció Nukleinsavak Szerkezet, szintézis, funkció Nukleinsavak, nukleotidok, nukleozidok 1869-ben Miescher a sejtmagból egy savas természetű, lúgban oldódó foszfortartalmú anyagot izolált, amit később, eredetére

Részletesebben

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi

Részletesebben

A génkifejeződés szabályozása

A génkifejeződés szabályozása A génkifejeződés szabályozása I. A DNS 1953. A DNS szerkezetének meghatározása (James Watson és Francis Crick) Transzkripció, transzláció felfedezése A genetikai információt a DNS hordozza A DNS-t felépítő

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

MOLEKULÁRIS GENETIKA A DNS SZEREPÉNEK TISZTÁZÁSA

MOLEKULÁRIS GENETIKA A DNS SZEREPÉNEK TISZTÁZÁSA MOLEKULÁRIS GENETIKA A DNS SZEREPÉNEK TISZTÁZÁSA A DNS-ről 1869-ben Friedrich Mischer német orvos írt először. A gennyben talált sejtekben egy foszforban gazdag, de ként nem tartalmazó anyagot talált.

Részletesebben

A géntechnológia genetikai alapjai (I./3.)

A géntechnológia genetikai alapjai (I./3.) Az I./2. rész (Gének és funkciójuk) rövid összefoglalója A gének a DNS információt hordozó szakaszai, melyekben a 4 betű (ATCG) néhány ezerszer, vagy százezerszer ismétlődik. A gének önálló programcsomagként

Részletesebben

I. A sejttől a génekig

I. A sejttől a génekig Gén A gének olyan nukleinsav-szakaszok a sejtek magjainak kromoszómáiban, melyek a szervezet működését és növekedését befolyásoló fehérjék szabályozásához és előállításához szükséges információkat tartalmazzák.

Részletesebben

11. előadás: A génektől a fehérjékig A genetikai információ áramlása

11. előadás: A génektől a fehérjékig A genetikai információ áramlása 11. előadás: A génektől a fehérjékig A genetikai információ áramlása A DNS információtartalma specifikus nukleotidsorrend formájában van jelen Az átörökített DNS fehérjék szintézisét szabályozva tulajdonságok

Részletesebben

Poligénes v. kantitatív öröklődés

Poligénes v. kantitatív öröklődés 1. Öröklődés komplexebb sajátosságai 2. Öröklődés molekuláris alapja Poligénes v. kantitatív öröklődés Azok a tulajdonságokat amelyek mértékegységgel nem, vagy csak nehezen mérhetők, kialakulásuk kevéssé

Részletesebben

TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben

TÉMAKÖRÖK. Ősi RNS világ BEVEZETÉS. RNS-ek tradicionális szerepben esirna mirtron BEVEZETÉS TÉMAKÖRÖK Ősi RNS világ RNS-ek tradicionális szerepben bevezetés BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek BIOLÓGIAI MOLEKULÁK FEHÉRJÉK NUKLEINSAVAK DNS-ek RNS-ek

Részletesebben

Nanotechnológia. Nukleinsavak. Készítette - Fehérvári Gábor

Nanotechnológia. Nukleinsavak. Készítette - Fehérvári Gábor Nanotechnológia Nukleinsavak Készítette - Fehérvári Gábor Bevezető A nukleinsavak az élő anyag alapvetően fontos komponensei. Meghatározó szerepet töltenek be az átöröklésben, a fehérjék szintézisében

Részletesebben

I. Az örökítő anyag felfedezése

I. Az örökítő anyag felfedezése 1 I. Az örökítő anyag felfedezése Az alábbi feladatokban az egy vagy több helyes választ kell kiválasztanod! 1. Mendel egyik legfontosabb meglátása az volt, hogy (1) A. tiszta származéksorokat hozott létre,

Részletesebben

3. előadás Sejtmag, DNS állomány szerveződése

3. előadás Sejtmag, DNS állomány szerveződése 3. előadás Sejtmag, DNS állomány szerveződése Örökítő anyag: DNS A DNS-lánc antiparallel irányultságú kettős hélixet alkot 2 lánc egymással ellentétes iráyban egymással összecsavarodva fut végig. Hélixek

Részletesebben

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek

RNS-ek. 1. Az ősi RNS Világ: - az élet hajnalán. 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek RNS-ek RNS-ek 1. Az ősi RNS Világ: - az élet hajnalán 2. Egy már ismert RNS Világ: - a fehérjeszintézis ben résztvevő RNS-ek 3. Egy újonnan felfedezett RNS Világ: - szabályozó RNS-ek 4. Transzkripció 5.

Részletesebben

Biológia. Stromájer Gábor Pál

Biológia. Stromájer Gábor Pál Biológia Stromájer Gábor Pál 2 Az öröklődő információ A nukleinsavak és a fehérjék anyagcseréjének szerepe alapvetően eltér a szénhidrátok és a lipidek anyagcseréjétől. Amíg az utóbbiak elsősorban energiaszolgáltatók

Részletesebben

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!!

12/4/2014. Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció. 1952 Hershey & Chase 1953!!! Genetika 7-8 ea. DNS szerkezete, replikáció és a rekombináció 1859 1865 1869 1952 Hershey & Chase 1953!!! 1879 1903 1951 1950 1944 1928 1911 1 1. DNS szerkezete Mi az örökítő anyag? Friedrich Miescher

Részletesebben

A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI

A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI A BIOTECHNOLÓGIA TERMÉSZETTUDOMÁNYI ALAPJAI Műszaki menedzser MSc hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: március 06?, április 10?, május 02?. dr. Pécs Miklós egyetemi docens

Részletesebben

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia

Fehérje expressziós rendszerek. Gyógyszerészi Biotechnológia Fehérje expressziós rendszerek Gyógyszerészi Biotechnológia Expressziós rendszerek Cél: rekombináns fehérjék előállítása nagy tisztaságban és nagy mennyiségben kísérleti ill. gyakorlati (therapia) felhasználásokra

Részletesebben

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Gergely Pál 2009

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Gergely Pál 2009 FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa Gergely Pál 2009 Fehérjeszintézis és poszttranszlációs módosítások A kódszótár A riboszóma szerkezete A fehérjeszintézis (transzláció)

Részletesebben

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA

BIOLÓGIA HÁZIVERSENY 1. FORDULÓ BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA BIOKÉMIA, GENETIKA 1. Nukleinsavak keresztrejtvény (12+1 p) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 1. A nukleinsavak a.-ok összekapcsolódásával kialakuló polimerek. 2. Purinvázas szerves bázis, amely az

Részletesebben

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301)

TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) Biokémia és molekuláris biológia I. kurzus (bb5t1301) Tematika 1 TEMATIKA Biokémia és molekuláris biológia IB kurzus (bb5t1301) 0. Bevezető A (a biokémiáról) (~40 perc: 1. heti előadás) A BIOkémia tárgya

Részletesebben

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.

Részletesebben

A gyakorlat elméleti háttere A DNS molekula a sejt információhordozója. A DNS nemzedékről nemzedékre megőrzi az élőlények genetikai örökségét.

A gyakorlat elméleti háttere A DNS molekula a sejt információhordozója. A DNS nemzedékről nemzedékre megőrzi az élőlények genetikai örökségét. A kísérlet megnevezése, célkitűzései: DNS molekula szerkezetének megismertetése Eszközszükséglet: Szükséges anyagok: színes gyurma, papírsablon Szükséges eszközök: olló, hurkapálcika, fogpiszkáló, cérna,

Részletesebben

Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. www.meetthescientist.hu 1 26

Hamar Péter. RNS világ. Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. www.meetthescientist.hu 1 26 Hamar Péter RNS világ Lánczos Kornél Gimnázium, Székesfehérvár, 2014. október 21. 1 26 Főszereplők: DNS -> RNS -> fehérje A kód lefordítása Dezoxy-ribo-Nuklein-Sav: DNS az élet kódja megkettőződés (replikáció)

Részletesebben

Fehérjeszerkezet, és tekeredés

Fehérjeszerkezet, és tekeredés Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983

Részletesebben

A molekuláris biológia eszközei

A molekuláris biológia eszközei A molekuláris biológia eszközei I. Nukleinsavak az élő szervezetekben Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje DNS feladata: információ tárolása és a transzkripció

Részletesebben

Biomolekulák kémiai manipulációja

Biomolekulák kémiai manipulációja Biomolekulák kémiai manipulációja Bioortogonális reakciók Bio: biológiai rendszerekkel kompatibilis, ortogonális: kizárólag egymással reagáló funkciókat alkalmaz, melyek nem lépnek keresztreakcióba különböző

Részletesebben

Szerk.: Vizkievicz András A DNS örökítő szerepét bizonyító kísérletek

Szerk.: Vizkievicz András A DNS örökítő szerepét bizonyító kísérletek Az öröklődés molekuláris alapjai Szerk.: Vizkievicz András A DNS örökítő szerepét bizonyító kísérletek A DNS-nek addig nem szenteltek különösebb figyelmet, amíg biológiai kísérlettel ki nem mutatták, hogy

Részletesebben

Vizsgakövetelmények Tudjon elemezni kísérleteket a DNS örökítő szerepének bizonyítására (Griffith és Avery, Hershey és Chase kísérlete).

Vizsgakövetelmények Tudjon elemezni kísérleteket a DNS örökítő szerepének bizonyítására (Griffith és Avery, Hershey és Chase kísérlete). 1 Vizsgakövetelmények Tudjon elemezni kísérleteket a DNS örökítő szerepének bizonyítására (Griffith és Avery, Hershey és Chase kísérlete). Ismertessen néhány példát a genetikai technológia alkalmazására

Részletesebben

Kémiai reakció aktivációs energiájának változása enzim jelenlétében

Kémiai reakció aktivációs energiájának változása enzim jelenlétében Kémiai reakció aktivációs energiájának változása enzim jelenlétében 1 A szubsztrátok belépnek az aktív centrumba; Az enzim alakja megváltozik, hogy az aktív hely beburkolja a szubsztrátokat. 2 A szubsztrátok

Részletesebben

A T sejt receptor (TCR) heterodimer

A T sejt receptor (TCR) heterodimer Immunbiológia - II A T sejt receptor (TCR) heterodimer 1 kötőhely lánc lánc 14. kromoszóma 7. kromoszóma V V C C EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL lánc: VJ régió lánc: VDJ régió Nincs szomatikus

Részletesebben

Tartalomjegyzék Anatómia... 1 66

Tartalomjegyzék Anatómia... 1 66 Tartalomjegyzék Anatómia... 1 66 Az emberi test felépítése... 1 2 Az emberi test szerveződési szintjei...1 A szervek elhelyezkedése topográfiája...2 Az emberi test tengelyei és síkjai...2 Az emberi szervezet

Részletesebben

SEJTBIOLÓGIA biomérnök hallgatók számára

SEJTBIOLÓGIA biomérnök hallgatók számára SEJTBIOLÓGIA biomérnök hallgatók számára Harmadik rész: A sejtmag Novák Béla docens Proofreading: Sveiczer Ákos ösztöndíjas kutató 1994. október 26. Copyright 1994 BME, Mezõgazdasági Kémiai Technológia

Részletesebben

A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA

A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA 2013.10.09. CITOSZKELETON - DEFINÍCIÓ Fehérjékből felépülő, a sejt vázát alkotó intracelluláris rendszer. Eukarióta és prokarióta sejtekben egyaránt megtalálható.

Részletesebben

Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei)

Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei) Antiszenz hatás és RNS interferencia (a génexpresszió befolyásolásának régi és legújabb lehetőségei) Az antiszenz elv története Reverz transzkripció replikáció transzkripció transzláció DNS DNS RNS Fehérje

Részletesebben

Az exponenciális, kiegyensúlyozott növekedés

Az exponenciális, kiegyensúlyozott növekedés Az exponenciális, kiegyensúlyozott növekedés A mikroorganizmusok állandó környezetben exponenciálisan szaporodnak, amikor a sejtek száma (n) exponenciálisan növekszik: n = n * e µ * t Ha az exponenciális

Részletesebben

Génexpresszió prokariótákban 1

Génexpresszió prokariótákban 1 β-galaktozidáz-szint laktóz elfogy a laktóz Génexpresszió prokariótákban 1 14. A GÉNEXPRESSZIÓ SZABÁ- LYOZÁSA PROKARIÓTÁKBAN Enzimindukció, indukálható operon. Policisztronos. Katabolit represszió, represszálható

Részletesebben

CzB 2010. Élettan: a sejt

CzB 2010. Élettan: a sejt CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal

Részletesebben

Sejtmag, magvacska magmembrán

Sejtmag, magvacska magmembrán Sejtmag, magvacska magmembrán Láng Orsolya Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Kompartmentalizáció Prokaryóta Cytoplazma Eukaryóta Endomembrán Kromatin Plazma membrán Eredménye

Részletesebben

sejt működés jovo.notebook March 13, 2018

sejt működés jovo.notebook March 13, 2018 1 A R É F Z S O I B T S Z E S R V E Z D É S I S E Z I N E T E K M O I B T O V N H C J W W R X S M R F Z Ö R E W T L D L K T E I A D Z W I O S W W E T H Á E J P S E I Z Z T L Y G O A R B Z M L A H E K J

Részletesebben

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Bay Péter

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Bay Péter FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa Bay Péter Fehérjeszintézis és poszttranszlációs módosítások A kódszótár A riboszóma szerkezete A fehérjeszintézis (transzláció)

Részletesebben

1. jelentésük. Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták.

1. jelentésük. Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták. Összefoglalás II. Szénhidrátok 1. jelentésük Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták. Ha ezeket az anyagokat hevítjük vizet vesztenek

Részletesebben

Elődi Pál. Biokémia. Negyedik kiadás

Elődi Pál. Biokémia. Negyedik kiadás Elődi Pál Biokémia Negyedik kiadás Akadémiai Kiadó, Budapest 1989 Tartalom Bevezetés 21 1. Az élő szervezetek felépítése és az életfolyamatok 23 Mi jellemző az élőre? (23) Biogén elemek (25) Biomolekulák

Részletesebben

Kromoszómák, Gének centromer

Kromoszómák, Gének centromer Kromoszómák, Gének A kromoszóma egy hosszú DNS szakasz, amely a sejt életének bizonyos szakaszában (a sejtosztódás előkészítéseként) tömörödik, így fénymikroszkóppal láthatóvá válik. A kromoszómák két

Részletesebben

Genetika. Tartárgyi adatlap: tantárgy adatai

Genetika. Tartárgyi adatlap: tantárgy adatai Genetika Előadás a I. éves Génsebészet szakos hallgatók számára Tartárgyi adatlap: tantárgy adatai 2.1. Tantárgy címe Genetika 2.2. Előadás felelőse Dr. Mara Gyöngyvér, docens 2.3. Egyéb oktatási tevékenységek

Részletesebben

Népegészségügyi genomika

Népegészségügyi genomika Népegészségügyi genomika Népegészségügyi genomika Tartalom 1. A genom szerkezete... 1 1. A genom szerkzet... 1 1.1. Bevezetés a humán genom... 1 1.2. A genetika rövid története... 1 2. A DNS szerkezete...

Részletesebben

CHO H H H OH H OH OH H CH2OH HC OH HC OH HC OH CH 2

CHO H H H OH H OH OH H CH2OH HC OH HC OH HC OH CH 2 4. Előadás ukleozidok, nukleotidok, nukleinsavak Történeti háttér Savas karakterű anyagok a sejtmagból 1869-71 DS a sejtmag fő komponense F. Miescher (Svájc) 1882 Flemming: Chromatin elnevezés Waldeyer:

Részletesebben

3. A w jelű folyamat kémiailag kondenzáció. 4. Ebben az átalakulásban hasonló kémiai reakció zajlik le, mint a zsírok emésztésekor a vékonybélben.

3. A w jelű folyamat kémiailag kondenzáció. 4. Ebben az átalakulásban hasonló kémiai reakció zajlik le, mint a zsírok emésztésekor a vékonybélben. FEHÉRJÉK 1. Fehérjék bioszintézisére csak az autotróf szervezetek képesek. Széndioxidból, vízből és más szervetlen anyagokból csak autotróf élőlények képesek szerves vegyületeket előállítani. Az alábbi

Részletesebben

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.

(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α. Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs

Részletesebben

BIOLÓGIA VERSENY 10. osztály 2016. február 20.

BIOLÓGIA VERSENY 10. osztály 2016. február 20. BIOLÓGIA VERSENY 10. osztály 2016. február 20. Kód Elérhető pontszám: 100 Elért pontszám: I. Definíció (2x1 = 2 pont): a) Mikroszkopikus méretű szilárd részecskék aktív bekebelezése b) Molekula, a sejt

Részletesebben

A genetikai lelet értelmezése monogénes betegségekben

A genetikai lelet értelmezése monogénes betegségekben A genetikai lelet értelmezése monogénes betegségekben Tory Kálmán Semmelweis Egyetem, I. sz. Gyermekklinika A ~20 ezer fehérje-kódoló gén a 23 pár kromoszómán A kromoszómán található bázisok száma: 250M

Részletesebben

Natív antigének felismerése. B sejt receptorok, immunglobulinok

Natív antigének felismerése. B sejt receptorok, immunglobulinok Natív antigének felismerése B sejt receptorok, immunglobulinok B és T sejt receptorok A B és T sejt receptorok is az immunglobulin fehérje család tagjai A TCR nem ismeri fel az antigéneket, kizárólag az

Részletesebben

Nukleinsavak építőkövei

Nukleinsavak építőkövei ukleinsavak Szerkezeti hierarchia ukleinsavak építőkövei Pirimidin Purin Pirimidin Purin Timin (T) Adenin (A) Adenin (A) Citozin (C) Guanin (G) DS bázisai bázis Citozin (C) Guanin (G) RS bázisai bázis

Részletesebben

DNS-szekvencia meghatározás

DNS-szekvencia meghatározás DNS-szekvencia meghatározás Gilbert 1980 (1958) Sanger 3-1 A DNS-polimerázok jellemzői 5'-3' polimeráz aktivitás 5'-3' exonukleáz 3'-5' exonukleáz aktivitás Az új szál szintéziséhez kell: templát DNS primer

Részletesebben

Dr. Mandl József BIOKÉMIA. Aminosavak, peptidek, szénhidrátok, lipidek, nukleotidok, nukleinsavak, vitaminok és koenzimek.

Dr. Mandl József BIOKÉMIA. Aminosavak, peptidek, szénhidrátok, lipidek, nukleotidok, nukleinsavak, vitaminok és koenzimek. Dr. Mandl József BIOKÉMIA Aminosavak, peptidek, szénhidrátok, lipidek, nukleotidok, nukleinsavak, vitaminok és koenzimek Semmelweis Kiadó Semmelweis Orvostudományi Egyetem Orvosi Vegytani, Molekuláris

Részletesebben

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót

Az X kromoszóma inaktívációja. A kromatin szerkezet befolyásolja a génexpressziót Az X kromoszóma inaktívációja A kromatin szerkezet befolyásolja a génexpressziót Férfiak: XY Nők: XX X kromoszóma: nagy méretű több mint 1000 gén Y kromoszóma: kis méretű, kevesebb, mint 100 gén Kompenzációs

Részletesebben

Molekuláris biológus M.Sc. Prokarióták élettana

Molekuláris biológus M.Sc. Prokarióták élettana Molekuláris biológus M.Sc. Prokarióták élettana Bakteriális DNS replikáció. A génexpresszió szabályozása prokariótákban. Plazmidok, baktériumok transzformálása. A prokarióta genom nukleoid egyetlen cirkuláris

Részletesebben

Az élő szervezetek felépítése I. Biogén elemek biomolekulák alkotóelemei a természetben előforduló elemek közül 22 fordul elő az élővilágban O; N; C; H; P; és S; - élő anyag 99%-a Biogén elemek sajátosságai:

Részletesebben

DNS a biztonsági mentés

DNS a biztonsági mentés 1. 1. feladat DNS a biztonsági mentés DNS szerkezete a) Párosítsd a tudósokat a DNS szerkezetével kapcsolatos felfedezéseikkel! 1. Erwin Chargaff 2. Rosalind Franklin és Maurice Wilkins 3. lbrecht Kossel

Részletesebben

Nukleinsavak SZERKEZET, SZINTÉZIS, FUNKCIÓ

Nukleinsavak SZERKEZET, SZINTÉZIS, FUNKCIÓ Nukleinsavak SZERKEZET, SZINTÉZIS, FUNKCIÓ Nukleinsavak, nukleotidok, nukleozidok 1869-ben Miescher a sejtmagból egy savas természetű, lúgban oldódó foszfortartalmú anyagot izolált, amit később, eredetére

Részletesebben

Az öröklődés molekuláris alapjai ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára

Az öröklődés molekuláris alapjai ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára z öröklődés molekuláris alapjai 1953-ban mutatta be James Watson és Francis Crick elegáns kettős hélix modelljét a DNS szerkezetének magyarázatára z örökítőanyag keresése: mikor T. H. Morgan csoportja

Részletesebben

Farmakológus szakasszisztens Farmakológus szakasszisztens 2/34

Farmakológus szakasszisztens Farmakológus szakasszisztens 2/34 -06 Farmakológus szakasszisztens feladatok A 0/007 (II. 7.) SzMM rendelettel módosított /006 (II. 7.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés

Részletesebben

Epigenetikai Szabályozás

Epigenetikai Szabályozás Epigenetikai Szabályozás Kromatin alapegysége a nukleoszóma 1. DNS Linker DNS Nukleoszóma mag H1 DNS 10 nm 30 nm Nukleoszóma gyöngy (4x2 hiszton molekula + 146 nukleotid pár) 10 nm-es szál 30 nm-es szál

Részletesebben

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK

POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK POSZTTRANSZLÁCIÓS MÓDOSÍTÁSOK: GLIKOZILÁLÁSOK Dr. Pécs Miklós Budapesti Műszaki és Gazdaságtudományi Egyetem, Alkalmazott Biotechnológia és Élelmiszertudomány Tanszék 1 Glikozilálás A rekombináns fehérjék

Részletesebben

Nukleinsavak SZERKEZET, SZINTÉZIS, FUNKCIÓ

Nukleinsavak SZERKEZET, SZINTÉZIS, FUNKCIÓ Nukleinsavak SZERKEZET, SZINTÉZIS, FUNKCIÓ Nukleinsavak, nukleotidok, nukleozidok 1869-ben Miescher a sejtmagból egy savas természetű, lúgban oldódó foszfortartalmú anyagot izolált, amit később, eredetére

Részletesebben

Az inzulin története és előállítása

Az inzulin története és előállítása INZULIN Az inzulin története és előállítása Az inzulin (a latin insula = sziget szóból) a hasnyálmirigy Langerhans-szigeteiben található béta-sejtek által termelt polipeptid hormon, amely a szénhidrátok,

Részletesebben

A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András

A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András A biokémia alapjai Wunderlich Lívius Szarka András Összefoglaló: A jegyzet elsősorban egészségügyi mérnök MSc. hallgatók részére íródott, de hasznos segítség lehet biomérnök és vegyészmérnök hallgatók

Részletesebben

A citoszkeletális rendszer

A citoszkeletális rendszer A citoszkeletális rendszer A citoszkeletális filamentumok típusai, polimerizációja, jellemzıik, mechanikai tulajdonságaik. Asszociált fehérjék 2013.09.24. Citoszkeleton Fehérjékbıl felépülı, a sejt vázát

Részletesebben

BIOLÓGIA ALAPJAI. Sejttan. Anyagcsere folyamatok 1. (Lebontó folyamatok)

BIOLÓGIA ALAPJAI. Sejttan. Anyagcsere folyamatok 1. (Lebontó folyamatok) BIOLÓGIA ALAPJAI Sejttan Anyagcsere folyamatok 1. (Lebontó folyamatok) (Az ábrák egy része Dr. Lénárd Gábor Biológia 11. c. könyvéből való) Dr. Bakos Vince 2017/18. ősz 1 Prokarióták és eukarióták Karyon

Részletesebben

Génkifejeződési vizsgálatok. Kocsy Gábor

Génkifejeződési vizsgálatok. Kocsy Gábor Génkifejeződési vizsgálatok MTA Mezőgazdasági Kutatóintézete Növényi Molekuláris Biológia Osztály A génkifejeződés A sejtmag géneket tartalmaz; (fehérjéket, RNSeket kódoló); A gének átíródnak mrns; Pre-mRNS

Részletesebben

MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet

MITOCHONDRIUM. Molekuláris sejtbiológia: Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Molekuláris sejtbiológia: MITOCHONDRIUM külső membrán belső membrán lemezek / crista matrix Dr. habil. Kőhidai László egytemi docens Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Tudomány-történet

Részletesebben

TRANSZPORTFOLYAMATOK 1b. Fehérjék. 1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS

TRANSZPORTFOLYAMATOK 1b. Fehérjék. 1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS 1b. FEHÉRJÉK TRANSZPORTJA A MEMBRÁNONOKBA ÉS A SEJTSZERVECSKÉK BELSEJÉBE ÁLTALÁNOS DIA 1 Fő fehérje transzport útvonalak Egy tipikus emlős sejt közel 10,000 féle fehérjét tartalmaz (a test pedig összesen

Részletesebben

A glükóz reszintézise.

A glükóz reszintézise. A glükóz reszintézise. A glükóz reszintézise. A reszintézis nem egyszerű megfordítása a glikolízisnek. A glikolízis 3 irrevezibilis lépése más úton játszódik le. Ennek oka egyrészt energetikai, másrészt

Részletesebben

A Biotechnológia természettudományi alapjai

A Biotechnológia természettudományi alapjai A Biotechnológia természettudományi alapjai Műszaki Menedzser MSc hallgatók számára Hallgatói előadás-jegyzet Előadó: Dr. Pécs Miklós egyetemi docens pecs@eik.bme.hu Lejegyezte: Koroncz Eszter, lelkes

Részletesebben

A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor,

A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor, 1 A gidrán fajta genetikai változatosságának jellemzése mitokondriális DNS polimorfizmusokkal Kusza Szilvia Sziszkosz Nikolett Mihók Sándor, (Debreceni Egyetem Állattenyésztéstani Tanszék) A bármilyen

Részletesebben

Az ellenanyagok szerkezete és funkciója. Erdei Anna Immunológiai Tanszék ELTE

Az ellenanyagok szerkezete és funkciója. Erdei Anna Immunológiai Tanszék ELTE Az ellenanyagok szerkezete és funkciója Erdei Anna Immunológiai Tanszék ELTE Bev. 1. ábra Immunhomeosztázis A veleszületett és az adaptív immunrendszer szorosan együttműködik az immunhomeosztázis fenntartásáért

Részletesebben

Előszó. Hogyan használd a könyvet?

Előszó. Hogyan használd a könyvet? 1. pró emberke (homunculus) részében egy 18. századi ábrázoláson kutatja. Előszó Hogyan használd a könyvet? témákat nyitóoldal és egy olvasmány vezeti be, ami áttekintést ad arról, hogy milyen kérdésekkel,

Részletesebben